
Feature-Based Terrain Classification For LittleDog

Paul Filitchkin and Katie Byl

Abstract— Recent work in terrain classification has relied largely

on 3D sensing methods and color based classification. We present an

approach that works with a single, compact camera and maintains

high classification rates that are robust to changes in illumination.

Terrain is classified using a bag of visual words (BOVW) created from
speeded up robust features (SURF) with a support vector machine

(SVM) classifier. We present several novel techniques to augment this
approach. A gradient descent inspired algorithm is used to adjust the
SURF Hessian threshold to reach a nominal feature density. A sliding

window technique is also used to classify mixed terrain images with

high resolution. We demonstrate that our approach is suitable for
small legged robots by performing real-time terrain classification on

LittleDog. The classifier is used to select between predetermined gaits
to traverse terrain of varying difficulty. Results indicate that real-time

classification in-the-loop is faster than using a single all-terrain gait.

I. INTRODUCTION

Terrain classification is a vital component of autonomous outdoor

navigation and serves as the test bed for state-of-the-art computer

vision and machine learning algorithms. This area of research has

gained much popularity from the DARPA Grand Challenge [1] as

well as the Mars Exploration Rovers [2].

Recent terrain classification and navigation research has focused

on using a combination of 3D sensors and visual data [1] as well

as stereo cameras [3] [4]. [5] uses vibration data from onboard

sensors for classifying terrain. Most of this work has been applied

to wheeled robots, and other test platforms have included a tracked

vehicle [6] and a hexapod robot [3]. On the computer vision

spectrum of research, interest in terrain classification has been

around since 1976 [7] for categorizing satellite imagery. More

recent work has focused on the generalized problem of recognizing

texture. Terrain and texture classification falls into the following

categories: spectral-based [8] [9], color-based [1] [10], and feature-

based [11].

Over the last decade, a large volume of work has been published

on scale invariant feature recognition and classification. Scale

invariant features have proven to be very repeatable in images

of objects with varying lighting, viewing angle, and size. They

are robust to noise and provide very distinctive descriptors for

identification. They are suitable for both specific object recognition

[12] [13] as well as broad categorization [14] [15].

To the best of the authors’ knowledge, the proposed SURF

BOVW recognition approach has not been previously applied to

terrain classification. This work aims to provide a terrain classifica-

tion framework that is more robust than color-based classification

and is suitable for realtime applications. In addition, we propose a

novel sliding window-based technique for classifying mixed terrain

images with high resolution.

II. ALGORITHMS

1) Feature Extraction: In this work we use SURF features for

classification. The process of extracting features starts by detecting

key points at unique locations on the image. Areas of high contrast

P. Filitchkin and K. Byl are with the UCSB Robotics Lab
(http://robotics.ece.ucsb.edu), ECE Dept., 4150
Harold Frank Hall, Santa Barbara, CA 93106 USA e-mail:
filitchp@gmail.com and katiebyl@gmail.com

such as T-junctions, corners, and blobs are selected and then the

neighborhood around each point are used to compute the descriptor.

SURF relies on a fast-Hessian detector and selects a region around

each key point to compute the descriptor. The descriptor is created

using the Haar wavelet response in the horizontal and vertical

direction. More details on this process are available in [16].

Fig. 1. High Feature Count Variance Using a Constant Hessian Threshold

A pitfall of using a constant Hessian threshold for detection,

especially for images of varying frequency content, is the large

variance in the number of key points. Figure 1 shows SURF key

points for two images with the same parameters. A threshold that

is too high may lead to a BOVW with very little data and threshold

that is too low will flood the classifier with redundant information

and noise. In order to combat this problem we propose a gradient

descent inspired threshold adjuster. Let n = d(h) where d(·) is

an unknown function that returns the number of key points, n, for

a given Hessian threshold h. To find the threshold that produces

a desired key point count, h′, an iterative convex optimization is

performed. For a given step i the error can be written as e(i) =
d(hi)− d(h′) and our goal is to minimize this quantity. We use an

update method similar to gradient descent, but instead of computing

the function’s gradient we use the error value divided by the local

rate of changes,
e(i)

|hi−hi−1|
. Equation 1 is the threshold update step

where α is a user set value that determines the update rate.

hi+1 = hi + α
d(hi)− d(h′)

|hi − hi−1|
(1)

In practice this approach has the potential to overshoot the target

key point count, d(h′), by changing the threshold too rapidly. When

an overshoot condition is detected, the new threshold becomes the

average of the previous two and the update rate is halved.

A. Visual Vocabulary

To generate a vocabulary, we use the k-means clustering al-

gorithm with the initialization procedure outlined in [17]. In the

context of this work, the k-means problem is to find an integer

number of centers that best describe groupings of descriptor data.

More formally: let k ∈ Z be the desired number of clusters and let

X ⊂ R
M be the set of descriptors. The goal is to find k centers

(descriptors) in C ⊂ R
M that minimize φ (Equation 2).

φ =
∑

x∈X

min
c∈C

||x− c||2 (2)

The iterative k-means algorithm (Lloyd’s algorithm) for achieving

this operates as follows: given centers C assign each descriptor x ∈

X to the c ∈ C that has the smallest Euclidean distance. Then each

center is repeatedly recomputed until the centers stop shifting. This

procedure will always terminate, but in practice it is common to set

a maximum allowable number of iterations. In this work we use

the k-means++ algorithm which uses a probabilistic initialization

procedure followed by Lloyd’s algorithm. In k-means++ the initial

center c1 ∈ C is chosen uniformly at random from X and

subsequent points ci are chosen with the probability in Equation

3. Where D(x) is the distance between x and the nearest center cj
that has already been chosen (0 < j < i).

P (ci = x
′ ∈ X) =

D(x′)2∑
x∈X D(x)2

(3)

This approach tends to select centers that are further away from

the ones that have already been chosen. The idea is to keep a high

variance within the centers, but maintain some probability of not

always choosing the furthest point.

B. Homogeneous Classification

Once a visual vocabulary has been created each image can be

described by a word frequency vector. First, a vocabulary word vi

is assigned to each descriptor dj in the image by choosing the i that

minimizes ||vi − dj ||. This process essentially approximates each

descriptor with the vocabulary word that has the nearest Euclidean

distance. Each word is then counted and the frequency of each

word is stored in a vector q ∈ Z
n where n is the number of

visual words. Images in the training set each have a corresponding

frequency vector and are used to train the linear SVM classifier.

The training goal of a linear SVM is to find a hyperplane that

provides the maximum margin of separation between classes. Let

the training set consist of k points (q
i
, yi) indexed by i where yi

determines if the word frequency vector belongs to the given class.

If it belongs to the class then yi = 1 otherwise yi = −1. Any

hyperplane that separates the data can be described by all vectors,

h, that satisfy w · h − b = 0 where w is the vector normal to

the hyperplane and b is a scalar bias. The solution for the optimal

hyperplane is achieved through quadratic programming using the

constraints in Equation 4.

min
w,b,ξ

{
1

2
||w||2 − p

k∑

i=1

ξi

}

subject to yi(w
T

q
i
+ b) ≥ 1− ξi

ξi ≥ 0

(4)

Where p > 0 is the penalty parameter of the error term. A more

complete and generalized introduction to SVMs is provided in [18].

Once a hyperplane is computed for each class, the intersections are

used to describe the decision boundaries for the classifier.

C. Heterogeneous Classification

In order to classify a heterogeneous terrain image, it is necessary

to generate features with an approximately constant density across

all pixels. This is achieved by dividing the image into squares and

applying feature extraction on each square independently. The fea-

ture sets for each square are then combined to form a single feature

set. Afterwards, points on the image are selected on a constant

grid and classification is performed in each neighboring region. At

each point we iteratively resize a ball so that it encompasses the

target number of features (within some tolerance). This procedure

is very similar to the gradient descent inspired algorithm mentioned

in Section II-.1. Let ri represent the radius of the ball at the ith

iteration and let D(ri) represent the number of features exclusively

TABLE I

HETEROGENEOUS CLASSIFICATION DEFINITIONS

Symbol Description

I Input image, I ∈ R
m×n

C Set of classification centers (pixels) where C ⊂ R
2

r, ro Radius in (fractional) pixels, r, ro ∈ R

F The set of all features for an image I

Fc,r All features around c ∈ C with radius ||c|| < r

L The set of all class labels in the dataset

Vℓ Matrix of votes for label ℓ ∈ L, Vℓ ∈ Z
m×n

R Matrix with classification results, R ∈ Z
m×n

sa Grid spacing for feature extraction in pixels

sb Grid spacing for classification points in pixels

n Desired range (min/max) of features within radius, n ∈ Z
2

inside the ball. The term D(r′) is the desired number of features

where r′ is the unknown radius of interest. To find r′ we use

Equation 5 which includes a user selectable update rate, α.

ri+1 = ri + α
D(ri)−D(r′)

|ri − ri−1|
(5)

Once a suitable number of features is encircled, a word histogram

vector is generated, and classification is performed using the linear

SVM classifier trained on homogeneous terrain images. All pixels

exclusively in the circle are labeled with the classification result and

this step is repeated about each point. Afterwards a voting procedure

is applied to each pixel by tallying the number of votes for each

class. This procedure is outlined in pseudo code in Algorithm 1.

Algorithm 1 Heterogeneous Terrain Classification

1 r ← ro
2 F ← ExtractGridFeatures(I, sa)
3 C ← GenerateClassificationPoints(I, sb)
4 for all c ∈ C do

5 (Fc,r, r)← FindRegionalFeatures(C,F, n, r)
6 ℓ← Classify(Fcr)
7 Vℓ ← Vote(Vℓ, c, r)
8 end for

9 for all ℓ ∈ L do

10 R← CountVotes(Vℓ, R)
11 end for

III. OFFLINE EXPERIMENTS

A large set of outdoor terrain images was used to benchmark

our classification algorithms. A consumer 10 megapixel camera was

used to take pictures of six different terrain types: asphalt, grass,

gravel, mud, soil, and woodchips (Fig. 2). Images were selected

to make this dataset challenging to classify with simply color or

texture alone. For instance, the asphalt class includes snapshots

of pavement and sidewalk with white, yellow, and red painted

lines. Many images also contain small patches of other terrain. Soil

pictures include outcroppings of rocks or weeds, and woodchip

images include long pine needles resembling blades of grass. To

create a suitably large quantity of entries for testing, each raw

camera image was divided into sub-images. Seven datasets were

created for testing using square images ranging from 192 pixels to

576 pixels in width at 64 pixel increments. In each case, one third

of the images were used for training; the rest were used for testing.

Experiment Dataset Parameter Range Incr.

Vocabulary 384 pixel Number of vocabulary words 10-400 10

K-means 384 pixel Number of k-mean iterations 5-200 5

Features 320 pixel Number of nominal features per image 20-300 10

Size - Image size (square dimensions) 192-576 64

TABLE II

LIST OF OFFLINE EXPERIMENTS

Fig. 2. Examples of homogeneous terrain

A. Methodology

The terrain classification framework presents a large number of

tunable parameters that impact the performance of feature extrac-

tion, vocabulary creation, and classification. This section includes

a detailed overview of experiments performed for improving the

verification accuracy. Table II lists experiments that were conducted

by varying a single parameter while fixing all others. In order to

provide a fair comparison between image sizes, the nominal feature

density was kept at a constant 1 feature per 640 square pixels in

the size experiment. Two sets of verification images were used

with the image size experiment. The first consists of unaltered

test images selected at random and the second contains identical

images that are underexposed via post-processing. This was done

to test the robustness of each classification method to changes in

lighting. In addition to the above experiments, we compared three

aforementioned approaches for generating features: fixed threshold,

contrast stretching, and an adaptive threshold adjuster.

B. Results

Intuition suggests that very small images will not have sufficient

data for properly classifying terrain in the image size experiment.

This is clear when visually inspecting images smaller than 192x192

pixels because it becomes difficult, even for a human, to classify

them. As image size gets large the classifier will likely train to a

very specific set of visual word histograms and we expected to see

the verification error increase. Results matched our expectations and

we observed that the optimal image dimension seems to be 448 x

448 pixels (Figure 3). The data also indicates that the color classifier

is much less effective in underexposed lighting conditions. This is

intuitive because a color histogram simply tallies the color intensity

for each pixel and varying illumination alters the color distribution.

We found the number of visual words in the vocabulary to have

a direct correlation with the verification accuracy and that very few

words would not allow for the classifier to accurately represent each

terrain type. Conversely, we found a point of diminishing return as

the number of words increased. Accuracy generally improved with

word count up to about 150 words as demonstrated by Fig. 4.

192 256 320 384 448 512 576
55

60

65

70

75

80

85

90

95

100

Verification Accuracy Versus Image Dimension

V
e
ri
fi
c
a
ti
o
n
 A

c
c
u
ra

c
y
 (

P
e
rc

e
n
t)

Square Image Side Dimension (pixels)

BOVW

Color

BOVW (underexposed)

Color (underexposed)

Fig. 3. Size experiment verification and time performance

0 50 100 150 200 250 300 350 400
65

70

75

80

85

90

95

100
Word Verification Accuracy Versus Number of Vocabulary Words

V
e
ri
fi
c
a
ti
o
n
 A

c
c
u
ra

c
y
 (

P
e
rc

e
n
t)

Number of Vocabulary Words

Fig. 4. Word experiment verification results

We expected the verification accuracy to increase with K-means

iterations. Lloyd’s algorithm will converge in a finite iterations, so

we can assume that after a certain point additional iterations will

not be beneficial. There has been a lot of work emphasizing the

importance of establishing a good visual vocabulary for recognition

[19] [12]; however, in this application, the number of clustering it-

erations had little effect on verification accuracy.This is a surprising

result and may be due to the broad diversity of descriptors compared

to the relatively small number of classes. It may also be that the

probabilistic initialization procedure in the k-means++ algorithm is

a very effective method for this classification problem. We did not

notice a point of diminishing return since the cluster centers did

not converge during testing.

Similar to the other parameters, we predicted that there needs

to be an adequate number of features per image. On the other

extreme, too many features per image will introduce noise and

redundancy into the system diminishing any further benefits. The

results followed our predictions as shown in Figure 5, and we found

that for the 320 pixel dataset between 200-250 features per image

produced the best trade-off between size and performance.

50 100 150 200 250 300
60

65

70

75

80

85

90

95

100

Verification Accuracy Versus Features Per Image
V

e
ri
fi
c
a
ti
o
n
 A

c
c
u
ra

c
y
 (

P
e
rc

e
n
t)

Features Per Image (Nominal)

Fig. 5. Feature experiment verification results

The dynamic threshold adjuster proved to be a valuable algorithm

because it not only improved verification accuracy, but also greatly

decreased memory requirements for the database (Table IV). Veri-

fication accuracy, compared to a fixed Hessian threshold, improved

by 6 percent while memory requirements decreased by 63 percent.

We note that maintaining a nominal number of words per image

ensures that the classifier is trained with consistent data and that

noise and redundancy is kept to a minimum.

Method Verification Size

Fixed Threshold 89.4% 68.1 Mb

Contrast Stretching 90.7% 53.1 Mb

Dynamic Adjuster 95.4% 25.5 Mb

TABLE III

FEATURE EXTRACTION PERFORMANCE

While there is no straight forward performance metric for het-

erogeneous terrain classification, our algorithm generated visually

intuitive results (Figure 6). The algorithm consistently identified

homogeneous patches for all classes except for woodchips and

gravel. In some cases, boundaries led to misclassification, evident in

the bottom row of images. Overall, the algorithm classified images

on a fine resolution and generated promising results suitable for

future path-planning work.

IV. REAL-TIME EXPERIMENTS

Boston Dynamics’ LittleDog quadruped robot (figure 7) was used

as the real-time test platform for homogeneous terrain classification.

The robot was fitted with a high definition USB webcam with

auto-focus capabilities, the Logitech C910. A mid-range laptop

was dedicated to terrain classification, and an additional laptop was

used to run high-level planning and gait generation. Two machines

were used during experimentation to make testing more convenient

(dedicated processing, additional screen resolution, etc.), but the

framework easily transitions to a single machine.

A. High-level planning

This system is coordinated by a simple Matlab script that

schedules terrain classification and selects the gait regime. The

script communicates with the other processes using TC/IP sockets

found in the Instrument Control Toolbox.

LittleDog starts off each classification cycle in the current gait

(in the first cycle this is simply a halted pose) and pauses to

Fig. 6. Heterogeneous Classification Results

Fig. 7. Boston Dynamics’ LittleDog

initiate terrain classification. The pause is necessary because we

encountered image motion blurring problems with our camera due

to low shutter speed. An adequately long pause is required for

the camera to stop shaking and the pause is held after initiating

classification to ensure system latency does not cause a picture to be

taken during movement. After pausing the current gait is continued

because the robot has not reached the new terrain. Once it reaches

the terrain that has been classified, LittleDog executes the new gait.

Current

gait
New gaitPause Pause

Trigger

Classification
Current gait

Classify

Terrain

Start Label

Fig. 8. Real-time execution cycle

B. Terrain Classification

The terrain classification process (figure 9) uses an event-driven

framework that includes a graphical user interface (GUI) front-end.

The GUI primarily acts as a user monitoring tool for viewing the

image input as well as the status of the terrain classification process.

A fixed interval ”snapshot” timer is then used to sample camera im-

ages such that the current image is stored in memory and displayed

to the GUI. When a terrain classification event is triggered the latest

image is selected for homogeneous classification. The remainder of

the process uses the methods outlined in the algorithms section.

Thread support, socket communication and most GUI elements

were implemented using the wxWidgets software library. All other

image processing and display functionality was implemented using

the OpenCV software library.

Create

Terrain

Database

Graphical

User

Interface

Train

Classifier

User

Visual
Monitoring

Populate

Features

Populate

Vocabulary

Classification

state machine

Classification

Request

Camera

Interface
Camera

Image

Trigger classification

Select
Setup File

Classification

Result

Snapshot Timer

Terrain Classification Library

Extract

Features

Setup

File

Classify

Assign Words
Image

Label

Front-End

Fig. 9. Real-time terrain classification process

C. Gait Generation

Gait generation was handled by an independent process which

selects from several pre-generated gait patterns. The fundamental

motion of each leg consists of seven key coordinates in Euclidean

three-space: two stance points and five swing points. Each point

is also paired with a desired time and then interpolated by a

spline. The LittleDog interface library then computes the inverse

kinematics for each interpolated coordinate and moves the legs

to the desired location. Gait A is reserved for the default Boston

Dynamics parameters, however this gait does not demonstrate any

advantageous characteristics, and it is only suitable for a nearly flat

walking surface. Consequently, it is not used during testing. Gait D

is optimized for speed on relatively flat surfaces, gait C is designed

for high clearance on rough terrain at the expense of speed, and

Gait B is a mixture of the two.

D. Test Environment

In order to create a controlled test environment several 2-by-2

foot terrain boards/containers were created to mimic five natural

terrain types. Figure 10 shows close-up images of each terrain type

taken using the Logitech C910 webcam. The types of terrain were

chosen to provide sufficient visual diversity and offer increasingly

difficult walking surfaces. The rubber tile terrain (figure 10A)

vaguely resembles a sidewalk surface and provides the least walking

difficultly because it has excellent traction and an even surface.

The grass-like surface (B) is also mildly challenging and provides a

distinctive texture and color. The small rocks in figure 10C are glued

to the 2-by-2 boards in order to eliminate slipping, yet they still

provide a jagged walking surface. The rubber chips are made from

painted recycled car tires resembling a woodchip surface. Lastly, the

large rocks, commonly known as Mexican beach pebbles, (Figure

10E) present the greatest challenge because are uneven and shift

around very easily. Three 2-by-2 foot terrain boards were each

created for the rubber tile, grass, and small rocks. In order to test

out a challenging loose terrain transition, the rubber chips and large

rocks were put into the same six-by-two foot container.

Initial tests consisted of timing the robot on each type of terrain

using each of the three gaits. This established gait performance on

every surface and became the basis of gait selection for classifi-

cation in-the-loop. After collecting time results the visual terrain

classifier was tested on the same four courses. The final course

Fig. 10. LittleDog Experiment Terrain

included four terrain types in a 10-by-2 foot area and was tested

with real-time classification. This terrain course was used solely for

testing the robustness of the visual classifier. To test visual terrain

classification each 2-by-2 foot board was subdivided into a 3-by-

3 grid and 640x480 pixel pictures were take of each square. The

camera was positioned such that the width of the frame captured

the width of each square and it was ensured that no overlapping

pixels showed up in any image. Images for both the test and training

set were chosen at random with two thirds of the images going to

the training set. In addition, a down-sampled set of 320x240 pixel

images was created to see how well classification would work with

less resolution.

E. Results

Visually, each terrain is very distinct and offers a great deal of

texture so we did not foresee any problems during offline testing.

Offline test results confirmed that our experimental terrain was very

well suited for classification and we were able get 100% verification

accuracy on both the 640x480 and 320x240 image sets.

Terrain

Small Rocks Rocks/Chips Grass Tile

G
a

it B 22.0 - 20.8 20.7
C 27.7 29.3 26.4 25.8
D 17.2 - 15.8 17.1

Classify 22.9 44.2 20.4 22.1

TABLE IV

LITTLEDOG REAL-TIME TERRAIN TRAVERSAL TIMES MEASURED IN

SECONDS

Gait D was designed to have very low ground clearance and a

relatively fast gait period, so naturally we expected it to perform

well on grass and rubber tile. We predicted that LittleDog would

not be able to traverse the other terrains because it would stub its

feet against the protruding surfaces and veer off course. This was

not the case as illustrated by Table IV-E. To the contrary gait D

performed the best on all terrain except for big rocks and rubber

chips. On the other extreme, our expectation was that Gait C would

work reasonably well for every terrain at the expense of speed. This

was confirmed by our results, and the only test that took more time

was the classification trial for big rocks / rubber chips. We also

predicted that Gait B, the hybrid gait, would perform the best on

the small rock terrain due to its medium clearance and speed. Our

results determined that the hybrid gait was actually unnecessary

since Gait D performed faster on the small rock terrain.

Figure 11 shows a time comparison between Gait C and the

classification trial. Results indicate that classification was helpful

in all cases except for the most difficult terrain. Classification time

was slower in that case due to the stopping requirement. If this

Small Rocks Chips/Big Rocks Grass Rubber Tile
0

5

10

15

20

25

30

35

40

45

50

Gait C vs. Classification in the Loop Traversal Times

T
im

e
 (

s
e
c
o
n
d
s
)

 All−Purpose

 Classification

Fig. 11. LittleDog terrain traversal performance

requirement did not exist, we would expect to see a nearly identical

classification time as Gait C.

Fig. 12. Real-time classification results

During real time testing the camera auto-focus did not imme-

diately react to changes in object distance. LittleDog would, on

occasion, tip the camera downward during a stance and cause

the picture to go slightly out of focus. Image blurring generally

decreases the performance of the fast Hessian feature detector so

we expected to see some misclassifications. Figure 12 shows a

consecutive classification trial that was performed on four types of

terrain. Tests showed that the classifier was in fact robust enough to

minor image blurring (as demonstrated by image 3), and in general

there was a very low incidence of misclassifications.

V. CONCLUSIONS AND FUTURE WORKS

In this work we developed novel algorithms that assist pop-

ular feature-based recognition techniques. Feature extraction was

improved with our gradient descent inspired detection algorithm.

Our algorithm increased classification accuracy by 6 percent and

decreased memory requirements by 63 percent. A sliding window

classifier was also created to identify patches of heterogeneous

terrain. This technique showed promising offline results, and set

a foundation for future path planning work for legged robots.

The results in this work demonstrated the effectiveness of our

feature-based terrain classification framework through offline and

real-time testing. Offline experiments provided valuable data on

classification performance in a controlled environment. The findings

allowed us to select parameters that gave the most desirable

mixture of accuracy and performance. Real-time testing showed

that our methods effectively aide autonomous navigation on the

LittleDog platform. The robot was able to traverse terrain faster with

classification in-the-loop despite requiring stops to prevent camera

blurring. The only case where this slowed the robot was on the most

difficult terrain which already required the slowest gait. Overall, we

demonstrated that our homogeneous classification approach works

with a wide range of terrain images and can be effectively used in

real-time to aide quadruped navigation. The classification results in

this work do not have any measure of confidence and we plan to

use the support vectors in the classifier to produce such a metric. In

the heterogeneous case the voting step can also be used to assign a

measure of consensus within areas of overlapping classification. It

would also be interesting to try out different classification methods

such as boosting and artificial neural networks with the BOVW

framework. In addition, a hybrid classifier can be used to combine

color with features.

VI. ACKNOWLEDGMENTS

This work is supported in part by DARPA (Contract No.

W911NF-11-1-0077). We would also like to thank Boston Dynam-

ics for providing continuing support for LittleDog.

REFERENCES

[1] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, and et. al.,
“The robot that won the DARPA Grand Challenge,” J. Field Robotics,
vol. 23, pp. 661–692, 2006.

[2] Y. Cheng, M. Maimone, and L. Matthies, “Visual odometry on the
mars exploration rovers - a tool to ensure accurate driving and science
imaging,” IEEE Robotics Automation Mag., vol. 13, no. 2, pp. 54 –62,
2006.

[3] A. Chilian and H. Hirschmuller, “Stereo camera based navigation of
mobile robots on rough terrain,” Intell. Robots and Systems (IROS),
pp. 4571–4576, 2009.

[4] R. Manduchi, A. Castano, A. Talukder, and L. Matthies, “Obstacle de-
tection and terrain classification for autonomous off-road navigation,”
Autonomous Robots, vol. 18, pp. 81–102, 2004.

[5] C. Brooks and K. Iagnemma, “Vibration-based terrain classification for
planetary exploration rovers,” Robotics, IEEE Transactions on, vol. 21,
no. 6, pp. 1185 – 1191, 2005.

[6] M. Luetzeler and S. Baten, “Road recognition for a tracked vehicle,”
in SPIE Enhanced and Synthetic Vision, vol. 4023, no. 1. SPIE, 2000,
pp. 171–180.

[7] J. S. Weszka, C. R. Dyer, and A. Rosenfeld, “A comparative study of
texture measures for terrain classification,” IEEE Trans on Sys., Man

and Cyber., vol. SMC-6, no. 4, pp. 269 –285, 1976.
[8] X. Liu and D. Wang, “Texture classification using spectral histograms,”

IEEE Trans. Image Proc., vol. 12, pp. 661–669, 2003.
[9] N. Sebe, M. S. Lew, and N. Bohrweg, “Wavelet based texture classi-

fication,” in Int. Conf. on Pattern Rec., 2000, pp. 959–962.
[10] J. D. Crisman and C. E. Thorpe, “Color vision for road following,” in

Vision and Navigation: The CMU Navlab, C. Thorpe (Ed. Kluwer
Academic Publishers, 1988, pp. 9–24.

[11] A. Angelova, L. Matthies, D. Helmick, and P. Perona, “Fast terrain
classification using variable-length representation for autonomous nav-
igation,” in Comp. Vision and Pattern Rec. (CVPR), 2007, pp. 1–8.

[12] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in Comp. Vision and Pattern Rec., 2006, pp. 2161–2168.

[13] S. Gammeter, L. Bossard, T. Quack, and L. V. Gool, “I know what
you did last summer: object-level auto-annotation of holiday snaps,”
Int. Conf. on Comp. Vision, 2009.

[14] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Workshop on Statistical

Learning in Computer Vision, ECCV, 2004, pp. 1–22.
[15] T. Deselaers, L. Pimenidis, and H. Ney, “Bag-of-visual-words models

for adult image classification and filtering,” in Int. Conf. Pattern Rec.

(ICPR), 2008, pp. 1–4.
[16] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up robust

features,” in 9th European Conf. on Computer Vision, 2006.
[17] D. Arthur and S. Vassilvitskii, “K-means++: the advantages of careful

seeding,” in ACM/SIAM Symp. on Discr. Alg., 2007, pp. 1027–1035.
[18] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide

to support vector classification,” http://www.csie.ntu.edu.tw/∼cjlin/
papers/guide/guide.pdf, 2003. [Online]. Available: http://www.csie.
ntu.edu.tw/∼cjlin/papers/guide/guide.pdf

[19] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in Comp.

Vision and Pattern Rec. (CVPR), 2007, pp. 1–8.

