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Abstract. We discuss the relation of the Competitive Layer Model (CLtigl)
Relaxation Labeling (RL) with regard to feature binding daloeling problems.
The CLM uses cooperative and competitive interactions tbtjzan a set of input
features into groups by energy minimization. As we show,sttable attractors
of the CLM provide consistent and unambiguous labelingshedense of RL
and we give an efficient stochastic simulation proceduredHeir identification.
In addition to binding the CLM exhibits contextual activityodulation to rep-
resent stimulus salience. We incorporate deterministiealing for avoidance
of local minima and show how figure-ground segmentation andging can be
combined for the CLM application of contour grouping on d isege.

1 Introduction

A major challenge of computational neuroscience is the question which maachl-
anisms could facilitate the processdynamic feature binding-rom the viewpoint of
brain theory [12], feature binding may provide one of the basic sgriaformation
processing principles. This has raised much interest in using similaranischs for
pattern recognition applications like image segmentation and object riéioogkvhile
a lot of neural network research focuses on binding models based on tepporad-
lated neural activity [12], also supported by experimental data [2], suctegplica-
tions to real-world data are still rather exceptional. This is mainly eduxy the high
dynamical complexity of these models, which makes their simulationycastl their
analytic study a difficult task. In the field of image segmentation, nsaecgessful ap-
proaches rely on the minimization of a suitable cost function by itexaigorithms. A
cost function yields a very direct way of controlling the desired grogpiby merging
contextual constraints into an energy landscape with minima as posesiiplet states.
Relaxation labeling [11] (RL) is a family of such iterative proceduresivhias become
a standard technique in pattern recognition and machine vision domains [8

The competitive layer model (CLM) [10] provides an energy-based recuregnt n
work approach to feature binding which has been applied to Gestalt-motivatgels
of perceptual grouping [13,6]. In this contribution we discussréiation between the
well-established theory of RL [3] and the competitive recurrent neural itiofuthe
CLM. In the CLM, binding is achieved by a collection of competitive |asjexhich
produces feasible solutions to the labeling or binding problem atest#tbactors. The
central advantages of the CLM approach are i) analytical results concerning dgnami
and attractors, ii) a straightforward neural circuit interpretation, apd very simple
computer implementation with a rapidly converging asynchronous iberediutine.



2 Feature Binding as a Labeling Problem

Relaxation labeling (RL) [11], is an approach to solve the followingppem: Given a
set of N featuress = 1,..., N and a set of_ labelsa = 1, ..., L, find a labeling of
the features which embodies contextual information in an optimal wayc@heextual
constraints are given by a set of compatibility coefficiefﬁﬁzwhich denote the mutual
compatibility of assigning label to featurer and labels to featurer’. The coefficients
may be derived by heuristic arguments, statistical considerations oirlg48h. In this
framework, we interpret the attachment of the same labels as a bindiegtafés and
restrict ourselves to interactions between features with the same f&ﬁeﬁs Oagfom.
This is to be distinguished against matching problems [4], wherdmioge constraints
between features and labels require inter-label interactions.

If we definez,., > 0 as the certainty of the assignment of labeb featurer, the
space of weighted labelings is defined by the condi}iop z,, = 1. The task of an
RL algorithm is to find an unambiguous and consistent labeling, thatjs), = 1,
Tyra2a(r) = 0,7 = 1,..., N wherea(r) denotes the unambiguously assigned label to
feature r, and consistency of the unambiguous labeling is definBd,as > F,3za ()
where theF,., = 3, f. x,/, are called the linear support functions which accumulate
the pairwise contributions of all other certainties weighted with tbeimpatibility. For
symmetric compatibilities witfi>., = %, these conditions are necessary and sufficient
for alocal maximum of the average local consisteAcy: )" .4 Fr. Inthat case we
can formulate the problem of feature binding as an optimization prol@emventional
RL algorithms as that of Hummel and Zucker (HZ) [3] and Rosenfeld [11] eaqges
to local maxima ofA and achieve good results, if it is either not necessary to find
a global optimum, or the corresponding energy function has not maay loaxima.
Alternative approaches are mean-field-annealing algorithms [9,14] whictoira the
chance of finding optimum or near optimum solutions.

A central feature of these algorithms is the explicit reprojection ottireent state
onto the space of weighted assignments upon each iteration. The CLM adhisu®s
enforcing the constraint only approximately, but still ensuring eogence to consis-
tent and unambiguous labelings. The result is a context-dependentyatidulation,
where activity represents the degree of salience of a feature. This progéctyresults
in more flexible responses than the conventional RL approach, is also indaoce
with experimentally observed context-dependent activity modulatihetermin-
istic annealing can be incorporated in the CLM by a simple self-indripitoop, the
strength of which can be interpreted as an inherent temperature in analogy te mean
field-annealing.

3 The CLM Architecture

The CLM consists of a set df identical layers of feature-selective neurons which are
replicas of an input layer (see Fig. 1). The neurons in the input layeabediéd byr.
Driven by an external input, each input neuron responds with a vigludich indicates
activity (h, > 0) in the presence of the corresponding featu silence §, < 0).

In a simple setting we may think @f. as encoding the light intensity at positienn
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Fig. 1. The CLM architecture

some “imaginary” retina. For each of the input neurons at posititere is one neuron
per replica layery whose activity isc,., > 0 and represents the certainty of assigning
featurer to layera. We denote thé& neurons,.., responding to featureas thecolumn

r. The activities are subject to the following constrained gradient dyceami
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J andT are positive constants arff},, = f,  are the components of a symmetric
weight matrix. The gradient in (1) can be splitintg2™- = JV, + Fyo +Tq, Where
V., = h, — Zﬁ Trg, Fra = >, %, 2o, and—Tz,, are three basic interactions in
the model, which can be interpreted with regard to the engrgy

i) The'vertical” interactionJV,. implements a dynamical winner-take-all circuit
within each column. Unlike in a standard penalty functidnshould not be chosen
large, but slightly above a critical value = max,, Y, max(0,f?.) which ensures
convergence of the dynamics [13] and allows for a modulation of thet inpby the
lateral interactions.

i) The lateral interactionF,., couples activities within layers by the symmetric
weight matrixf&,,. The compatibility coefficient§?,, determine which pattern config-
urations, if elicited as activity pattern within layers, will be mutualiypporting among
their constituent part§{, > 0) or instead suffer mutual inhibitiod{., < 0).

ii) The self-inhibitory interaction-T'z,., biases the minima aof towards ambigu-
ous assignment§. > 0 can be regarded as a temperature, for very ldrgee global
minimum of (2) is given by, = h,./L, the maximally unassigned state. Hor— 0
the dynamics converges towards a proper consistent labeling in the $&tiseas we
will prove in the next section; by gradually loweridgwe can perform deterministic
annealing to avoid falling into local minima.



4 Efficient Relaxation Labeling with the CLM

The CLM dynamics can be simulated in principle by standard differentiahtsau
integrators like the Euler or Runge-Kutta method and can be compupedatiel. The
piecewise linear dynamics, however allows also for a sequential asyncisrapdate
[6] which shows rapid convergence and can be very easily implemented:
1. Setl'(0) = T., whereT. = Apaz (f7).
Initialize all z,., with random values:,.,(t = 0) € [h,/L — €, h,./L + €].
2. DoN - L times: Choosér, @) randomly and update,, (t+1) = max(0, &), where

€= irr (e = S wr0() + 50 B ra(t) = £5,270(8))
3. SetT'(t+ 1) = nT'(t), with0 < n < 1. Go to step 2 until convergence.

Step 2 corresponds to solving the linear equationi(l) = 0 independently for
a randomly chosen activity,.,. If f%,. > T, we can be sure that this asynchronous
dynamics converges towards an attractor of the continuous model (1) agctodin
recent convergence result [1,6]. This holds alsdfee 0. The exact computation of the
largest eigenvalue of the compatibilities can also be replaced by a simplercatige
approximation. Since this update procedure converges to a feasible Giadtat we
can now reconsider an earlier result from [13] in the RL framework.

Theorem 1. If the compatibilities satisfy 2. +f2. > 2T forall r,a, 3, then the
asynchronous CLM update converges to a consistent and unambigoousated RL
labeling with i) at most one positive activity., () = hy 4+ Fr.o(r)/J in @ column where
a(r) is the index of the maximally supporting layer with, ) > F.3q(r) OF ii) for
all activities in a colummne,., = 0, F,., <O0.

The dynamical coupling to the input results in a modulated activity,., of the final
assignment. This is useful since it introduces an auto-associative oemipoto the
binding process. Features that receive low irfgytmay develop a higher output activ-
ity due to strong lateral feedbadk., > 0, but the network still remains sensitive to
variations in the input intensities. We emphasize that annealifgsmot necessary for
convergence to consistent labelings which is also guarante&d$o6 and constant. It
only reduces the chance of finding suboptimal, but feasible labelings.

5 Application to Contour Grouping

Contour grouping is an important objective for models of featurdnig, where com-
patibilities between edge features generally express the degree of cyntinaicurve
passing over them. Synchronization-based models, however, still faoe difficulties

in delivering a controllable grouping for the complex excitatory ardbitory interac-
tions as encountered in real world images. There is how a long tradititre ipattern
recognition community of using RL for the process of contour irdéign [7], which
aims only at the detection of contours in noisy images. We will show, how a sim-
ilar RL-motivated approach can be used in the recurrent CLM network to cenabin
binding of salient contour groups with a mechanism of figure-groegdentation.
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Fig. 2. CLM contour grouping on a real image. From the input imagedaeefeatures b) are
generated by a sobel x-y operator and sub-sampling. Edgnttss corresponds to the gradient
intensity. The result of the binding with a CLM with 14 layersground layer is shown in c).
Black/grey symbols code for different layers, with sizeresponding to output activity. The
ground layer is omitted. Note the enhancement of low-ingges at the brim and the upper part
of the hat. Lateral interaction parameters Bre- 0.15, S =300, = 0.6, k =1, m = 3.

The lateral interactionf?,, are given as., = md,,» for thegroundlayer and as
a co-circular interaction [7] with lateral inhibitiofif ' = f.,» in the other layers. The
parametef > 0 defines a self-coupling against which lateral interactions in the figure
layers must compete to “pop out” a feature from the ground layer. Thercokai inter-
action of two edges at positions = (r¥,r!) andry = (r%, r¥) with a difference vector
d =1, —ry,d = |d| andd = d/d, and unit orientation vectois, = (n¥,n?), n, =
(n%,n%) is given by f((r1, 1), (r2, 02)) = O(arasq) (e=@ /R°=C7S) _ [e=2d*/R* _
k/N,wherea;, = nid, —n¥d,, ay = nid, — nid,, ¢ = a'- 4® andf(zx) = 1 for
x > 0 andf(z) = 0 otherwise is necessary to exclude skewed symmetric edges. The
parametetz controls the spatial range, which is smaller for the inhibitory conepon
The degree of co-circularity is given ity = |n; - d| — |fi»- d| which is equal to zero
if both edges lie tangentially to a common circle. The paramg&ter 0 controls the
sharpness of the co-circularity constraint. Parameters 0 andk > 0 control the
strength of the local and global inhibition, respectively.

The application to a real image, scaled into a unit square, is shown in .Figne?
edge input intensitie,. are chosen as the absolute value of the local gradient intensity
andn, andr, as orientation and position respectively. The constarg chosen as
J = 1.1J. (see Sect.3), which results in contextual modulation of the outpengities
and enhances edges with low input, but strong lateral support. Anneaisgtarted
with 7. = A0 {f-~} with a schedule ofy = 0.99. Faster lowering leads to more
fragmented groupings. Raising the ground layer couptinijom zero to higher values
suppresses less salient groups, untihats .J. only the ground layer remains active.

6 Conclusion

We showed how feature binding with the CLM can be reconsidered in thadhef
work. The stochastic asynchronous update converges to consistermdabeatid pro-



vides a highly efficient simulation procedure that might also proveetwdry useful
for other RL applications in labeling tasks. As compared to our earlier W&k the
incorporation of deterministic annealing leads to a better and less fragthgraup-
ing quality. An interesting result is that simple additional quadreims in the energy
which lead to linear modifications of the dynamics give comparable perfarentam
labeling problems as the more complex Potts-Mean-Field annealingelapplica-
tion section we show how contour grouping and figure-ground segti@mtcan be
performed with the CLM on a complex real image. Our results show thdagezed
topology leads to a stronger uncoupling of formed groups, which weider essential
for a robust representation of multiple bindings. A combinatiothefpresented spatial
mechanisms with temporal mechanisms provides an interesting futureptvepThe
link to RL also offers the application of a recently proposed learning seH&irfor
the compatibility coefficients which opens the door for supervised legrof lateral
interactions for feature binding.
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