
Feature-Based Speed Limit Sign Detection
Using a Graphics Processing Unit

Vladimir Glavtchev, Pınar Muyan-Özçelik, Jeffrey M. Ota, and John D. Owens

Abstract— In this study we test the idea of using a graphics
processing unit (GPU) as an embedded co-processor for real-
time detection of European Union (EU) speed-limit signs. The
input to the system is a set of grayscale videos recorded from
a forward-facing camera mounted in a vehicle. We introduce a
new technique for implementing the radial symmetry detector
(RSD) efficiently using the native rendering capabilities of a
GPU. The technique maps the algorithms to the hardware such
that the detection of speed-limit sign candidates is significantly
accelerated. The system reaches up to 88% detection rate and
runs at 33 frames per second on video sequences with VGA
(640x480) resolution on an embedded system with an Intel Atom
230 @ 1.67 GHz CPU and a NVIDIA GeForce 9400M GS GPU.

I. INTRODUCTION

A target of research since the mid 1980’s, computer-
based driver assistance has been a key technological goal
for automotive manufacturers. A large part of the research
has focused on vision-based systems using a camera mounted
inside the vehicle. Despite its long history of research, a lot of
the driver-assistance ideas have never left the laboratory be-
cause of their computational cost-prohibitiveness. However,
with commodity hardware rapidly increasing in performance,
it is worth spending some effort mapping existing algorithms
efficiently onto current-generation commodity hardware.

An example driver-assistance application that has been
proven effective and efficient is speed-limit sign detection.
Implementations of some of the algorithms for speed-limit
sign detection have been gradually optimized and reached
real-time performance, but only on high-end processors or
highly-specific architectures. Here we present a new tech-
nique to enable real-time detection on resource-constrained
hardware using a low-end GPU that can be embedded in a
car. The input to our system is a 640x480 video sequence
of EU roads taken from a moving vehicle. The video is
processed in real-time to detect speed-limit signs as depicted
in Figure 1.

A. Our Contribution

We implement a hardware-accelerated version of the radial
symmetry detector as presented by Loy and Barnes [1] to
achieve real-time performance in detecting speed-limit signs
on a graphics processor. We use the Compute Unified Device
Architecture (CUDA) programming model in conjunction
with OpenGL to extract maximum parallelism from the
detection process. To our knowledge, this is the first real-
time implementation of the radial symmetry detector using
embedded-level hardware. Previous implementations have
focused mainly on optimizing the algorithms for executing

(a) Input image.

(b) Edges detected in image.

(c) Radial symmetry voting image.

(d) Detected speed-limit sign candidates.

Fig. 1. Detection of circular speed-limit signs. (a) The original input image.
(b) Edges found using a 3x3 Sobel with thresholding. (c) Voting intensity
map with bright areas representing circular features. (d) Corresponding
speed-limit sign candidates found using the detection algorithm.

on a CPU architecture. This has offered a few close to
real-time solutions, but only on high-end processors with
large memory and processing resources. Missing from these
solutions has been the exploitation of parallelism inherent in
the algorithms used for detection. Thus, in order to achieve
the desired performance, we focused on the following key
points: 1.) Using a platform whose architecture reflects
the natural parallelism of the computer-vision techniques
used in traffic-sign detection. The GPU’s massively parallel
computing resources are a good fit. 2.) Utilize the hardware
as effectively as possible using novel approaches and known
state-of-the-art techniques where needed. Our RSD imple-
mentation exploits hardware acceleration in ways such as
massively-parallel vertex computations, texture caching, and
rendering using the native rasterization hardware of the GPU.
3.) With those in mind, we pick hardware which is inexpen-
sive, widely-available, and most importantly, available in the
embedded space. In our tests, we target an embedded CPU-



GPU platform, an under-studied environment for embedded
vision-based driver assistance. Thus, our work contributes to
the field and helps fill in the gaps.

B. Choosing the Platform

We present a platform consisting of a coordinating host
CPU and a GPU as the main processor. Our choice for the
GPU as an embedded co-processor is motivated by several
of its characteristics. GPUs today are massively parallel,
programmable, and are widely available. A GPU replaces
the need for application-specific processors as it increases
reusability and allows for time-sharing between processing
tasks. The hardware is also largely scalable as its variants in-
clude more resources while keeping the basic architecture the
same and the programming paradigm completely uniform.

The GPU is an obvious choice for a co-processor in
many computer-vision detection, recognition, and augmented
reality schemes. This is due in part to the exposure of its pro-
grammable features through C-like languages. Before general
purpose languages such as CUDA, Brook, and OpenCL be-
came widely available, many experts in the computer-vision
field were already harnessing the power of GPUs through
shader languages like Cg and GLSL. Fung and Mann [2]
demonstrated several algorithms ported to the GPU using Cg
that are accelerated when compared to their CPU counter-
parts or made possible in real-time due to the processing
power available in GPUs. Projects such as OpenVIDIA [2]
and GPU4VISION [3] have developed a steadily growing
community of programmers. Inspired from the success of
GPU-based computer-vision projects, we choose the GPU
as our detection co-processor of choice due to its highly-
parallel architecture, large local and global memory, and its
programmability.

II. PREVIOUS WORK

A. Grayscale Versus Color Detection

Detection using grayscale images inherently relies solely
on the characteristics of the objects present in the scene.
Characteristics such as edges, corners, and gradient angles
can be used either individually or in groups to detect tar-
get shapes. Not having color information restricts a given
recognition technique to focus only on the characteristics that
define the detection targets. However, that is in fact the main
advantage of using grayscale images, argue Gavrila [4] and
Barnes and Zelinsky [5]. These characteristics are invariant to
lighting conditions and fading of sign colors over time [6].
Garcia et al. [7] claims that grayscale approaches have an
advantage over color-based detection because the latter is
less precise due to the fact that the blue and red color spaces
can overlap in signs that are mostly white (as is the case
with speed-limit signs). Examples of color-based approaches
include studies proposed by Priese et al. [8] and Zheng et
al. [9].

B. Template-based Versus Feature-based

Detection using template-based techniques is usually per-
formed by “sliding” (a convolution in the spatial domain) a

target template over the entire input scene and computing
a value indicative of the similarity between the input and
the target. Piccioli et al. [10] use cross-correlation, which
is the most commonly applied technique. This method has
the disadvantages of performing expensive convolutions and
often requiring multiple passes. The convolutions can be
avoided when working in the frequency domain, as proposed
by Javidi et al. [11]. This technique relies on the ability
to quickly perform FFTs. This also might require multiple
passes to detect signs of different sizes, orientations, or
different traffic signs in general. A major disadvantage is
that objects which are of shape or orientation not present in
the target template set can be missed altogether.

On the other hand, feature-based approaches utilize promi-
nent characteristics in the input scene such as corners, line
segments, and edges. Techniques of different complexities
can be used to extract these features such as a simple Sobel
filter, a more involved Canny edge detector, or an intelligent
edge-chaining algorithm such as Pavlidis’s used by Piccioli
et al. [10].

Traffic-sign detection algorithms have naturally sought
to take advantage of the geometry of target signs. For
rectangular and otherwise polygonal (diamond, octagon, etc.)
signs, algorithms targeting straight edges that form line
segments have been used widely. Perhaps the most widely
used algorithm has been the general Hough Transform (HT).
Examples include detection of stop-signs, lane markers, and
diamond curve signs [12]. For circular signs, the circular
HT is the preferred algorithm and is an adapted version of
the general transform. Both forms of the HT require the
use of sine and cosine computations for each input pixel
and the algorithms are considered computationally expensive
and memory-demanding [13]. In a more holistic approach,
the General Symmetry Transform (GST) [14] measures the
contribution of edge pixel pairs to a central point (a one-to-
many approach), thus searching for edges of potential geo-
metric shapes which exhibit horizontal or vertical symmetry.
However, the computational cost of the GST is also high
as each pixel searches a neighborhood of a varying size for
edges contributing to a symmetry around it.

Loy and Zelinsky [15] introduced the radial symmetry de-
tector (RSD) which inverts the symmetry-seeking technique
of the GST to a many-to-one approach. Individual pixels
vote for a common center of symmetry with their results
accumulating in a common voting map. In the first known
application of the RSD, Loy and Barnes [1] demonstrate
the algorithm’s robustness in an implementation of a driver-
assistance system capable of recognizing octagonal stop
signs, triangular warning signs, and diamond indicator signs.
More recently, Barnes and Zelinsky [16] show that the
algorithm can handle up to 30% noise while maintaining
high detection rates and approaching real-time performance.

C. Focus of Recent Literature

Even though automotive recognition systems are meant to
run on embedded platforms in an automobile, recent litera-
ture has not paid sufficient attention to providing techniques



which can run on such platforms. Previous studies which
perform real-time speed-limit-sign recognition mostly use
dual-core desktop or laptop architectures [6], [17] as their
running platforms. Even in one of the most recent studies,
Barnes and Zelinsky [16] demonstrate a system which runs
in real-time, but the implementation only does so on a
server-grade Intel Xeon 3.40 GHz machine. An approach
which is most-closely targeted for the embedded space is
introduced by Coersmeier et al. [18]. The authors propose a
real-time speed-limit-sign recognition system utilizing four
ARM processors in parallel to test the speedup of a traffic
sign recognition system for future mobile devices.

III. METHODS

A. Preprocessing

In our approach, the detection process begins with an
input image of 640x480 pixels. For preprocessing, a 3x3
Sobel edge detector is applied to the entire input scene.
The result is an image of gradient angles of pixels whose
gradient magnitude is larger than a specified threshold. All
other pixels are marked as invalid. The gradient image is
then passed on to the next stage.

B. Shape Detection

Each element with a non-zero gradient angle casts a vote
(increments an element on a cumulative voting image V ) for
a potential circle center a distance r away (where r is the
radius of the circle which we are targeting for detection) in
the direction of its gradient angle. Since we do not know
the direction of the centroid of the targeted circle, voting
is performed both in the direction of the gradient and 180
degrees across from it. In order to take into account skewing
due to viewing perspective or out-of-plane sign rotation, the
vote is extended to a line of pixels (of width w) that are
oriented perpendicularly to the voting pixel’s gradient angle.
Figure 2 (left) shows line-voting for one specific radius. The
voting width is defined by w = round(r tan π

n ) where n
represents the number of sides in the n-sided polygon. In this
case, we target octagonal shapes (n = 8) as an approximation
to circles. Treating circles as octagons simplifies the vertex
computations as it avoids sine and cosine evaluations for each
vertex depending on the different gradient angles. Octagonal
approximation allows us to have votes cast only in directions
separated by 360

8 degrees. This is an optimization to using
n = ∞, as should be the case with circles, which have an
infinite number of sides.

Since speed-limit signs will vary in radius depending on
their distance away from the camera, we target a range of
possible radii from Rmin to Rmax. Noticing that w increases
with increasing r, the overall voting pattern for each pixel
becomes triangular if Rmin = 0. This assumption simplifies
the shape of the voting pattern and has performance impli-
cations as discussed in the Implementation section. Thus,
each pixel casts its votes in a triangular pattern on image V ,
as shown in Figure 2 (middle). The overall voting image is
formed by summing the votes of all edge pixels, as Figure 2
(right) shows. The points voted for are called affected pixels

r

w

Min. radius

Max. radius

Fig. 2. (Left) Votes cast by one edge pixel in the direction of its gradient
at a distance of the targeted circle radius. Omitted in this diagram are the
votes cast 180 degrees opposite of the gradient angle. (Middle) Triangular
estimation of each edge pixel’s voting pattern. (Right) Votes accumulate
where the triangles overlap to create a combined voting image.

and are defined as paff (p) = p ± round(rg(p)), where g(p)
is the unit gradient for pixel p. Figure 2 illustrates the steps
of the detection algorithm and the possible speed-limit sign
candidates extracted from the input image.

C. Classification and Tracking

The coordinates of the center as obtained during detection
are used to segment the regions of interest (ROIs) from
the image. Each of the selected ROIs are then classified
using a FFT template-matching approach. The classification
provides a confidence value for the best match for each
candidate along with an estimated size and in-plane rotation.
The classifier is used only to validate our detection stage and
is discussed in a prior publication [19].

One-frame results do not provide enough confidence that a
detected candidate is in fact a real sign. Therefore, we apply
a temporal integration tracking technique that accumulates
candidate confidence over a range of several frames. Tem-
poral integration is implemented as a running tracking table
of sign candidates across the last ten (the average number of
frames in which a sign appears in our database) frames. Sign
scaling and orientation are factored in; confidence values
of signs appearing larger in size than their last appearance
in a frame are multiplied by a scaling factor. This reduces
the possibility that artifacts present in several consecutive
frames but remain the same or decrease in size will obtain
high confidence levels and be falsely recognized as signs.
The orientation factor is used similarly and prevents artifacts
with a largely varying rotation from affecting tracking of real
signs.

D. Extension: Finding the Size

Due to the fact that we span the entire range of targeted
radii using the triangular voting patterns, the size of the
detected signs are not recovered, only their location. If
needed, the size of the detected sign could be recovered with
an incremental voting process using a set of voting images,
where each voting image targets a specific range of radii. The
size is then recovered in two steps: a.) finding the maxima
in an accumulated image S of all the results and b.) finding
the voting image Vi (where Vi represents a voting image for



a specific range of radii) which has a maximum with a high
magnitude and also appears in S.

IV. IMPLEMENTATION

From our discussion thus far, it can be seen that both
preprocessing and detection are highly parallel processes.
Each algorithm operates on a per-pixel basis with no data or
control dependencies. Thus we map both of these algorithms
entirely to the GPU in order to take advantage of its many
processing cores.

The incoming image is copied over to the GPU’s video
memory and is loaded as a texture, as shown in Figure 3.
A Sobel filter is used for preprocessing and is implemented
as a CUDA kernel which runs per pixel. Each pixel samples
its immediate neighbors (3x3 pixel area) using fast texture
sampling. The input image remains as a texture and is
unmodified, as it might be needed for classification in case
of successful detection. Results of the Sobel filter (an edge
map containing gradient angles) are saved to global video
memory. Then, a per-pixel radial symmetry kernel runs using
the gradient angle image as its input. Each element with
a valid gradient angle calculates its voting areas. Values
calculated at this stage are (x,y) coordinate pairs for the
vertices of the voting triangles. Each pixel stores its result
in a Vertex Buffer Object (VBO). Once the radial symmetry
kernel finishes, OpenGL uses this VBO to draw triangles
defined by the coordinate pairs. Using CUDA-OpenGL in-
teroperability [20], there are no memory transfers between
these two stages.

With blending enabled, each triangle is then rendered
with a high transparency (lowest non-zero alpha) value. The
graphics hardware blends together all overlapping triangles,
which causes these areas to appear brighter. An intensity map
is produced as a result with accumulated votes of the radial
symmetry stage. A large gain here comes from hardware
drawing and blending done automatically by the GPU. A
high number of overlapping incremental votes causes con-
tention and serialization in most architectures, but the GPU
hardware is optimized for this operation. In this stage, our
technique takes full advantage of the present resources in a
highly-efficient voting strategy. Using the CUDA-OpenGL
interoperability is crucial here to avoid unnecessary memory
transfers and achieve maximum performance.

For the final stage (maxima detection), we use a parallel
maximum reduction implementation. The voting image is
split into 4,800 blocks of 8x8 pixels and the highest value
of each block is found. The results are then again divided
in blocks of 8x8, which now consist of the maxima of
the last stage. Reduction is performed iteratively until there
are only 80x60 maximum values remaining. This process is
highly parallelizable as a find maximum operation can be
performed in parallel among as many blocks of the image as
the hardware will allow simultaneously. Resulting candidate
centroid coordinates are copied back to the host processor.
On the host, a reduction is performed to locate the desired
number of blocks with the highest values. The maximum-
reduction which is performed on the CPU is only a 80×60

Camera

Sobel Filter
(non-aligned 
accesses)

Texture 
Cache

Input Frame

Fast Texture 
Lookups

[CUDA: tex2D]

Radial Symmetry 
Detector

(aligned reads,
non-aligned writes)

Graphics 
Pipeline
[OpenGL]

Maximum 
Reduction

(aligned accesses) Pixel Buffer 
Object
[CUDA]

Vertex Buffer
Object
[CUDA]

Video 
Memory

Detected
Segments

V0

V1 V2

V0

V1 V2

Fig. 3. Computation (left) and data (right) flow through the speed-limit
recognition pipeline.

pixel block and executes fast enough on the host processor
as to not affect the overall runtime of the detection process.

A. Memory

A target for efficiency in the embedded space is min-
imizing expensive data transfers. The overhead latency of
data transfers between devices is largely independent of the
data transfer size. Overhead cost can be amortized if the
data transfer is relatively large. In our implementation, the
incoming video image is copied to the GPU’s video memory
at arrival and remains there for the duration of the detection
process. In the preprocessing stage, memory is only accessed
using fast texture lookups. During the radial symmetry stage,
input values are loaded into shared memory and the results
are written out to global memory in large blocks. During
the voting stage of the radial symmetry algorithm, the
results from global memory are mapped to a VBO which
eliminates the need for any memory transfers. Voting results
are accumulated in the video frame buffer which is mapped
to a pixel buffer object (PBO). These results can be readily
used for the maximum reduction and to be displayed visually
on a screen. Only a minimal memory transfer from the
GPU to the host processor is used to transfer the potential
candidate coordinates for the final reduction step.

1) Hardware Acceleration: Our implementation takes ad-
vantage of hardware acceleration in several key ways. First,
the preprocessing stage uses texture sampling for accessing
its input. Memory accesses through texture look-ups have
several benefits when compared to global or shared memory
reads (as per the CUDA Programming Guide [20]). Textures



are cached, which allows for higher bandwidth provided
that there is locality in the fetching patterns. In the case
of the Sobel kernel, the texture is accessed in 3x3 blocks
which exhibits good spatial locality. Another advantage is
that data cached as a texture does not exhibit the same loss
in performance as do global and shared memory due to un-
coalesced accesses and bank conflicts. Lastly, texture fetches
have automatic boundary case handling, which eliminates the
need for auxiliary functions or extra branch statements that
handle the image boundaries.

Hardware acceleration provides the most significant per-
formance benefit in the radial symmetry voting stage. First,
the Arithmetic Logic Units (ALUs) in the hardware shaders
of the GPU are used to calculate triangle vertex coordinates
in parallel. Since RSD is pixel-based without any data de-
pendencies between pixels, as many individual pixels can be
processed in parallel as there are ALUs available on the GPU
provided that scheduling permits it. The most significant
speed-up, however, is in the voting process. Drawing and
blending of the voting areas are performed exclusively using
the native rasterization hardware. In fact, rasterizers have
always been the “secret sauce” of graphics architectures
which have differentiated GPUs from CPUs in rendering
performance by orders of magnitude.

The last step, parallel maximum reduction, also benefits
largely from hardware acceleration. It is performed using
a slightly modified version of the very efficient CUDA re-
duction algorithm from the CUDA SDK. The input from the
voting stage is read using fast texture lookups and the results
are computed with maximum GPU hardware occupancy.

V. RESULTS AND ANALYSIS

The video footage used for testing was chosen to cover as
many different environments as present in our database. En-
vironments we consider to be the type of road the vehicle is
driving on including its surroundings. We define five different
environments: inter-city highway, urban, rural, construction
zone, and tunnel.

A. Lighting and Weather

In order to evaluate the system’s robustness, it was tested
in various lighting and weather conditions. The data set was
divided among the following: daylight, nighttime, dawn or
dusk, tunnel, and snow. Snow has its own category as it
adds an extra difficulty to recognition: snow flakes tend
to partially or sometimes fully occlude the camera’s view.
We believe that our extensive testing in a large range of
environments is important to demonstrating the system’s
robustness. In general, there has been a lack of coverage of
lighting conditions in the literature. However, we believe the
robustness of the RSD algorithm is highlighted best through
its ability to detect signs with high accuracy in conditions
where the driver could have a difficult time seeing traffic
signs such as at night or on a snowy day. The distribution of
the videos across the various lighting and weather conditions
is shown in Figure 4.

Environment No. Videos Lighting No. Videos

City 12 Daylight 41
Country road 27 Night 18
Highway 33 Dusk / dawn 8
Construction 6 Digital 9
Tunnel 2 Snow 4

Total 80 80

Fig. 4. Breakdown of lighting conditions in the input scenes. Videos
containing digital signs are distributed among the other lighting conditions
and are not counted separately towards the scene total.

B. System Performance

The system achieved 88% detection rate while executing at
33 frames/s using the host CPU for only issuing commands
and the GPU for the main computation. Our base testing
platform is an Intel Atom 230 @ 1.67 GHz and a NVIDIA
GeForce 9400M GS GPU. Both of these processors are
found in low-end laptops and due to their ultra-low power
requirements, are an ideal match for an embedded automotive
system. The detection rate was achieved on 80 video scenes
totaling 42 minutes and 43 seconds filmed at 16.7 Hz on
European roads.

Detection rate evaluation was performed using 43 minutes
of video footage of roads in the European Union (ex: Ger-
many, UK, France, etc.) under various daytime and nighttime
conditions as listed in Figure 4. The footage contains a total
of 164 signs, of which 144 were detected correctly for a
detection rate of 88%. In order to maximize the detection
rate, up to seven candidates per frame were examined. Can-
didates which return single-frame confidence values above a
certain instant threshold are then tracked. Each sign is tracked
throughout the interval of its first appearance in the scene
until the last frame before its disappearance. A successful
detection is recorded when the temporal integration process
returns an aggregate confidence value higher than a certain
threshold. The classifier returned 0 false positives for the test
set video footage.

C. Examples

1) Robustness Evaluation: As previously mentioned, the
detection system’s robustness is demonstrated through its
tolerance of changes in lighting and in-plane rotations.
Figures 5(a) and 5(b) show successful detection of signs in
the same scene city location both at daylight and at night.
Figure 5(c) shows a sign that has been detected successfully
despite an in-plane rotation of up to 6 degrees in that frame.

An important case for many European roads is detec-
tion of variable digital speed-limit signs. The frequency
with which the signs vary makes it hard or impossible for
navigation systems to keep up-to-date information in such
zones. In addition, digital speed-limit signs are often used
in tunnels where a GPS system without pre-stored data
could lose satellite connection and be unable to alert the
driver. Therefore, the ability of a camera-based system to



(a)

(b)

(c)

(d)

Fig. 5. Robustness of RSD: lighting and in-plane rotation invariance. (a)
City scene at daylight. (b) The same city scene at night with street lighting,
taillights, and oncoming headlights. (c) Scene with a scene which appears
with an in-plane rotation of 6 degrees CW. (d) A detected sign in a tunnel.

detect and identify digital signs becomes beneficial to driver-
awareness. Figure 5(d) demonstrates the system’s robustness
when handling digital signs both during daytime and at night.

VI. CONCLUSION

We have introduced a novel implementation of the feature-
based radial symmetry transform which we applied to speed-
limit sign detection. There was no general loss of robust-
ness compared to the original formulation of the technique,
as testing in various environments and lighting conditions
showed detection rates as high as 88%. Our comprehensive
testing exceeds what has been detailed in the literature to this
date as a much broader range of driving conditions is covered
in our study compared to previous work. Using various
techniques of hardware acceleration, our implementation
allows for real-time speed-limit sign detection on resource-
constrained embedded platforms. Our focus on hardware
acceleration and usage of commodity graphics hardware in
an embedded environment fills a gap in the current literature
of in-vehicle computer vision.

We presented the idea of using a GPU as an embedded
general-purpose processor highly capable of computer-vision
tasks. The programmability and performance scalability of
the GPU make it a processor worthy of examination for
embedded automotive platforms. Its programmability can
cut down the need for application-specific hardware, design

cycle lengths, and overall system costs. It can also allow
other automotive tasks to use its resources when available.
The native graphics capability is an added advantage and can
be used to render a graphical user interface.
Acknowledgments Thanks to BMW, NVIDIA, UC MICRO,
and the National Science Foundation (awards CCF-0541448
and CCF-1017399) for funding support. Additional thanks to
James Fung and Joseph Stam for their help in architecting
the RSD algorithm on the GPU using OpenGL, and John
Roberts for his support on tools used for prototyping.

REFERENCES

[1] G. Loy and N. Barnes, “Fast shape-based road sign detection for a
driver assistance system,” in IEEE Intelligent Robots and Systems
(IROS), vol. 1, 2004, pp. 70–75.

[2] J. Fung and S. Mann, “OpenVIDIA: Parallel GPU computer vision,”
in ACM International Conference on Multimedia, 2005, pp. 849–852.

[3] Graz University of Technology, “GPU 4 Vision,” 2010, http://
gpu4vision.icg.tugraz.at.

[4] D. Gavrila, “Traffic sign recognition revisited,” in German Association
for Pattern Recognition (DAGM) Symposium, 1999, pp. 86–93.

[5] N. Barnes and A. Zelinsky, “Real-time radial symmetry for speed
sign detection,” in IEEE Intelligent Vehicles Symposium, 2004, pp.
566–571.

[6] F. Moutarde, A. Bargeton, A. Herbin, and L. Chanussot, “Robust on-
vehicle real-time visual detection of American and European speed
limit signs, with a modular traffic signs recognition system,” in IEEE
Intelligent Vehicles Symposium, 2007.

[7] M. Garcia-Garrido, M. Sotelo, and E. Martm-Gorostiza, “Fast traffic
sign detection and recognition under changing lighting conditions,” in
IEEE Intelligent Transportation Systems Conference, 2006.

[8] L. Priese, J. Klieber, R. Lakmann, V. Rehrmann, and R. Schian,
“New results on traffic sign recognition,” in IEEE Intelligent Vehicles
Symposium, 1994, pp. 249–254.

[9] Y.-J. Zheng, W. Ritter, and R. Janssen, “An adaptive system for traffic
sign recognition,” in IEEE Intelligent Vehicles Symposium, 1994, pp.
165–170.

[10] G. Piccioli, E. De Micheli, P. Parodi, and M. Campani, “Robust
road sign detection and recognition from image sequences,” in IEEE
Intelligent Vehicles Symposium, 1994, pp. 278–283.

[11] B. Javidi, M.-A. Castro, S. Kishk, and E. Perez, “Automated detection
and analysis of speed limit signs,” University of Connecticut, Tech.
Rep. JHR 02-285, 2002.

[12] V. Kamat and S. Ganesan, “A robust Hough transform technique for
description of multiple line segments in an image,” in International
Conference on Image Processing, vol. 1, 1998, pp. 216–220 vol.1.

[13] M. Lalonde and Y. Li, “Road sign recognition - survey of the state of
art, Tech. Rep. CRIM-IIT Technical report for Sub-Project 2.4, 1995.

[14] D. Reisfeld, H. Wolfson, and Y. Yeshurun, “Context-free attentional
operators: the generalized symmetry transform,” Int. J. Comput. Vision,
vol. 14, no. 2, pp. 119–130, 1995.

[15] G. Loy and A. Zelinsky, “Fast radial symmetry for detecting points
of interest,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 25, no. 8, pp. 959–973, 2003.

[16] N. Barnes, A. Zelinsky, and L. S. Fletcher, “Real-time speed sign
detection using the radial symmetry detector,” IEEE Transactions on
Intelligent Transportation Systems, vol. 9, no. 2, pp. 322–332, 2008.

[17] C. G. Keller, C. Sprunk, C. Bahlmann, J. Giebel, and G. Baratoff,
“Real-time recognition of U.S. speed signs,” in IEEE Intelligent
Vehicles Symposium, 2008, pp. 518–523.

[18] E. Coersmeier, S. Jaborek, P. Paul, M. Bucker, M. Hoffmann,
L. Pustina, S. Schwarzer, F. Leder, and P. Martini, “Multicore pro-
cessing for object recognition in mobile devices,” in Embedded World
Conference, 2008.

[19] P. Muyan-Ozcelik, V. Glavtchev, J. M. Ota, and J. D. Owens, “A
template-based approach for real-time speed-limit-sign recognition on
an embedded system using GPU computing,” in German Association
for Pattern Recognition (DAGM) Symposium, 2010, pp. 162–171.

[20] NVIDIA Corporation, “NVIDIA CUDA compute unified device ar-
chitecture,” 2009, http://developer.download.nvidia.com/toolkit/docs/
NVIDIA CUDA Programming Guide 2.3.pdf.


