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Abstract—Band-limited speech (speech for which parts of the

spectrum are completely lost) is a major cause for accuracy degra-

dation of automatic speech recognition (ASR) systems particularly

when acoustic models have been trained with data with a different

spectral range. In this paper, we present an extensive study of

the problem of ASR of band-limited speech with full-bandwidth

acoustic models. Our focus is mainly on band-limited feature com-

pensation, covering even the case of time-varying band-limiting

distortions, but we also compare this approach to more common

model-side techniques (adaptation and retraining) and explore

the combination of feature-based and model-side approaches.

The feature compensation algorithms proposed are organized in

a unified framework supported by a novel mathematical model

of the impact of such distortions on Mel-frequency cepstral coef-

ficient (MFCC) features. A crucial and novel contribution is the

analysis made of the relative correlation of different elements in

the MFCC feature vector for the cases of full-bandwidth and lim-

ited-bandwidth speech, which justifies an important modification

in the feature compensation scheme. Furthermore, an intensive

experimental analysis is provided. Experiments are conducted on

real telephone channels, as well as artificial low-pass and band-

pass filters applied over TIMIT data, and results are given for

different experimental constraints and variations of the feature

compensation method. Results for other well-known robustness

approaches, such as cepstral mean normalization (CMN), model

retraining, and model adaptation are also given for comparison.

ASR performance with our approach is similar or even better than

model adaptation, and we argue that in particular cases such as

rapidly varying distortions, or limited computational or memory

resources, feature compensation is more convenient. Furthermore,

we show that feature-side and model-side approaches may be

combined, outperforming any of those approaches alone.

Index Terms—Automatic speech recognition (ASR), feature
compensation, restricted communications bandwidth channels,
robustness.
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I. INTRODUCTION

M
ISMATCH between training and test conditions is a

serious cause for accuracy loss in automatic speech

recognition (ASR) systems [37]. Among the variety of possible

causes for mismatch in real systems, we study in this work those

introduced by the channel, and more specifically band-limiting

distortions that completely remove parts of the spectrum.

Band-limiting distortions exist in historical recordings due to

the limited capabilities of recording devices and storage units

[16], [17], [34]. Also, telephone-transmitted signals are usually

bandpass filtered with cutoff frequencies 300 Hz and 3.4 kHz

[43], and similarly, signals transmitted from on-board systems

(like cars or aeroplanes) may present band-limitations [1], [9].

Low-sampling rates also impose an upper limit to the available

spectrum [35], as can be seen in recordings made with personal

portable devices. Oftentimes, band-limited recordings of dif-

ferent qualities may be interspersed, for example in documen-

taries, broadcast news, etc; a situation that further complicates

ASR (Fig. 1).

Although speech understandability is assumed to be maximal

for signals that expand over the whole spectrum (both for hu-

mans [36] and ASR systems [42]), several studies have shown

that given the redundancy of speech signals humans achieve

high accuracy rates using only a fraction of the complete spec-

trum (low-pass or high-pass filters [3]; spectral slits of 1/3 oc-

tave width in the region 1100–2100 Hz [45]). ASR systems

trained specifically for a particular bandwidth are only slightly

outperformed by full-bandwidth systems provided that a rea-

sonable part of the spectrum remains available. Therefore, the

major cause of degradation in ASR of band-limited data and

full-bandwidth acoustic models seems to be the mismatch and

not the loss of information in the signal.

Typical solutions to the problem of mismatch are training spe-

cific models for the new condition, or adapting previously ex-

isting models. Both approaches are reliable, but nevertheless,

under particular circumstances feature compensation may con-

stitute a better solution. For example when different distortions

affect different segments of test data in an unknown and unpre-

dicted manner, a model-side solution would require important

modifications in the search process (analysis of available band-

width and/or combination of outputs from multiple recognizers,

as in ROVER [14]), or sophisticated acoustic models valid for

the variety of conditions (e.g., multistyle-trained models or 3-D

Viterbi decoding [44], [46]), with a significant increase in com-

putation time. On the contrary, feature compensation performed
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Fig. 1. This spectrogram shows an example of a file from the NGSW collection [34] where the available bandwidth is below 2500 Hz: a speech made on September
22nd, 1912 by US presidential candidate, Theodore Roosevelt (left part of the spectrogram). This is followed by a zero-content portion (represented as black in the
spectrogram) and a third part that spans the entire spectrum up to 8 kHz, where the anchor discusses the historical recording.

in an independent module is able to automatically detect and

compensate multiple types of distortion in a process that re-

mains transparent to the decoder module. Feature compensation

is also convenient in systems where memory and computational

costs are an important limitation as it offers a light and reliable

solution, allowing to store a single set of acoustic models and

performing ASR with only one recognition engine (the memory

space required to store corrector functions is between one and

two orders of magnitude below that of full-bandwidth acoustic

models [31]). Finally, if no time-varying band limitations are

expected and computational resources are not an issue, feature

compensation can be combined with model-side techniques for

improved accuracy.

Bandwidth expansion has been previously used in the time

domain on telephone-transmitted signals in order to obtain more

natural sounds [4], [6], [22], [24], [47]. Although the same ap-

proach may be used when the goal is ASR, the effort of recon-

structing the whole time-domain signal seems unnecessary (e.g.,

phase information is discarded in parameterizations based on

the signal’s power spectrum). Feature compensation has been

previously applied for compensation of noise distortions [10],

[12], [33], [50], [51], but only recently for the problem of band-

limiting distortions—to our knowledge the earliest work in this

direction is [25]. Both, noise and bandwidth limitation introduce

uncertainty in the spectrum, as proposed in [50], and in both

cases this uncertainty can be time-varying [51]. However, we

show in this study that bandwidth limitations present some pecu-

liarities that require a different treatment than noise. In [27] and

[28], we proposed linear compensations of the Mel frequency

cepstrum coefficients (MFCCs) [7] based on knowledge-based

or data-driven criteria, respectively. Similarly, in [41], an ex-

tension of the SPLICE framework for noise compensation has

been proposed for restoration of band-limited signals. In [23],

the masking approach originally designed for compensation of

additive noise [40] is modified to fit band-limiting distortions.

In the present work, we propose a number of algorithms for

feature compensation whose common ground is the learning of

a transformation between the distorted (band-limited spectrum)

and undistorted (full-bandwidth) feature spaces. Different

constraints studied are availability or not of stereo-data for

training (speech samples recorded simultaneously in full and

band-limited environments), training data scarcity and blind

classification and compensation of multiple distortions. Eval-

uation is performed on distorted TIMIT data, including real

telephone channel distortions (NTIMIT [21] and our own

TIMIT-derived corpus, STC-TIMIT [32]), as well as artificial

low-pass and bandpass filters. Results are always compared

to other robustness methods: Cepstral mean normalization

(CMN), model adaptation, and model retraining.

The rest of this paper is organized as follows. In Section II, we

present a novel mathematical model of the effect of band-lim-

iting distortions on MFCC features. This gives rise to a unified

framework for feature compensation explained in Section III. In

Section IV, we make theoretical and empirical observations on

the topic of correlation of MFCC vector elements for full-band-

width and band-limited speech, and show that in the later case

MFCCs are significantly more correlated. This justifies an im-

portant modification in the compensation schemes proposed.

In Section V, we describe the experimental framework, and

Section VI shows an extensive collection of results under dif-

ferent settings and problem constraints. In Section VII, we sum-

marize our results and extract conclusions.

II. MATHEMATICAL MODEL OF THE EFFECTS OF

BAND-LIMITING DISTORTIONS ON MFCCS

The effect of a purely convolutional distortion may be ex-

pressed for the power spectrum as

(1)
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where and represent the spectra for the distorted

and original signals, respectively, for a time frame , and

is the frequency response of the distortion. When the front-end

employed is derived from a bank of filters, the following ap-

proximation is typically assumed for each filter ( is the order

of the filter, and the center frequency of the filter; the second

part is just a lighter notation)

(2)

The singularity of band-limiting distortions is that parts of

the spectrum are completely removed, whereas in general con-

volutional distortions different spectral bands are normally mul-

tiplied by nonzero values. For complete removal of bands, the

approximation in (2) remains valid, but follows a particular

form

where
if

if

(3)

and represents the channels in the filterbank removed by the

bandwidth-limitation (a further approximation since we assume

constant and binary values for the band-limitation in the out-

puts of the bank of filters). Term is introduced for taking

into account the approximation made in (2). This is particularly

important when , so as to reflect the fact that is

nonzero. Complete removal of bands implies that compensation

techniques based on signal restoration using the channel’s in-

verse transfer function (equalization techniques, CMN, etc.) are

not useful anymore, simply because the inverse of the transfer

function does not exist (information from removed

channels is completely lost). Therefore, reconstruction of re-

moved parts of the spectrum should be attempted in a different

fashion, for example with information from the available parts

(assuming important correlation between different spectral re-

gions).

The general definition of MFCCs is [52]

(4)

where subindex is the order of the MFCC coefficient,1 rep-

resents a time frame, and is the number of channels in the

filterbank. In subsequent equations subindex is dropped for

simplicity of notation. We may rewrite (4) as

(5)

1MFCC stands for Mel-frequency cepstrum coefficient. Thus, instead of
MFCC coefficients, it would be more appropriate to say MFC coefficients.
However, for clarity MFCC will be maintained as a full unit of meaning.

where are individual elements of the discrete cosine trans-

formation matrix. Similarly, MFCC features of band-limited

speech are

(6)

The difference between full-bandwidth and band-limited

MFCC vectors for a particular frame is obtained from (5) and

(6)

(7)

Now we decompose the sum over all filters in the filterbank

into 2 terms corresponding to channels affected by the band-

width restriction and intact channels, respectively

(8)

For band-limited speech, for unmodified parts of the

spectrum and for removed channels (or for expanded

regions in upsampled data). For channels unaffected by the dis-

tortion , and , so the sum over

the unaffected channels in (8) can be discarded. However, for

removed bands . We may then approximate

full-bandwidth MFCCs as

(9)

In practice, values of are random and significantly smaller

than the values of the original signal in (9). Therefore, we can

ignore this term, as in (10), for a better understanding of the

physical meaning of the equation

(10)

This equation shows full-bandwidth features as being a com-

bination of limited-bandwidth features, plus the would-be con-

tribution to MFCC vectors of missing parts of the spectrum

(something that is also intuitive). However, it does not seem to

help in estimating full-bandwidth features because the outputs

of the filters in the missing parts of the spectrum are unavail-

able for reconstruction. Nevertheless, we can still make use of it

thanks to a central idea of bandwidth extension: different parts

of the spectrum are highly correlated because the configuration

adopted by the vocal tract determines the whole shape of the

spectral envelope in a particular instant. Under this assumption

and for a cluster of observations that share similar acoustic
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Fig. 2. Schematic representation of the proposed architecture for training of classes and corrector functions and for compensation of band-limited feature vectors
to generate pseudo full-bandwidth feature vectors.

characteristics (similar configuration of the vocal tract), the fil-

terbank outputs in the removed regions of the spectrum when

input is full-bandwidth speech are related to those in the avail-

able parts through some unknown functions

and

(11)

Our goal being direct reconstruction using MFCCs, we

may substitute in (11) the outputs of individual filters in the

filterbank , by the MFCC vectors of

restricted bandwidth speech, which relate to the former via the

Moore–Penrose inverse transformation [53]. Thus

(12)

where is a set of mapping functions between band-limited

MFCC vectors and filters’ outputs from the original signal. Fi-

nally, inserting this into (10) and combining with the loga-

rithm and the terms into the new functions we obtain a

new set of equations

(13)

Equation (13) establishes that full-bandwidth features be-

longing to a particular class of sounds may be approximately

reconstructed using unknown functions of the band-limited

features . Section III deals with methods to partition

speech into classes of sounds and different methods for

estimation of the functions.

III. FEATURE COMPENSATION FRAMEWORK

In this section, we propose a unified feature compensation

framework. In Section III-A, we present the foundations for two

proposed approaches for feature compensation (a data-driven

approach, Gaussian class-based and a knowledge-driven ap-

proach, Phoneme-based). As shown in Fig. 2, both approaches

involve three steps that we describe in Sections III-B–D. First,

training data is divided into clusters (Section III-B, box 1 in

Fig. 2); second, for each cluster a set of corrector functions is

trained (Section III-C, box 2 in Fig. 2); and third, full-bandwidth

features are estimated from band-limited data (Section III-D,

box 3 in Fig. 2). We note that the first two steps are conducted

offline, whereas the third one is performed at recognition time.

A. Foundations for Full-Bandwidth Estimation

1) Data-Driven Approach (Gaussian Class-Based): The for-

mulation presented here is in many aspects similar to that used

for feature compensation of noisy speech [20]. We will highlight

later the main differences we find when compensating band-lim-

ited speech instead of noisy speech.

We assume that both the full-bandwidth and limited-band-

width spaces may be modeled using Gaussian mixture models

(GMMs). Thus, for the limited-bandwidth space the probability

of observing a feature vector is

(14)

where is the a priori probability of mixture in the GMM,

the mean vector, and the covariance matrix. Assuming

and jointly Gaussian within a cluster of data pairs the con-

ditional expectation of clean feature vectors given the distorted

vectors and the cluster is

(15)

where and are the vectors of means for mixture

for full-bandwidth and limited-bandwidth speech, respectively,

is the covariance matrix of band-limited data, and
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is the joint covariance matrix. We call and the compen-

sation matrix and offset vector, respectively. The joint pdf is

(16)

where is the covariance matrix of the conditional probability

of and for class .

Estimation of undistorted features from distorted features is

possible maximizing the joint probability, using for example the

minimum mean squared error (MMSE) criterion. In [19], it is

shown that the solution is given by mapping functions taking

the form of the conditional expectation, and so, for a particular

observation

(17)

In the general form, is a complete matrix and compen-

sation of each individual element in the feature vector is made

as a linear compensation of all the other elements in the vector

(we call this multivariate feature compensation, in which, for

instance, cepstrum coefficient C2 can be compensated using C2

and any other components of the feature vector). However, for

MFCCs the assumed uncorrelation of different elements seems

to indicate that similar compensation ability may be obtained

simply using a diagonal matrix (in this case we talk about uni-

variate linear compensation, in which, for instance, cepstrum

coefficient C2 can be compensated using only C2). In later sec-

tions, we show that, while this simplification seems to work

well for compensating noise, it is suboptimal for the case of

band-limited speech.

Feature compensation methods with GMMs previously used

for noisy speech differ in the methodology used for estimating

GMMs, and the transformation matrix and offset vector

for each Gaussian mixture (normally assuming diagonal trans-

formation matrixes, and sometimes even further simplifications,

such as assuming ). In RATZ, GMMs are the emitting

states in the set of acoustic models of an ASR engine [33]. In

SPLICE, specific GMMs defined in the noisy feature space are

used, and the number of such partitioning classes may be tuned

according to the amount of adaptation data and the complexity

of the distortion [12]. In [5], it is proposed to model the fea-

ture space as GMMs for both, the clean and distorted spaces,

and associating Gaussians from one and the other space prior

to compensation. Also, in [2], clean and distorted features are

concatenated prior to feature space partitioning in order to ob-

tain groups of data clustered both in the original and distorted

spaces. A similar approach to SPLICE is followed in [40], but

Fig. 3. Mapping of LP4 kHz data (�-coordinate) to full-bandwidth data (�-co-
ordinate) for MFCC C2 in a particular Gaussian class. The plot also shows a
third-order polynomial fit.

compensation is made on the outputs of the filterbank, thus re-

moving the extra complication of the cosine transformation and

allowing for straightforward exploitation of the redundancy of

different spectral regions. In our work, the mathematical model

of band-limiting distortions made in Section II motivates the use

of such Gaussian class-based techniques [2], [5], [12], [33] for

the problem of bandwidth limitation.

2) Knowledge-Based Approach (Phoneme-Based): In the

previous section, we proposed data clustering in the band-lim-

ited feature space according to a maximum-likelihood criterion.

Alternatively, we may do this partitioning based on the phonetic

content of frames (this requires phonetic labeling of training

data). Training of corrector functions is independent of the

method used for data clustering and so it can be done exactly in

the same way as in the data-driven method. However, feature

compensation would require phonetic labeling of test data,

something that is never available (otherwise, ASR would not be

needed). Different solutions, as well as an upper performance

bound that we call oracle, are presented in Section III-D1.

B. Partitioning the Acoustic Space

In the training stage, the feature space is first partitioned into

clusters (partitioning classes). It is assumed that data within a

cluster in the distorted feature space suffered a similar trans-

formation as a result of the distortion and thus, to a certain ex-

tent, full-bandwidth data will show a similar clustering struc-

ture. Therefore, a set of corrector functions is trained for each

cluster, mapping observations from the distorted space to the

full-bandwidth space.

1) Phoneme-Based Partitioning: In phoneme-based parti-

tioning, it is assumed that realizations of any given phoneme

present a more or less stable energy distribution and therefore

may be compensated with the same mapping functions. The

feature space is divided straightforwardly using phonetically

aligned labels of training data.

2) Gaussian Class-Based Partitioning: In our work, the

clusters of data shown in (15) are found using an iterative

method. Partitioning is initialized with a single cluster defined

as a Gaussian distribution with mean and covariance ,
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Fig. 4. Evolution of RMSE for stepwise (a) multivariate and (b) univariate estimation of full-bandwidth MFCC C2 from limited-bandwidth MFCCs
(TIMIT LP4 kHz). Significant improvements in signal restoration are possible with the inclusion of multiple elements in the multivariate fit, whereas univariate
fits of order 2 and larger provide no improvements compared to a linear fit.

computed for all training data. This initial cluster is divided into

two by perturbing the mean vector by times the vector of

standard deviations, where is a perturbation factor (0.2 in all

our experiments). Training data are reassigned to either cluster,

and means and covariances are recalculated. Reassignment

is repeated a number of times (3 in our experiments) before

increasing again the number of Gaussians, by splitting a new

Gaussian mixture according to a partitioning criterion. The

process continues until the desired number of Gaussians is

achieved.

C. Training of Corrector Functions

Two methodologies are proposed depending on whether

stereo data are available for training, or not.

1) Training of Corrector Functions With Stereo Data: When

stereo data are available, it is possible to learn a mapping from

limited-bandwidth to full-bandwidth data using linear least

squares curve fitting techniques. For example, for univariate

polynomial compensation, the coefficients for each corrector

class were obtained independently for each element in the

feature vector by fitting pairs of observations (full-bandwidth

and limited-bandwidth) to a polynomial curve [39] (an example

for coefficient MFCC C2 is shown in Fig. 3; comparable plots

exist for other MFCCs).

In multivariate compensation, we used a step-wise strategy

that successively introduces new elements in a multivariate fit

using analysis of variance. The number of final coefficients is

set dynamically so as to reach a point close to the minimum

of the root mean squared error (RMSE) for each coefficient to

be compensated. Fig. 4(a) shows an example where the RMSE

of univariate linear compensation, 3.583 may be improved to

down to 3.189 by the inclusion of four additional elements

using multivariate compensation. However, inclusion of addi-

tional coefficients offers smaller improvement, suggesting that

in this case, the multivariate fit may be truncated after the first

six terms. Moreover, extra coefficients might cause over-fitting

and have a negative impact in reconstruction of test data unseen

during training. In contrast with the important reduction of

RMSE using multivariate feature compensation, in Fig. 4(b)

we show that for univariate polynomial fits (another possible

extension to the basic compensation approach) no advantage

is obtained by using large orders of polynomial fits (the same

conclusion was obtained directly in ASR accuracy in previous

work [28]).

2) Training of Corrector Functions With Nonstereo Data:

In situations where collecting stereo data is complicated, it is

still possible to train corrector functions. As it was previously

shown, the partitioning techniques used do not require stereo

data. The following shows how to estimate the feature compen-

sation coefficients.

In the most general case, the vector of means and matrix

of covariance of a cluster in the full-bandwidth feature

space are related to their limited-bandwidth counterparts as

(18)

(19)

where for the moment no constraints are imposed on the cor-

rection factors and . The probability of observation of a

feature vector in the full-bandwidth space is

(20)

In Appendix A, we show how this probability may be max-

imized using an expectation-maximization (EM) strategy [8].

For corrections in the form of simple offsets, the update equa-

tions for the vector of means take the form

(21)

where is the set of parameters for Gaussian mixtures in the

previous iteration. It is also shown that (note that this

is only for the assumption of corrections in the form of simple

offsets).

In practice, we start our algorithm by partitioning the band-

limited acoustic space. Initially, we set ; then for each
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iteration we use the current value of to estimate ac-

cording to (21), and use this value to update as in (18). In

Section VI-D, we also show results for a similar approach with

an initial partitioning of data in the full-bandwidth instead of in

the limited-bandwidth space.

D. Compensation of Band-Limited Features

In order to perform decoding of band-limited data, frames

need to be classified as belonging to a particular data cluster (or

combination of them) and compensation may then be applied

accordingly.

1) Phoneme-Based Compensation: Several solutions are

proposed for associating speech frames of unknown phonetic

content to the defined phonetic classes [27].

Oracle Phoneme-Specific Compensation: Oracle Phoneme-

specific correction employs manually time-aligned phonetic

transcriptions of test data in order to apply the appropriate

corrector function to each frame. This Oracle method is not

a practical solution but an upper bound on performance for

feature compensation.

General Compensation: Here, the complete distorted feature

space is modeled using a single class. This is a simplification of

phoneme-based compensation with which phonetic labels are

not needed anymore. General feature compensation is a global

transformation of the feature space, similar to CMN (the com-

pensation is now computed for all available observations instead

of in a per file mode, as is usually done in CMN).

Two-Stage Compensation: General compensation as in the

previous section is followed by a pass of an ASR phonetic recog-

nizer that provides a set of tentative transcripts for each test ut-

terance (using N-best or a lattice output). In the second stage, the

generated phonetic transcriptions are employed for Phoneme-

specific correction. The ASR final decision is chosen as the one

with maximum likelihood, among the possible initial transcripts

for each utterance.

Compensation Embedded in the Decoder Module: Although

out of the general framework of compensation in an indepen-

dent module, it is possible to apply compensation embedded

in the Viterbi decoding process, prior to likelihood computa-

tion for each pair observation-acoustic model. For each obser-

vation, phoneme-specific compensation is applied before com-

puting the likelihood probability against states that belong to

each phonetic model. Our hypothesis is that corrector functions

would work best for the correct combination of band-limited

feature vector and full-bandwidth phonetic models and would

lead to lower likelihoods when the band-limited feature vector

does not correspond to the full bandwidth phonetic model. We

note the similarity between this approach and constrained linear

adaptation [11].

2) Gaussian-Based Compensation: In this case, feature com-

pensation is made according to (17) by weighting the contribu-

tion of the compensation for each class by the posterior of that

class [28].

3) Multi-Environment Compensation: In real applications, a

system may receive speech from a variety of sources with dif-

ferent band-limitations and different corrections should be ap-

plied accordingly (e.g., speech downloaded from the Internet

may have been recorded at different sampling rates). Here, we

Fig. 5. Relative variance (in %) captured by PCA-derived eigenvectors and
MFCC transformation vectors for full-bandwidth and bandpass-filtered data
(300–3400 Hz bandpass filter). Data points correspond to Table I.

hypothesize that different bandwidth limitations leave a distinct

footprint in the MFCC feature vector that can be used to identify

the type of distortion and so, classification can be made within

the compensation framework.

Gaussian mixture modeling as in (14) is now extended to the

case of multiple distortions

(22)

In (22), refers to a specific band-limitation in a set of

possible distortions and and are a priori proba-

bilities of distortion and mixture given distortion , respec-

tively. The final GMM is obtained by combination of GMMs

from individual environments.

If we denote the set of all the Gaussians in the GMMs corre-

sponding to all the environments as , where denotes

one of these Gaussians, and define

(23)

we can rewrite (22) with an expression similar to (14), where the

sum over distortions is substituted by an extended GMM from

multiple distortions

(24)

In synthesis, classes are created independently for each pos-

sible distortion and they are combined into a super set of classes

for automatic multi-environment compensation. Alternatively it

is possible to start pooling together data from different distor-

tions and so, classes are trained in a multidistortion mode (this

is similar to multistyle training of acoustic models). However,

in our experiments, performance with this approach was worse

than training classes for each environment separately, probably

because the later assures a partition of the feature space based

on the type of distortion.



MORALES et al.: FEATURE COMPENSATION TECHNIQUES FOR ASR ON BAND-LIMITED SPEECH 765

Fig. 6. Eigenvectors for a log-Mel frequency energy representation of (a) full-bandwidth and (b) limited-bandwidth speech (BP300–3400 Hz), derived from the
covariance matrix. The first set presents a resemblance with sinusoidal functions, whereas the second set shows deviations, especially near the borders (red circles).
In each inset, the �-axis represents Mel-scaled frequencies. In the �-axis, zero-values are shown.

IV. CEPSTRAL DECORRELATION AND

BAND-LIMITING DISTORTIONS

MFCCs are highly uncorrelated, making them a convenient

set of features. For example, this allows using diagonal covari-

ance matrices with only small accuracy loss. For the problem

of feature compensation, uncorrelation suggests that in practice

no information pertaining to a given MFCC coefficient may be

obtained from any other coefficient and so, in (17) full com-

pensation matrices may be substituted by diagonal ones

without significant accuracy loss. In fact, this is normally used

for noisy speech [5], [12]. Although the same simplification has

been adopted in the past for band-limiting distortions [28], [41],

we show now that in this case this assumption is not as clearly

justified.

The assumption of decorrelation of MFCCs is tied to the rela-

tion of this transformation basis to principal component analysis

(PCA) [13]. PCA was used in the past as a means for optimal

representation of a particular distribution with maximal com-

pactness. This is done extracting the directions of maximum

variability of a particular set of data samples; in practice, the

eigenvectors of the sample covariance matrix of the distribution

(the eigenvalues representing the variability captured by each

direction). An additional property of these vectors is that they

are uncorrelated and orthogonal. However, PCA computation is

expensive and depends on the available data. MFCCs were orig-

inally formulated as a fixed transformation that is, nevertheless,

similar to PCA [38].

A transformation of spectral features using sinusoidal func-

tions was first proposed by Yilmaz [48], [49]. Pols [38] later

showed that for a particular set of speech files, PCA-derived vec-

tors resembled the shapes of sinusoidal functions, and the vari-

abilities captured by each PCA-derived eigenvector and each

MFCC were similar, too. In the first two columns of Table I

(darker lines in Fig. 5), we show the variability captured by the

first MFCCs and PCA-derived eigenvectors in a full-bandwidth

(FB; 8 kHz) distribution using TIMIT data. These results are

similar to those by Pols [38]. Also, in Fig. 6(a) we show the

shapes of the first eigenvectors which roughly resemble sinu-

soidal functions.

TABLE I
RELATIVE VARIANCE (IN %) CAPTURED BY PCA-DERIVED EIGENVECTORS

AND MFCC TRANSFORMATION VECTORS FOR FULL-BANDWIDTH AND

BANDPASS-FILTERED DATA (300–3400 HZ BANDPASS FILTER). VECTORS IN

BOTH BASES SEEM TO CAPTURE SIMILAR AMOUNT OF VARIATION IN THE CASE

OF FULL-BANDWIDTH SPEECH, BUT NOT SO MUCH IN BAND-LIMITED SPEECH

The situation changes for band-limiting distortions, because

the energy in missing parts of the spectrum is several dBs below

that in the unfiltered bands. MFCC extraction over band-lim-

iting channels may be viewed as a whole, as a transformation of

full-bandwidth speech where the sinusoidal functions are flat-

tened in the filtered regions. In Fig. 7, we show the theoretical

cosine transformation vectors of orders 1 and 3 on top and an

equivalent transformation with bandpass filtering in the bottom.

The basis that defines the MFCC transformation over band-lim-

ited speech is not orthogonal anymore and therefore, we expect

MFCCs to resemble less clearly PCA-derived features. Fig. 7 is

a simplification because the result of the logarithm in the filtered

regions has been zeroed; in reality, the logarithm is never null,

but very significant energy attenuation exists in band-limited re-

gions, so the orthogonality of the transformation is still broken.

In the last two columns of Table I (lighter lines in Fig. 5),

we show that the relationship between the variability captured

by eigenvectors and MFCCs derived from band-limited TIMIT

is less obvious than that for full-bandwidth speech, and simi-

larly, in Fig. 6(b) the shapes of the eigenvectors are less similar

to sinusoids, particularly near the borders. These observations

suggest that MFCC transformations over band-limited speech

differ from the PCA-derived transformation vectors much more
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Fig. 7. Cepstral transformations of orders 1 and 3 for full-bandwidth speech
(top) and equivalent cepstral transformations for limited-bandwidth speech
(bottom: 300–3400 Hz bandpass filter). The band-limited transformation basis
is no longer orthogonal.

than with full-bandwidth speech. As a side-effect they will also

probably not have the other properties of PCA, namely feature

decorrelation.

In order to empirically verify our hypothesis that MFCCs of

band-limited speech are more correlated than those of full-band-

width speech, we define a measure of nondiagonality of a co-

variance matrix based on the correlation of pairs of MFCC ele-

ments

where
if

otherwise.

(25)

Such metric establishes that a significant correlation exists

between two elements of an MFCC vector if their correlation

coefficient is larger than a threshold; a binary metric because

coefficients with a significant correlation are given a score of 1

and the rest, a score of 0. This was chosen in order to show how

many features are more correlated than a threshold. If instead,

a continuous measure had been used (like multiplication of cor-

relation coefficients) very low correlation between two terms

could hide the fact that a large number of other coefficients are

correlated.

Experiments setting the threshold to and using all

TIMIT training data to compute the covariance matrix produced

a nondiagonality of 51 for full-bandwidth MFCC coefficients,

108 for LP4 kHz coefficients and 110 for BP300-3400 Hz coef-

ficients. Actual numbers vary for different values of , but the

interesting point is that the number of correlated elements in the

MFCC vector is more than doubled for band-limiting distortions

compared to full-bandwidth speech.

The previous argumentation seems to indicate that when the

distortion affecting speech is of a band-limiting type, better re-

construction performance may be obtained by multivariate fea-

ture compensation (something also suggested by the decrease in

RMSE shown in Fig. 4(a) for multivariate compensation).

V. EXPERIMENTAL FRAMEWORK

A. Description of ASR Engines

HTK tools are used for training of language models and

acoustic models, model adaptation and decoding [52].

The front-end employed uses pre-emphasis filtering

and Hamming windows of 25-ms length and

10-ms shift. Thirteen MFCC coefficients including C0, and

their respective first- and second-order derivatives (39 total

features) are computed from a filter-bank of 26 Mel-scaled

filters distributed in the region 0–8 kHz. Experiments reported

are for acoustic model sets with 51 context-independent hidden

Markov models (HMMs) and a phone bigram language model.

HMM models are trained using TIMIT [15]. For training, we

use all 4680 files in the training partition and evaluation is made

on all the 1620 files in the test partition.

Scoring metrics employed are phonetic percent correct and

percent accuracy

Correct (26)

Accuracy

(27)

where represents correct hypotheses, are insertions, rep-

resents substitutions, stands for deletions, and is the total

of units in the reference transcripts (i.e., ).

Experiments compare performance of the proposed feature

compensation approaches with those as follows.

— No Compensation: Acoustic models trained with

full-bandwidth data and tested with band-limited data.

— Model Adaptation: Full-bandwidth acoustic models

adapted with data from the band-limited condition (unless

otherwise specified, global MLLR followed by 28-class

MLLR, followed by MAP).

— Matched Models: Acoustic models trained and tested with

band-limited data.

— CMN: Models trained with CMN full-bandwidth data and

tested with CMN limited-bandwidth data.

B. Speech Corpora

Experiments have been conducted with the DARPA TIMIT

Acoustic-Phonetic Continuous Speech Corpus [15] (commonly

known as TIMIT) for the following reasons: first, TIMIT has

been extensively used in the past as a benchmark for algorithm

testing. Second, the corpus was recorded under clean conditions

and the vocabulary size is small; therefore, high accuracy may

be achieved with simple systems and tuning is not complicated.

This also simplifies analysis of the impact of different distor-

tions and robustness methods as they affect performance in a

more direct manner than with a more sophisticated system. Fi-

nally, a number of associated corpora exist as rerecordings of

the original data under different distortions, thus making it pos-

sible to evaluate the impact of real distortions and allowing the

use of stereo-based compensation techniques.
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TABLE II
PERFORMANCE OF DIFFERENT LINEAR FEATURE COMPENSATION APPROACHES, COMPARED TO NO COMPENSATION, MODEL ADAPTATION,

MATCHED MODELS, AND CMN FOR MULTIPLE REAL AND ARTIFICIAL BAND-LIMITING DISTORTIONS

Experiments on real telephone data employ NTIMIT [21] and

STC-TIMIT [32] corpora. In NTIMIT, the original utterances

from TIMIT were rerecorded after sending each of them in a

separate telephone call (involving all sorts of network combina-

tions). Thus, in effect each file is affected by a different distor-

tion. However, a constraint for the success of feature compensa-

tion approaches proposed in this work is the existence of well-

defined and steady distortions. This constraint may be alleviated

using a multi-environment compensation approach, which nev-

ertheless requires individual training of corrections for well-de-

fined distortions. Therefore, NTIMIT is not well suited for the

setup proposed in this work (very scarce data exists from each

individual distortion). In order to be able to test feature compen-

sation techniques on real data we created STC-TIMIT, where

the whole original corpus was passed through a single tele-

phone call. In the new corpus, an important effort was made for

obtaining an accurate alignment with the original files, and as

shown in [31] this has a positive impact in stereo-based robust-

ness methods (in NTIMIT we detected an average misalignment

of 15 ms, and this may cause a relative accuracy decrease of up

to 3% in our experiments). STC-TIMIT is distributed through

LDC [26].

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present experimental results for a variety

of conditions and problem constraints.

A. Phoneme-Based and Gaussian-Based Univariate Feature

Compensation

Table II shows performance of univariate phoneme-based and

Gaussian-based compensation strategies for a variety of distor-

tions. Comparison of accuracy in the first row (full-bandwidth

training and testing data) with that of matched models for each

band-limitation shows that only moderate degradation exists for

most band-limiting channels considered. On the contrary, the

difference in performance between the cases of No Compensa-

tion and matched models shows the very important impact of

the mismatch and the need for robustness methods.

The upper bound on feature compensation performance set by

the Oracle phoneme-based compensation shows that assuming

we could reliably select the appropriate corrector function we

could obtain with simple linear univariate feature compensa-

tions accuracy close to that obtained with full bandwidth speech.

Performance of the two-stage solution implemented is far from

that with the Oracle technique, especially in severe distortions

because of the poor performance of general compensation (per-

formance is similar to CMN, which is also a form of general

correction). On the contrary, Gaussian-based partitioning shows

significant improvements compared to CMN and is also close to

model adaptation for moderate distortions. However, for more

severe distortions, relative performance decreases compared to

model-side robustness approaches. The reasons are twofold: 1)

a small number of modeling parameters for the compensation

(linear compensations in feature compensation compared to full

compensation matrixes for MLLR) and 2) univariate compensa-

tion is not able to capture all data information useful for recon-

struction.

B. Univariate and Multivariate Feature Compensation

It was previously shown that correlation of MFCCs is larger

in band-limited data than in full-bandwidth data, and we hypoth-

esized that as a consequence multivariate (instead of univariate)

compensation should be used for compensation of band-limiting

distortions. Results in Table III corroborate our hypothesis and

show more evident improvements for severe distortions. For the

more complicated distortions BP300–3400 Hz and STC-TIMIT,
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TABLE III
ASR PERFORMANCE USING UNIVARIATE AND MULTIVARIATE GAUSSIAN-BASED COMPENSATION FOR DIFFERENT DISTORTIONS. RESULTS

ARE COMPARED TO NO COMPENSATION AND MODEL-SIDE ROBUSTNESS APPROACHES. IN UNIVARIATE AND MULTIVARIATE COMPENSATION,
THE NUMBER THAT FOLLOWS INDICATES THE AMOUNT OF CLASSES EMPLOYED FOR BAND-LIMITED SPACE PARTITIONING

we show accuracy for different numbers of partitioning classes

(32 and 256). In our experiments, we truncated multivariate

compensation at an average number of ten elements, whereas

for univariate linear compensation two coefficients are used for

each cluster and MFCC coefficient (i.e., five times more mod-

eling parameters in multivariate compensation in average). In-

terestingly, accuracy of multivariate feature compensation with

32 Gaussian clusters is clearly superior to univariate compen-

sation with 256 classes, even when more modeling parameters

are used for univariate compensation in this comparison (512

versus 320 for each MFCC coefficient). This shows that the

improvements with multivariate compensation are not due only

to having more modeling parameters, but better modeling of the

compensation. Also, from a computational point of view, the

cost of computing posterior likelihoods is much higher than that

of increasing the number of elements in the linear compensation.

From this perspective, it makes sense to compare performance

of both approaches for the same number of Gaussian classes,

and in that case the improvement is obviously much greater.

In addition to outperforming univariate compensation, multi-

variate feature compensation is as accurate as model adaptation,

each approach having its advantages; model adaptation does not

require stereo-data for training the compensation, but performs

better in supervised mode, whereas feature compensation is un-

supervised but employs stereo-data (a nonstereo implementa-

tion is possible, too).

C. Compensation Embedded in the Decoder Module

In Table IV, we include ASR performance measures as well

as the average log-likelihood per utterance (computed by adding

the log-likelihood of the winner state sequence for each utter-

ance in the test set) for compensation embedded in the decoder,

Oracle, and General Correction. Compensation embedded in the

decoder requires compensation of dynamic features (the rest of

experiments in this work use linear regression of compensated

static features) as a side-effect of the modification of the search

algorithm and for the sake of comparison results for Oracle com-

pensation and General compensation in Table IV also use it (this

explains differences with Table II).

Unsurprisingly, compensation embedded in the decoder ob-

tains for each distortion the maximum average likelihood, be-

cause for each frame this approach applies the compensation

that maximizes the likelihood probability. Unfortunately, maxi-

mization of the likelihood does not guarantee optimal ASR per-

formance; for example, ASR performance with Oracle compen-

sation is clearly superior in spite of smaller likelihood. This be-

havior may be explained by the following limit case: take two

different phonemes for which training data for a particular fea-

ture present great dispersion. In such a case, the polynomial fit

for both phonemes may resemble a straight and horizontal line.

Then, the result of compensating any observation would not de-

pend on the observation itself, but would be the means of the

full-bandwidth features in the training data used in the polyno-

mial fit; a clearly undesirable situation. In order to reduce this

problem, we propose the use of multivariate feature compensa-

tion. As the fit now depends on a larger number of coefficients

in the feature vector, compensated features will be less subject

to the problem described. Results in Table IV support this hy-

pothesis.

D. Nonstereo Training of Corrector Functions

As shown in Section III-C2, it is possible to train an offset

feature compensation using nonstereo data and an iterative EM

strategy. In Fig. 8, we show performance for a low-pass filter

distortion with cutoff frequency 4 kHz, for two versions of the

algorithm; when Gaussian classes are defined in the limited-

bandwidth (LB) or full-bandwidth (FB) spaces. Results show

the advantage of training classes directly in the distorted space

for more accurate classification of speech frames. Accuracy is

only 2% absolute worse than with stereo-based training. How-

ever, the solution in (21) is only for univariate feature compen-

sation, which limits the success of feature compensation.

E. Blind Compensation of Corrector Functions

In this section, we study compensation of data from mul-

tiple distorting environments seen and unseen during training in

a unified multi-environment feature compensation framework.

This approach, described in Section III-D3, allows the system to

automatically detect the type of distortion (or estimate it in the
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TABLE IV
ASR PERFORMANCE USING PHONEME-BASED COMPENSATION

EMBEDDED IN THE DECODER, OR OUTSIDE OF THE DECODER

(ORACLE AND GENERAL CORRECTION)

Fig. 8. Accuracy versus number of iterations in two different nonstereo com-
pensation modes for TIMIT LP4 kHz; Gaussian classes defined in the full-band-
width space and in the limited-bandwidth space.

best possible way) and compensate it, keeping active a single

set of acoustic models at all times [29], [30].

We designed an experiment where TIMIT files suffer abrupt

changes in available bandwidth (with random values for both

the cutoff frequency of the low-pass filter in each chunk and

its length), as in Fig. 9. Fifteen different low-pass filters were

considered, with cutoff frequencies distributed in a Mel-scale

(Table V). Training of corrector functions was made only for

eight of these filters, leaving 1 unseen distortion between each

of the distortions used for training (seven unseen distortions in

total). The success of multi-environment compensation may be

initially estimated evaluating the success of automatic classifi-

cation of the distortion (the distortion containing the Gaussian

class with best posterior probability for each frame). In Table V,

we show that distortions seen during training (O#) are accu-

rately identified and therefore we expect successful compensa-

tion (also, misclassified frames are identified as belonging to

the immediately superior or inferior distortion which would not

cause significant errors in the compensation). Analysis of classi-

fication errors showed that most errors are located in silent parts

of files or correspond to isolated frames; an effect that may be

mitigated by using smoothing windows over consecutive frames

Fig. 9. Spectrogram of file DR1_FAKS0_SA1 from TIMIT after random
length filtering with randomly chosen low-pass filters.

TABLE V
INPUT DISTORTION CLASSIFICATION ACCURACY (IN PERCENTAGE OF

FRAMES) USING AUTOMATIC ENVIRONMENT CLASSIFICATION IN FEATURE

COMPENSATION UNDER THE SETUP DESCRIBED IN SECTION VI-E. FOR

OBSERVED BANDWIDTHS “HIT” CORRESPONDS TO CORRECT CHOICE AND

“��” IS THE SUM OF “HIT” PLUS THE CASES WHERE FIRST CHOICE BELONGS

TO THE IMMEDIATELY PREVIOUS OR POSTERIOR OBSERVED DISTORTIONS.
FOR UNOBSERVED BANDWIDTHS “��” SHOWS THE PERCENTAGE OF CASES

WHEN THE FIRST CHOICE BELONGS TO THE IMMEDIATELY PREVIOUS

AND POSTERIOR DISTORTIONS AVAILABLE DURING TRAINING

[30]. The Table also shows classification of band-limitations un-

seen during training (U#), which are in most cases accurately

classified as one of the immediately superior or inferior distor-

tions available during training.

In Table VI, we show the superiority, in this setup, of fea-

ture compensation (first row) compared to adaptation of acoustic

models using data from any individual distortion (intermediate

rows) as well as models adapted using data from all seen dis-

tortions (final row). Performance could be improved in model-

side robustness by using a distortion classifier as a selector for

acoustic models, or using several speech recognizers in par-

allel, but these solutions require significant modifications to the

recognition framework, and would also increase computational

costs and memory load.

As the previous experiment is somehow biased towards fea-

ture compensation approaches, we propose a further experiment

to compare performance of our approach with that of model-side

approaches. Here, we assume test data are band-limited with a

fixed channel from the unseen channels U# defined in Table V.

In Fig. 10, we compare performance of multi-environment fea-

ture compensation trained only with the observed distortions O#

in Table V versus performance of acoustic models adapted in

each case with data from either the immediately superior or in-

ferior observed band-limitations. For the less severe distortions,

in which the mismatch between the observed and unobserved

channels is smaller feature compensation clearly outperforms
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TABLE VI
ASR PERFORMANCE ON TIMIT CORPUS DISTORTED WITH ALL LOW-PASS

DISTORTIONS (SEEN AND UNSEEN) IN TABLE V, IN DIFFERENT FRAGMENTS OF

RANDOM LENGTH (AS IN FIG. 9). FEATURE COMPENSATION USES AUTOMATIC

BANDWIDTH CLASSIFICATION. MODEL ADAPT RESULTS ARE GIVEN FOR

ACOUSTIC MODELS ADAPTED WITH DATA FROM A PARTICULAR DISTORTION

AMONG THE OBSERVED ONES AND IN THE FINAL ROW FOR MODELS ADAPTED

WITH DATA FROM ALL THE OBSERVED DISTORTIONS

Fig. 10. ASR accuracy for feature compensation and model adaptation in the
experiment described in Section VI-E. The �-axis indicates the filter corrupting
data. Distortions labeled O# are observed during training, and those labeled U#
are unobserved.

model adaptation, probably benefiting from the possibility of

combining compensations from either the immediately upper

or lower observed band-limitations in a per-frame basis. On

the contrary, for more severe distortions where the mismatch is

larger model adaptation is more accurate. However, this exper-

iment is biased towards model adaptation because it assumes

correctly identified fixed distortions. Model adaptation perfor-

mance would be degraded in a variable distortion situation and

additionally an important modification to the structure of the

recognizer would be needed.

These experiments show that provided sufficient resolution

during training, any low-pass filter within the considered range

may be efficiently dealt with using feature compensation, even

variable distortions, smooth or abrupt and of duration as small

as a few frames.

F. Compensation With Limited Amounts of Training Data

In previous sections, we employed large amounts of training

data for training of both, feature compensation and model adap-

tation schemes. In this section, we compare performance in sit-

uations of data scarcity. In Fig. 11, we show accuracy of mul-

tivariate feature compensation using 2, 32, and 256 partitioning

Fig. 11. ASR accuracy versus available adaptation data for feature compensa-
tion and model adaptation. Distortion is LP4 kHz.

classes, respectively, and model adaptation (we show results for

MLLR-only adaptation, and MLLR followed by MAP).

It is clear that multivariate feature compensation suffers the

problem of under-training for large numbers of partitioning

classes and very limited training data. This problem could be

solved by applying a minimum occupancy threshold, as in fact

is done in MLLR in this experiment. Using such threshold

in the creation of partitioning classes we would expect to

achieve for each experimental point a result similar to that of

the best performing of the three multivariate compensation

results shown and so, multivariate feature compensation would

outperform model adaptation in all cases (differences tend

to decrease for larger amounts of data due to the successful

combination of MLLR and MAP and for large enough amounts

of data similar performance is achieved).

These results show that feature compensation is an excellent

solution for situations of data scarcity.

G. Combination of Different Approaches

The proposed feature compensation approaches may be com-

bined with other robustness methods for improved accuracy, as

shown in Table VII.

Feature compensation on CMN features does not provide sig-

nificant improvements. This was expected because CMN is ap-

proximately a simplification of feature compensation; combina-

tion of both approaches is redundant and performance is similar

to that with feature compensation only. On the contrary, combi-

nation of model-side robustness methods (model adaptation or

model retraining) and feature compensation achieves significant

improvements compared to the best individual method in each

case. Combination of both approaches performs better than fea-

ture compensation alone because the system is able to recover

from the mismatch caused by artificial distortions introduced by

the feature compensation method. Also, compared to the case

of model-side robustness only, usage of feature compensation

plays an important role in reducing data variability and the re-

sulting acoustic space is simpler to model. Of particular interest

is the combination of feature compensation and matched models

(i.e., compensating features to produce pseudo full-bandwidth

features and train models on those features), which clearly out-

performs any of the individual approaches alone.
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TABLE VII
COMPARISON OF DIFFERENT INDIVIDUAL APPROACHES (MODEL

ADAPTATION, MATCHED MODELS, CMN AND MULTIVARIATE

FEATURE COMPENSATION) WITH COMBINED METHODS

H. Discussion and Further Experimental Evidence

Due to space constraints, we presented in previous sections

a selection of numerous experimental results available (other

results may be found in [31]). A summary of other interesting

experimental results is given here.

As an extension to univariate linear compensation, we also

evaluated compensation as a univariate polynomial expansion.

In Fig. 4(b), we already showed that MSE does not significantly

improve for polynomial expansions larger than order 1. Exper-

iments conducted on ASR of band-limited data compensated

with such polynomial expansions showed little difference in per-

formance, and worse results for larger orders, due to large com-

pensation errors for outlier frames.

An interesting point in feature compensation concerns

the convenience of compensation of dynamic features or

reconstruction of these using the usual linear regression of

reconstructed static features. In our experiments, we observed

that MSE was smaller between full-bandwidth feature vectors

and band-limited speech vectors compensated with dynamic

feature compensation. This is not surprising because the crite-

rion used for training corrections is precisely minimization of

MSE. However, this creates unrealistic feature vectors because

dynamic features are not directly related to the static ones

(dynamic features are usually computed from the static ones)

and the result is a mismatch between feature vectors and models

that in our experiments degraded ASR performance.

In [2], a new iterative method for partitioning the acoustic

space was employed with the goal of finding clusters of data

that follow a similar distortion and may therefore be compen-

sated using the same transformations. This seems in principle

more adequate than a partitioning strategy that simply maxi-

mizes the probability of observation in the limited-bandwidth

space. Applying the same strategy for the case of band-limited

speech we observed significant improvements in percent cor-

rect but not in percent accuracy, indicating that the number of

phoneme insertions is notably incremented. More experiments

are required in this field, as finding an optimal partitioning cri-

terion for the problem of feature compensation might provide

significant improvements.

VII. SUMMARY AND CONCLUSION

Feature compensation has been proposed for the problem
of ASR of band-limited test data and full-bandwidth acoustic
models. In Section II, we present a novel mathematical model
of the distortions introduced in a typical front-end as a result
of bandwidth limitations (with particular focus on MFCCs).
From it, we derive a number of approaches for estimation of
full-bandwidth features from limited-bandwidth features that
are organized in a unified feature compensation framework.
Furthermore, in Section IV we presented an original theoretical
and empirical discussion on how band-limitations modify
the correlation of cepstral features and hypothesized the very
superior performance of nondiagonal compensation matrixes.
This hypothesis was confirmed in the experimental section. In
Section VI, a large number of experimental setups and problem
constraints are studied in which constitutes to our knowledge
the most extensive study on the problem of feature compensa-
tion for band-limitations. In all cases, performance of feature
compensation is benchmarked against the more usual approach
of model-side robustness.

A practical requirement common to all feature compensation
solutions is the need to define partitioning classes in an offline
step (with the exception of General Compensation), whereas
training of corrector functions may be done offline or in de-
coding time. Similarly, model retraining is performed offline,
whereas model adaptation can be offline or on-the-fly. Addition-
ally, training is supervised in phoneme-based feature compen-
sation methods and in model-side solutions, whereas Gaussian-
class based feature compensation is free of this constraint. Fi-
nally, concerning required modifications to the basic architec-
ture of an ASR system, two-stage feature compensation is of-
fline and compensation embedded in the decoder requires per-
forming feature compensation using corrector functions trained
for each phoneme before likelihood computation. On the other
hand, General feature compensation and Gaussian-class based
compensation may be performed independently from the rest of
the recognizer modules, inserted between the front-end and the
decoder, even for the cases of multiple or time-varying distor-
tions. This is a great advantage over model-side approaches that
in order to deal with multiple and time-varying distortions re-
quire the simultaneous use of several acoustic model sets and a
frequency detector module, or a 3-D type decoder architecture.

Feature compensation approaches proved to be useful both in
terms of accuracy (similar to that with model-adaptation) and
for their suitability in particular situations, like systems subject
to multiple distortions, rapidly varying distortions, etc. In addi-
tion, we showed potential better performance than MLLR and
MLLR MAP in situations of training data scarcity, and the pos-
sibility of combining feature-side and model-side approaches
for better performance than model-side approaches alone (in-
cluding retraining models for band-limited data, which is cur-
rently the most common solution to the problem of bandwidth
limitation).

Among the possible lines of future improvement of our
approach, an interesting topic is the optimization of the parti-
tioning method for the goal of feature compensation, in order
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to find clusters of data better suited for a linear compensation
framework. Another interesting line of work is that of training
methods that do not require stereo-data. In the future, we expect
to derive a nonstereo strategy for multivariate training compen-
sation. An alternative is to obtain an estimate of the channel
distortion and apply this to clean data in order to generate
pseudostereo data as was done in [18].

APPENDIX

DERIVATION OF THE UPDATE EQUATIONS FOR TRAINING

CORRECTOR FUNCTIONS WITH NONSTEREO DATA

It can be shown that maximization of (20) for all available

data is equivalent to iteratively maximizing an auxiliary function

defined as

(28)

where and are the sets of parameters for Gaussian mixtures

in the previous and current iteration, respectively. Substituting

(18) and (19) in (28), expanding the term of posterior probability

and simplifying, we obtain

(29)

Now, differentiating with respect to and and equating

to zero, we obtain solutions that maximize . Differentiating

is simple if we assume diagonal covariance and compensation

matrixes, as shown in (30) and (31) at the bottom of the page,

where is a vector containing diagonal elements in ma-

trix , and , a vector of zeros.

Solving for the corrector coefficients, we get (32) and (33),

as shown at the bottom of the page, where is the product of

two matrixes term by term.

These solutions are equivalent to those in RATZ, originally

designed for noise compensation, with the difference that

classes in RATZ were defined in the clean space [33].

Assuming now that the effect of the distortion in each class is

simply an offset for each observation, the vectors of means and

covariances are modified as

(34)

(35)

Identifying (34) and (35) with (18) and (19), we obtain

(36)

(37)

Therefore, the extra constraint of simple offsets suppresses (33)

in the EM algorithm, so covariance matrixes are not updated

anymore and , as defined in (32) will be the offset vector to

apply for feature compensation.

(30)

(31)

(32)

(33)
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