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Abstract. Bottom-up or saliency-based visual attention allows pri-
mates to detect nonspecific conspicuous targets in cluttered scenes.
A classical metaphor, derived from electrophysiological and psycho-
physical studies, describes attention as a rapidly shiftable “spot-
light.” We use a model that reproduces the attentional scan paths of
this spotlight. Simple multi-scale “feature maps” detect local spatial
discontinuities in intensity, color, and orientation, and are combined
into a unique “master” or “saliency” map. The saliency map is se-
quentially scanned, in order of decreasing saliency, by the focus of
attention. We here study the problem of combining feature maps,
from different visual modalities (such as color and orientation), into a
unique saliency map. Four combination strategies are compared us-
ing three databases of natural color images: (1) Simple normalized
summation, (2) linear combination with learned weights, (3) global
nonlinear normalization followed by summation, and (4) local non-
linear competition between salient locations followed by summation.
Performance was measured as the number of false detections be-
fore the most salient target was found. Strategy (1) always yielded
poorest performance and (2) best performance, with a threefold to
eightfold improvement in time to find a salient target. However, (2)
yielded specialized systems with poor generalization. Interestingly,
strategy (4) and its simplified, computationally efficient approxima-
tion (3) yielded significantly better performance than (1), with up to
fourfold improvement, while preserving generality. © 2001 SPIE and
IS&T. [DOI: 10.1117/1.1333677]

1 Introduction

progress through the cortical hierarchy for high-level pro-
cessing, such as pattern recognition. Further, psychophysi-
cal studies suggest that only this spatially circumscribed
enhanced representation reaches visual awareness and
consciousness.

Where in a scene the focus of attention is to be deployed
is controlled by two tightly interacting influences: First,
image-derived or “bottom-up” cues attract attention to-
wards conspicuous, or “salient” image locations in a
largely automatic and unconscious manner; second, atten-
tion can be shifted under “top-down” voluntary control
towards locations of cognitive interest, even though these
may not be particularly saliefitln the present study, we
largely make abstraction of the top-down component and
focus on the bottom-up, scene-driven component of visual
attention. Thus, our primary interest is in understanding, in
biologically plausible computational terms, how attention is
attracted towards salient image locations. Understanding
this mechanism is important because attention is likely to
be deployed, during the first few hundred milliseconds after
a new scene is freely viewed, mainly based on bottom-up
cues. For a model which integrates a simplified bottom-up
mechanism to a task-oriented top-down mechanism, we re-
fer the reader to the article by Schét al. in this issue and

Primates use saliency-based attention to detect, in real timel© Refs. 6 and 7.

A common view of how attention is deployed onto a

conspicuous objects in cluttered visual environments. Re- : |
producing such nonspecific target detection capability in 9iven scene under bottom-up influences is as follows. Low-
artificial systems has important applications, for example, level feature extraction mechanisms act in a massively par-
in embedded navigational aids, in robot navigation and in &€l manner over the entire visual scene to provide the
battlefield management. Based on psychophysical studie@ottom-up biasing cues towards salient image locations. At-
in humans and electrophysiological studies in monkeys, itténtion then seq_uentlally focm_Jse$ on sallent_lmage locations
is believed that bottom-up visual attention acts in some way!0 be analyzed in more detéit visual attention hence al-
akin to a “spotlight.”*~% The spotlight can rapidly shift 10ws for seemingly real-time performance by breaking
across the entire visual fielavith latencies on the order of ~down the complexity of scene understanding into a fast
50 m9, and selects a small area from the entire visual temporal sequence of localized pattern recognition
scene. The neuronal representation of the visual world isproblems’ _
enhanced within the restricted area of the attentional spot- Several models have been proposed to functionally ac-

light, and only this enhanced representation is allowed tocount for many properties of visual attention in
primates>®-13These models typically share similar general

architecture. Multi-scale topographic “feature maps” de-
“tect local spatial discontinuities in intensity, color, orienta-
% tion and optical flow. In biologically plausible models, this
is usually achieved by using a “center-surround” mecha-
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Fig. 1 General architecture of the visual attention system studied
here. Early visual features are extracted in parallel in several multi-
scale feature maps, which represent the entire visual scene. Such
feature extraction is achieved through linear filtering for a given fea-
ture type (e.g., intensity, color or orientation), followed by a center-
surround operation which extracts local spatial discontinuities for
each feature type. All feature maps are then combined into a unique
saliency map. We here study how this information should be com-
bined across modalities (e.g., how important is a color discontinuity
compared to an orientation discontinuity?). This can involve super-
vised learning using manually defined target regions (“binary target
mask”). After such combination is computed, a maximum detector
selects the most salient location in the saliency map and shifts at-
tention towards it. This location is subsequently suppressed (inhib-
ited), to allow the system to focus on the next most salient location.

physical evidence that different types of features do con-
tribute additively to salience, and not, for example, through
point-wise multiplication* In the first three strategies, the
different features are weighted in a nontopographic manner
(one scalar weight for each entire maim the fourth strat-
egy, however, we will see that the weights are adjusted at
every image location depending on its contextual surround.

2 Model

The details of the model used in the present study have
been presented elsewhktand are briefly schematized in
Fig. 1. For the purpose of this study, it is only important to
remember that different types of features, such as intensity,
color or orientation are first extracted in separate multi-
scale feature maps, and then need to be combined into a
unique “saliency map,” whose activity controls attention
(Fig. 2.

2.1 Fusion of Information

One difficulty in combining different feature maps into a
single scalar saliency map is that these features represent
a priori not comparable modalities, with different dynamic
ranges and extraction mechanisms. Also, because many
feature maps are combindé for intensity computed at
different spatial scales, 12 for color and 24 for orientation
in our implementatioy salient objects appearing strongly

in only a few maps risk being masked by noise or less
salient objects present in a larger number of maps. The
system is hence faced with a severe signal-to-noise ratio
problem, in which relevant features, even though they may
elicit strong responses in some maps, may be masked by
the sum or weaker noisy responses present in a larger num-

nism akin to biological visual receptive fields, a process
also known as a “cortex transform” in the image process-
ing literature. Receptive field properties can be well ap-
proximated by difference-of-Gaussians filtéfer nonori-
ented featurésor Gabor filters(for oriented features®*3
Feature maps from different visual modalities are then
combined into a unique “master” or “saliency” map*® In
the models like, presumably, in primates, the saliency map .
is sequentially scanned, in order of decreasing saliency, byz'2 Learning
the focus of attentioriFig. 1). Supervised learning can be introduced when specific targets
A central problem, both in biological and artificial sys- are to be detected. In such case, each feature map is glo-
tems, is that of combining multi-scale feature maps, from bally multiplied by a weighting factor, which might corre-
different visual modalities with unrelated dynamic ranges spond in biological systems to a simple change in the gain
(such as color and motigninto a unique saliency map. associated to a given feature type, under volitional control
Models usually assume simple summation of all feature (such neuronal gain changes have been observed in awake
maps, or linear combination usiragl-hocweights. The ob-  behaving monkeys instructed, for example, to attend to a
ject of the present study is to quantitatively compare four particular direction of motiot?). The final input to the sa-
combination strategies using three databases of naturaliency map is then the point-wise weighted sum of all such
color images(1) Simple summation after scaling to a fixed feature maps.
dynamic range;(2) linear combination with weights Our implementation uses supervised learning in order to
learned, for each image database, by supervised additiveletermine the optimal set of linear map weights for a given
training; (3) nonlinear combination which enhances feature class of images. It seems reasonable to assume that such
maps with a few isolated peaks of activity, while suppress- optimization may be carried out in biological systems while
ing feature maps with uniform activity; an@d) local non- animals are trained to perform the desired target detection
linear iterative competition between salient locations within task. During the training phase, all feature weights are
each feature map, followed by summation. The four strate-trained simultaneously, based on a comparison, for each
gies studied all involve a point-wise linear combination of feature type, of the map’s response inside and outside
feature maps into the scalar saliency map; the main differ-manually outlined image regions which contain the desired
ence between the four variants relies on the weights giventargets. The learning procedure for the weiglft\M) of a
to the various features. Indeed, there is mounting psycho-feature mapM consists of the following:

ber of maps. The most simple approach to solve this prob-
lem is to normalize all feature maps to the same dynamic
range(e.g., between 0 and),land to sum all feature maps
into the saliency map. This strategy, which does not impose
any a priori weight on any feature type, is referred to in
what follows as the “Naive” strategy.
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Fig. 2 Example of operation of the model with a natural (color) image and the iterative feature com-
bination strategy (see Sec. 2.4). The most salient location is at one pedestrian, who appears strongly
in the orientation maps; it becomes the object of the first attentional shift (82 ms simulated time) and
is subsequently suppressed in the saliency map by an “inhibition of return” mechanism. The next
attended location is at another pedestrian (143 ms) which appreaded strongly in the orientation and
intensity maps, followed by a car (227 ms) and a street marking (314 ms). The inhibition of return is
only transiently activated in the saliency map, such that the first attended location has regained some
activity at 314 ms. More examples of model predictions on natural and synthetic images can be found
at http://www.klab.caltech.edu/~itti/attention/
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1. Compute the global maximuri ., and minimum  ence is large, the most active location stands out, and we
Mgion Of the mapM; strongly promote the map. When the difference is small,
the map contains nothing unique and is suppressed. This
. . . . . contents-based nonlinear normalization coarsely replicates
lined target re_glofs) and its maximumM,, outside a biological lateral inhibition mechanism, in which neigh-
the target regiofs); and boring similar features inhibit each oth®rThis feature
3. update the weight following an additive learning rule combination strategy is referred to in what follows as the

independent of the map’s dynamic range “N(.)” strategy.

WM) —W(M)+ n(Mj,— Mout)/(Mglob_ mglob)v 1)

2. compute its maximunM;, inside the manually out-

. . 2.4 lterative Localized Interactions
where >0 determines the learning speed. Only

positive or zero weights are allowed. The glob_al n_onlinear no_rmalization p_resented ir_1 the p_revi-
ous section is computationally very simple and is nonitera-
This learning procedure promotes, through an increasetive, which easily allows for real-time implementation.
in weights, the participation to the saliency map of those However, it suffers from several drawbacks. First, this
feature maps which show higher peak activity inside the Strategy is not very biologically plausible, since global
target regiors) than outside; after training, only such maps computations, such as finding the global maximum in the
remain in the system while others, whose weights haveimage, are used, while it is known that cortical neurons are
converged to zero, are computed no more. The initial sa-only locally connected. Second, this strategy has a strong
liency map(before any attentional shifts then scaled to a  bias towards enhancing those feature maps in which a
fixed range, such that only the relative weights of the fea- unique location is significantly more conspicuous than all
ture maps are important; with such normalization, potential others. Ideally, each feature map should be able to repre-
divergence of the additive learning rul@xplosion of sent a sparse distribution of a few conspicuous locations
weight9 can hence be avoided by constraining the weights over the entire visual field; for example, atf(.) normal-
to a fixed sum. ization would suppress a map with two equally strong spots
We only consider local maxima of activity over various and otherwise no activity, while a human would typically
image areas, rather than the average activity over these arreport that both spots are salient.
eas. This is because local “peak” activity is what is impor- Finally, the computational strategy employed in the pre-
tant for visual salience: If a rather extended region containsvious section is not robust to noise, in the cases when noise
only a very small but very strong peak of activity, this peak can be stronger than the sigrialg., speckle or “salt-and-
is highly salient and immediately “pops out,” while the pepper” nois¢; in such stimuli, a single pixel of noise so
average activity over the extended region may be low. Thishigh that it is the global maximum of the map would de-
feature combination strategy is referred to in what follows termine the map’s scaling. While such a problem is un-
as the “Trained” strategy. likely (since feature maps usually are built, from the noisy
input image, using feature extraction mechanisms opti-
mized to filter out the noige it decreases the overall ro-
2.3 Contents-based Global Nonlinear Amp/lflcatlon bustness of the System when using natural imagesl
When no top-down supervision is available, we propose a We consequently propose a fourth feature combination
simple normalization scheme, consisting of globally pro- Strategy, which relies on simulating local competition be-
moting those feature maps in which a small number of tween neighboring salient locations. The general principle
strong peaks of activity‘odd man out”) are present, while is to provide self-excitation and neighbor-induced inhibi-
globally suppressing feature maps eliciting comparabletion to each location in the feature map, in a way coarsely
peak responses at numerous locations over the visual scenéspired from the way long-range cortico-cortical connec-
The normalization operator, denotéd.), consists of the ~ tons(up to 6-8 mm in cortexare believed to be organized
following: in primary visual cortex."
Each feature map is first normalized to values between 0
1. Normalize all the feature maps to the same dynamicand 1, in order to eliminate modality-dependent amplitude
range, in order to eliminate across-modality ampli- differences. Each feature map is then iteratively convolved
tude differences due to dissimilar feature extraction by a large two-dimensionalD) difference of Gaussians
mechanisms; (DoQ) filter, and negative results are clamped to zero after

2. for each map, find its global maximuM and the each iteration. The DoG filter, a one-dimensio(idD) sec-

averaaam of all the other local maxima: and tion of which is shown in Fig. 3, yields strong local exci-
9 ' tation at each visual location, which is counteracted by

3. globally multiply the map by broad inhibition from neighboring locations. Specifically,
(M—m)2. ) such filter DoGK) is obtained by

2 2
Only local maxima of activity are con;idered ;uch that DoG(X,y) = Cex2 o~ 0P+y?i2og, Cinh2 e~ OC+yd)ol,
N(.) compares responses associated with meaningful “ac- 2mogy, 2o
tivation spots” in the map and ignores homogeneous areas. (3
Comparing the maximum activity in the entire map to the
average over all activation spots measures how different the In our implementationge,=2% ando,;=25% of the

most active location is from the average. When this differ- input image widthc.,= 0.5 andc;,,= 1.5 (Fig. 3). At each
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Fig. 4 Truncated filter boundary condition consists of only comput-
ing the dot product between filter G and map M where they overlap
(shaded area), and of normalizing the result by the total area of G
divided by its area in the overlap region.

2G(i) L
MG =g > M), 5
2i e{overlagg(l) i e {overlag
e e L Using this “truncated filter” boundary condition yields
Fig. 3 One-dimensional (1D) section of the 2D difference of Gaus- uniform filtering over the entire imagésee, e.g., Figs. 5
sians (DoG) filter used for iterative normalization of the feature and 6, and, additionally, presents the advantage of being
maps. The central excitatory lobe strongly promotes each active more biologically plausible than Dirichlet or zero-padding
location in the map, while the broader negative surround inhibits that conditions: A visual neuron with its receptive field near the
location, if other strongly activated locations are present nearby. B - . . - -
The DoG filter represented here is the one used in our simulations, edge of OL_” visual field indeed is ”F’t l!kEIy to |mplement
with its total width being set to the width of the input image. zero padding or wrap around, but is likely to have a re-

duced set of inputs, and to accordingly adapt its output
firing rate to a range similar to that of other neurons in the
map.
Two examples of operation of this normalization scheme
are given in Figs. 5 and 6, and show that, similaintp),
M| M+ M*D0G— Cip| =0, 4 a map with many comparable activity peaks is suppressed
- nhl =0 @ while a map where onéor a few peak stands out is en-

where DoG is the 2D difference of Gaussian filter de- Nanced. The dynamics of this new scheme are, however,
scribed abovel, |-, discards negative values, aGg,, isa  Much more complex than thosesf.), since now the map
constant inhibitory terniC;,,=0.02 in our implementation IS locally altered rather than globallyiontopographically
with the map initially scaled between 0 anil C;,, intro- multiplied; for examplle, amap such as that in Fig. 5 con-
duces a small bias towards slowly suppressing areas iverges to a single activated pixglt the center of the initial

which the excitation and inhibition balance almost exactly;
such regions typically correspond to extended regions of
uniform textures (depending on the DoG parameters
which we would not consider salient.

The 2D DoG filter, which is not separable, is imple- ..,
mented by taking the difference between the results of the &=
convolution of M by the separable excitatory Gaussian of ¥
the DoG, and of the convolution of1 by the separable A
inhibitory Gaussian. One reason for this approach is that
two separable 2D convolutiori®ne of which, the excita-
tory Gaussian, has a very small kepn@hd one subtraction
are computationally much more efficient than one insepa-
rable 2D convolution. A second reason is boundary condi-
tions; this is an important problem here since the inhibitory
lobe of the DoG is slightly larger than the entire visual
field. Using Dirichlet (wraparound or ‘“zero-padding”
boundary conditions yields very strong edge effects which
introduce unwanted nonuniform behavior of the normaliza-
tion procesge.g., when using zero padding, the corners of
an image containing uniform random noise invariably be-
come the most active locations, since they receive the least
inhibition). We circumvent this problem by truncating the Fig. 5 Iterative normalization of a feature map containing one
separable Gaussian filts¢ at each point during the convo- - IR 28 E R B e in stengih whie
lution, to its portion which qverl_aps the input mag (Fig. . at the same t‘ime supprgssing ?Neffker activagtion regions. Ngote how
4). The truncated convolution is then computed as, usinginitially very strong speckle noise is effectively suppressed by the
the fact thatg is symmetric around its origin ietrative rectified filtering.

iteration of the normalization process, a given feature map
M is then subjected to the following transformation:

0 \) /

Y,
S8 A

A
Iteration 2 lteration 4

Iteration O

%

Iteration 6 Iteration 8 lteration 10 lteration 12
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four separate and independent feature ntdpghe third
database consisted of 90 images acquired by a video cam-
era mounted on the passenger side of a vehicle driven on
German roads, and contained one or more traffic signs.
Among all 90 images, 39 contained one traffic sign, 35
contained two, 12 contained three, 2 contained four, and 1
contained five traffic signs. This database contained a wide
variety of targets, of various colorged, blue, yellow,
white, black, orange shapegcircular, triangular, square,
rectangle, textures(uniform, striped, with lettering, dull,
luminous; in addition, these sign&and the targets in the

S other two databases as wetlould be fully visible or par-
Iteration 6 Iteration 8 lteration 10 lteration 12 t|a||y Occ|uded' Shiny or du”, in the shadow or Showing

Fig. 6 lterative normalization of a feature map containing numerous SPeCU|ar reflections, light or qafk, large 0!’ small, and

strong activation peaks. This time, all peaks equally inhibit each viewed frontally or at an angle, in scenes which also dem-

other, resulting in the entire map being suppressed. onstrated high degrees of variabilifglease seéttp://
www.klab.caltech.edu/ ~itti/attention/ ).

What characterizes the image databases used here is that
strong peakafter a large number of iterations. Note finally we chose the target patterns to be “perceptually salient.”
that, although the range of the inhibitory filter seems to far Since this is not a trivial property of an object, we used the
exceed that of intrinsic cortico-cortical connections in simplification that traffic signs have been designed, opti-
primates.® it is likely that such inhibition is fed back from  mized, and strategically placed in the environment to be
higher cortical areas where receptive fields can cover subperceptually salient. The exact nature of the targets used

areas with smallgr rgceptive fields. In terms of impl'emen- indeed aims at comparing the four proposed feature com-
tation, the DoG filtering proposed here is best carried out;\-+ion strategies for the computation of salience.

within the multi-scale framework of Gaussian pyramidis. All targets were outlined manually, and binary target

Finally, it is interesting to note that this normalization masks were created. A target was considered detected when

scheme resembles a “winner-take-all” network with local- . .
ized inhibitory spread, which has been implemented forf[he focus of attention(FOA) intersected the target. The

real-time operation in Analog-VLSP This normalization ~ IMmages were 648480 (red can and triangleand 512
scheme will be referred to at the “lterative” scheme in X384 (traffic signg with 24 bit color, and the FOA was a

what follows. disk of radius 80(red can and triangjeand 64 (traffic
signg pixels. Complete coverage of an entire image would
3 Results and Discussion consequently require the FOA to be placed at 31 different

locations (with overlap. A system performing at random
would have to visit an average of 15.5 locations to find a
unique, small target in the image.

We previously have applied our model to a variety of
search tasks, including psychophysical pop-out t33ks,

sual search asymmetri€simages containing a military ve- . o -
hicle in a rural backgrountf, various test patterns,im- Each image database was split into a training (d&t

ages containing pedestriaffs,and various magazine ir_nages for the can, 32 for the triangle, 45 for the_traffic
covers, scientific posters, and advertising billboards. TheSigN9 and a test set59, 32 and 45 images, respectively
remarkable performance of our model at reproducing or L€amning consisted, for each training set, of five random-
exceeding human search performance in such a diverse vazed passes through the whole set with halving of the learn-
riety of tasks seems to indicate that the model indeed ising speedn after each pass.
able to find salient objects irrespectively of their nature. ~ We compared the results obtained on the test image sets
Here, we use new sets of test images, which contain targetsvith the four proposed feature combination strategies:
of increasing complexity and variability.

We used three databases of natural color images to 1. Naive model with no dedicated normalization and all
evaluate the different feature combination strategies pro- feature weights set to unity;
posed abovérig. 7). The first database consisted of images 5. model with the noniterativa(.) normalization;
in which a red aluminum can is the target. It was used to . : . . .
demonstrate the simplest form of specialization, in which 3 Model with 12 iterations of the lterative normaliza-
some feature maps in the system specifically encode for the tion; and

main feature of the targdired color, which is explicitly 4. trained model, i.e., with no dedicated normalization
detected by the system in a red/green featurefaphe but feature weights learned from the corresponding
second database consisted of images in which a vehicle’s training set.

emergency triangle was the target. A more complicated

form of specialization is hence demonstrated, since the tar- We retained in the test sets only the most challenging
get is unique in these images only by a conjunction of red images, for which the target wamt immediately detected
color and of 0° (horizonta), 45° or 135° orientations. by at least one of the four versions of the modedsier
These four feature types are represented in the system bymages in which at least one version of the model could
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45 + 45 Images 45 + 59 images 32 + 32 images

Fig. 7 Example images from the three image databases studied. The number of images for training+test sets is
shown for each database.

colors intensities orientations saliency map  attended locations

. -=

Fig. 8 Comparison of the internals of the four versions of the model, for one image from the “red can” test set,
in which a red aluminum can is the most salient object. The can appears with medium strength in the color maps,
due to its color contrast with the background (the response is not the strongest possible because the background
is not green, and only red/green and blue/yellow color contrasts are computed). The curb, however, appears very
strongly in all intensity maps, and also less strongly in the horizontal orientation maps. In the naive version of the
model, the color activity from the can is outnumbered by the activity elicited by the curb in a larger number of
intensity and orientation maps. As a result, detection of the can is accidental, while the model is scanning the
curb. The M.) strategy yields strong suppression of the horizontal orientation, because more localized activation
peaks exist in the vertical orientation, as well as some suppression of the extended curb in the intensity channel.
The color channel, with its strong singularity, is, however, globally enhanced and yields correct detection of the
can. The iterative strategy yields complete suppression of the horizontal orientation as well as overall much
suppression of all regions which are not among the few strongest in each feature map. The red can clearly
becomes the most salient location in the image. Finally, training using other images with similar views of this red
target of vertical orientation has entirely suppressed the intensity and horizontal orientations, such that the

saliency map is dominated by the color channel. The trained model hence easily finds the can as the most salient
object.
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Table 1 Average number of false detections (mean=standard de- We believe that the latter two represent the best approxi-
viation) before target(s) found, for the red can test set (n=59), mations to human saliency among the four alternatives
er’;‘;fgf;‘%;r':;‘%l’ih‘?tsiSﬁt fgjvi?r?)z ag?,vitt:]ag'czsv'v?t?f‘ltzf;Sle\t,vi(tﬂ studied here. One of the key elements in the iterative
5). F’or the tngfﬁc sign im%g’es which éould con’tain more than one method is the eXIS_tence ofa nonlmeamﬂ]reshdd .WhICh
target per image, we measured both the number of false detections suppresses negative values; as we can see in Figs. 5 and 6,
before the first target hit, and before all targets in the image had in a first temporal period, the global activity over the entire
been detected. map typically decreases as a result of the mutual inhibition
between the many active locations, until the weakest acti-
Naive N Iterative Trained vation peakgtypically due to noisgpass below threshold

Red can 2004250 1674201 124+142 035+1.03 and are eliminated. Only after the distribution of acti\_/ity
Triangle  2.44+220 1.69+228 1.42+1.67 0.87+1.29 peaks has become sparse enough can the self-excitatory
_ term at each isolated peak overcome the inhibition received
Traffic® 184+2.13 049+1.06 052+1.05 0.24+0.77 from its neighbors, and, in a second temporal period, the
Traffic® 3.26+2.80 127212 0.70£1.18 0.77+1.93 map’s global activity starts increasing again. If many com-
parable peaks are present in the map, the first period of
. , decreasing activity will be. much s_lovye_r than if one or a few
Before all signs found. much stronger peaks efficiently inhibit all other peaks. In
Fig. 8, we show a comparison of the internal maps for the
four versions of the model on a test image. This figure

immediately find the targets had been previously discardeddemonstrates, in particular, how the Iterative scheme yields
to ensure that performance was not at cejlifgesults are  much sparser maps, in which most of the noisy activity
summarized in Table 1. present in some channglsuch as the intensity channel in
The Naive model, which represents the simplest solutionthe example images strongly suppressed.
to the problem of combining several feature maps into a  Note that our model certainly does not represent the
unique saliency magand had the smallest number of free most efficient detector for the type of targets studied here.
parameters performed always worse than when using One could indeed think of much simpler dedicated archi-
M.). This simple contents-based normalization proved tectures to detect traffic signs or soda cémg., algorithms
particularly efficient at eliminating feature maps in which based on template matchingiowever, as mentioned ear-
numerous peaks of activity were present, such as, for ex_lle(, what characterlzes our model_ls that it .flndS. salient
ample, intensity maps in images containing large variationsobjects, vehicles, persons, or other image regions in a man-
in illumination. Furthermore, the more detailed, iterative Ner which is largely independent of the nature of the tar-
implementation of spatial competition for saliengehich ~ gets. For the purpose of the present study, the good but

aBefore first sign found.

has the highest number of free parametgtelded compa-  imperfect performance of the model allowed us to compare
rable or better results, in addition to being more biologi- the four feature comparison strategies using a set of very
cally plausible. varied natural scenes in which target detection performance

The additive learning rule also proved efficient in spe- was not at ceiling.
cializing the generic model. One should be aware, however, The proposed iterative scheme could be refined in sev-
that only limited specialization can be obtained from such eral ways in order to mimic more closely what is known of
global weighting of the feature maps: Because such learnthe physiology of early visual neurons. For example, in this
ing simply enhances the weight of some maps and sup-study, we have not applied any nonlinear “transducer func-
presses others, poor generalization should be expectetion” (which relates the output firing rate of a neuron to the
when trying to learn for a large variety of objects using a strength of its inputs while it is generally admitted that
single set of weights, since each object would ideally re- early visual neurons have a sigmoidal transducer
quire a specific set of weights. Additionally, the type of function?*2*Also, we have modeled interactions between
linear training employed here is limited, becaissensof neighboring regions of the visual field by simple self-
features are learned rather theanjunctions For example,  excitation and subtractive neighbor-induced inhibition,
the model trained for the emergency triangle might attendwhile more complicated patterns of interactions within the
to a strong obliqgue edge even if there was no red color‘“nonclassical receptive field” of visual neurons have been
present or to a red blob in the absence of any oblique ori-reported?>?8Finally, the scale of the excitatory lobe of our
entation. To what extent humans can be trained to pre-iterative filter should be adaptive, and change depending on
attentively detect learned conjunctive features remainsobject size, type of image, type of image area, or top-down
controversial? Nevertheless, it was remarkable that the influences. This problertas well as the development of an
trained model performed best of the four models studied object-based rather than circular focus of attentisncur-
here for the database of traffic signs, despite the wide va-rently under study in our laboratory.

riety of shape(round, square, triangle, rectangleolor In conclusion, we compared four simple strategies for
(red, white, blue, orange, yellow, greeand texture(uni- combining multiple feature maps from different visual mo-
form, striped, letteredof those signs in the database. dalities into a single saliency map. The introduction of a

In summary, while the Naive method consistently simple learning scheme proved most efficient for detection
yielded poor performance and the Trained method yieldedof specific targets, by allowing for broad specialization of
specialized models for each task, the iterative normalizationthe generic model. Remarkably, however, good perfor-
operator, and its noniterative approximatitff.), yielded mance was also obtained using a simple, nonspecific nor-
reliable yet nonspecific detection of salient image locations. malization which coarsely replicates biological within-
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feature spatial competition for saliency. Both the additive
learning and the nonlinediterative or not normalization
strategies can provide significant performance improve-
ment to models which previously usertl-hoc weighted
summation as a feature combination strategy.
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