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Abstract: Point Cloud Registration contributes a lot to measuring, monitoring, and simulating in
building information modeling (BIM). In BIM applications, the robustness and generalization of point
cloud features are particularly important due to the huge differences in sampling environments. We
notice two possible factors that may lead to poor generalization, the normal ambiguity of boundaries
on hard edges leading to less accuracy in transformation; and the fact that existing methods focus
on spatial transformation accuracy, leaving the advantages of feature matching unaddressed. In
this work, we propose a boundary-encouraging local frame reference, the Pyramid Feature (PMD),
consisting of point-level, line-level, and mesh-level information to extract a more generalizing and
continuous point cloud feature to encourage the knowledge of boundaries to overcome the normal
ambiguity. Furthermore, instead of registration guided by spatial transformation accuracy alone, we
suggest another supervision to extract consistent hybrid features. A large number of experiments
have demonstrated the superiority of our PyramidNet (PMDNet), especially when the training
(ModelNet40) and testing (BIM) sets are very different, PMDNet still achieves very high scalability.

Keywords: point cloud registration; building information modeling; feature consistent

1. Introduction

Optical 3D scanning shows a growing trend in the construction industry, providing a
complete and consistent building engineering database by establishing a virtual building 3D
model based on digital technology. Nowadays, Building Information Modeling (BIM), as a
key application of optical 3D scanning, dominates project follow-up, building monitoring,
and maintenance [1–4], architecture planning [5–8], emergency simulation [9–12], and
IoT [13–16]. Implementing BIM methods helps improve the efficiency and integration
of constructions in all stages of their life-cycle, as well as helps provide a platform for
engineering information exchange and communication [17–20].

This work is focused on point cloud registration in building information modeling.
In practice, one of the key tasks to solve is how to align pre-built 3D models against the
scanned points of real buildings. The aligning results help generate complete and accurate
digital models, contributing largely to measuring and applications such as simultaneous
localization and mapping (SLAM), 3D reconstruction [21–24], localization [25–28], and
pose estimation [29–32].

Existing point cloud registration methods have achieved state-of-the-art performance
on common datasets. However, most of them fail in BIM scenarios due to various challenges,
noise, and data distribution from varying architectural styles, to name a few. Classic
methods [33–37] search for hard correspondence which shows little robustness against
noise since Euclidean distance is quite sensitive to offset. Feature-based methods [38–41]
extract local or global reference frames in higher dimensional space to achieve registration.
Most of the proposed features take not only point-level information but also line structures,
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greatly improving the robustness. However, feature-based methods face ambiguity during
calculating the normals of boundaries on hard edges, leading to inexplicit representation.
Learning-based methods [42–46], however, stand promising because they learn features for
establishing correspondence and utilize deep neural networks to reduce the calculations.
The only problem is whether they generalize well enough for different clouds.

According to 2D image theory, regions of richer geometric or semantic information can
produce more discriminant knowledge. In image classification, more attention is paid to
key point detection (SIFT [47], SURF [48], ORB [49]). Likewise, researchers have proposed
similar works in 3D point cloud processing (USIP [50], SDK [51]). However, such key points
in the cloud tend to face ambiguity during calculating their normals because of the selected
neighbors located on different planes.

Motivated by the issues aforementioned, instead of using point-level information alone,
this work suggests learning combined geometric knowledge of point, line, and mesh levels
to alleviate the impact of ambiguous normals, and hence, improve the generalization of point
cloud features. To be specific, we define a cone within the neighbors of a given centroid and
calculate the three angles near its apex to form a descriptor representing its local geometry.
In this case, a trade-off is made between ambiguous point normals and explicit cone angles.

Existing learning-based works evaluate their losses regarding spatial registration
accuracy, while we suggest feature-matching precision of equal importance for better
feature extraction in various transformations. We introduce another loss, which calculates
the distances between two high-dimensional feature descriptors.

Major contributions of this article are:

1 Introduce a boundary-encouraging point cloud feature, PMD, to represent local geometry
with higher generalization for registration, as well as solve the normal ambiguity problem.

2 Introduce feature matching loss to the feature extractor to produce consistent hy-
brid representation.

3 Our PMDNet shows state-of-the-art performance and higher generalization on sam-
ples from different distributions. Moreover, high performance still can be observed
even when the clouds become more sparse as the distance increases.

2. Related Work
2.1. Classic Registration Methods

Among classic algorithms (Figure 1a)), ICP [33] and its variants [34,35] try to search
the correspondences to minimize the distance (usually Euclidean distance) loss between
the projections and the destination points or planes. However, the optimization tends to
fall into local optimum because the objective function has multiple local extremums [52],
especially in BIM scenarios which usually consist of millions of points. Thus, these methods
usually include both coarse and fine registration, where the former aims to provide a better
initialization for the latter. To enhance the robustness against noise and outliers, the follow-
ing researchers view registration as a probabilistic distribution problem, where the input
point clouds are treated as two distributions from the same probabilistic model [36,37]. De-
spite saving efforts to establish the correspondences, they still require a proper initialization
because of their non-convex loss function.

Figure 1. (a) Classic optimization-based method. (b) Learning-based method.
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2.2. Feature-Based Registration Methods

Instead of establishing Euclidean-based correspondences, feature-based methods ex-
tract the local reference frame (LRF) for each point in the input clouds to form feature-based
correspondences. These descriptors must be distinct from each other, invariant to transfor-
mation, and robust to noise and outliers. Despite such high demands it takes, researchers
proposed unique descriptors. PFH [38] calculates the invariant pose of a centroid and its
neighbors in high dimensional space. FPFH [39] improves PFH with time efficiency by
reducing the dimension of histograms but preserves the local feature. SHOT [40] instead
focuses on normals by encoding the normal histogram in different coordinates, generated
by concatenating all the local histograms. Furthermore, using Hough voting, PPF [41] cal-
culates the 6-D pose of an LRF in a centroid-off manner. It ignores all the global coordinates
and only consists of related information of normals, translation, and angles. However,
mesh structures, which outmatch points and lines regarding robustness and continuity, are
barely included.

2.3. Learning-Based Registration Methods

Early methods estimate a good initial transformation for the ICP baseline [38,53,54].
Nevertheless, recent works utilize deep neural networks to calculate a global or local refer-
ence frame for each point and then iteratively solve the transformation (Figure 1b) [55,56]
firstly introduced the CNNs to the point cloud tasks, followed by numerous deep learning
methods to achieve registration [42–44]. Among those, PointNetLk [45] uses PointNet to
calculate the global features of input clouds and minimize the distance between them.
DCP [46] tries to search soft correspondence with the transformer and solve the registra-
tion by SVD. These works achieved state-of-the-art performance on ModelNet and other
common datasets. However, being specific to objects, they fail to generalize. On another,
we notice an ambiguity (see Section 3.1) during the calculation of point normals.

2.4. Registration in BIM

In architecture, registration is usually performed via multiple approaches (between
images, images and clouds, or clouds). Due to the huge number of points, many methods
learn planar geometry instead of local reference frame from regular structures. Turning to
planar geometries helps reduce the calculation and improves the overall accuracy due to de-
clined influence of outliers. Taking plane-based registration as an example, plane structures
are extracted from both input clouds via RANSAC-based methods [57–59], Hough trans-
form [60], or clustering [61]. Afterward, correspondence is estimated using the extracted
planes, whose accuracy largely depends on the planar segments and their normals. Ref. [62]
homogenizes the as-built and as-planned models by extracting similar cross-sections and
thus solves the registration problem, suggesting that the geometric shape of a room, if cap-
tured accurately, can be a distinguishing feature. Similarly, ref. [63] proposes a four-degree
of freedom (DOF) registration problem and then decomposes it into two steps: (1) horizontal
alignment achieved by matching the source and target ortho-projected images using the
2D line features and (2) vertical alignment achieved by making the height of the floor and
ceiling in the source and target points equivalent. Ref. [64] segments the input clouds into
plane pieces and clusters the parallel ones to eventually determine a transform matrix.
However, considering geometries are extremely sensitive to density, their performance falls
rapidly as the cloud density decreases because it is hard to extract the planar information on
sparse clouds.

3. Feature Consistent Registration

Due to the normal ambiguity, hand-crafted features fail to calculate the explicit normal
of boundaries on hard edges, which provides more information for registration than other
points. We solve this problem by introducing another local reference frame, PMD, which
learns point and mesh structures in the meantime. Also, previous works pay more attention
to spatial registration accuracy, leaving behind feature-matching precision, which may help
improve the representation in high dimensions.
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We propose PMDNet to solve the issues mentioned above, including a feature extractor
that generates a hybrid PMD feature, a parameter network to establish soft correspondence,
and a solver to estimate transformation.

More specifically, PMDNet learns a soft correspondence between input clouds via
hybrid PMD feature distances in an iterative way. The source cloud is transformed during
each iteration i by the estimated transformation in the last iteration i− 1. Then, hybrid
features are extracted from both the source and reference cloud. In the meantime, PMD-
Net uses a parameter network to learn the annealing parameters, α, β, to refine the soft
correspondence. The transformation is generated by Sinkhorn [65] algorithm. Finally, we
calculate two losses in the current iteration, L f e and Ltr, and back-propagate them to the
feature extractor and the transformation estimator. Figure 2 illustrates the pipeline of the
PMDNet. We use RPMNet [66] as the backbone.

Figure 2. (a) PMDNet overview. Loss propagation is shown in orange. (b) Feature extractor.
(c) Annealing parameter prediction network.

3.1. PMD Feature: Local Reference Frame to Encourage Boundaries

Given two sets of points, X = {xj|j = 1, . . . , J} ∈ RJ×3 serving as src and Y =

{yk|k = 1, . . . , K} ∈ RK×3 denoted as re f . The objective is to estimate a rigid transformation
Ĝ = Ĝ(R̂, t̂) ∈ SE(3) with R̂ ∈ SO(3) and t̂ ∈ R3, such that:

R̂, t̂ = arg min
R∗∈SO(3),t∗∈R3

||X× R∗ + t∗ −Y||2 (1)

Normal Ambiguity. Given a centroid point p, the normal of p is calculated within a
local reference frame consisting of p and its neighbors p1, p2, . . . , pn. As Figure 3 shows,
mesh Ω1, Ω2 with normals n1, n2 intersect at p. Here comes the ambiguity; p seems to have
multiple normals, depending on which mesh its neighbors are selected.

To fix normal ambiguity, we suggest refining the PPF feature with angles of intersected
meshes. PPF originally are 4D point pair features describing the surface between the centroid
point xc and each neighbor xi in a rotation-invariant manner:

PPF(xc, xi) = (∠(nc, ∆xc,i),∠(ni, ∆xc,i),∠(nc, ni), ||∆xc,i||2) (2)

where nc, ni are the normals of centroid point xc and its neighbors xi. Hereby we introduce
another three components to PPF, that is:
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PMD(xc, xi) = (∠(nc, ∆xc,i),∠(ni, ∆xc,i),∠(nc, ni), ||∆xc,i||2,∠xc)

∠(xc) = (∠(Ω(x1, x2, xc), Ω(x1, x3, xc)),

∠(Ω(x1, x2, xc), Ω(x2, x3, xc)),

∠(Ω(x2, x3, xc), Ω(x1, x3, xc)))

(3)

where x1, x2, x3 are the closest neighbors of xc, and Ω(p1, p2, p3) denotes a mesh consisting
of three points, p1, p2, p3. Together, xc, x1, x2, x3 form a triangular cone where xc is the apex,
and x1, x2, x3 locate on the bottom surface. The three newly added components describe
the angle of the apex. PMD solves normal ambiguity because it considers not only the
angle of points, but also the angle of intersected meshes.

Figure 3. (a) Normal Ambiguity. The normal of boundary p is not explicit, instead depended on which
mesh the neighbors are located during calculation. (b) an example of normal ambiguity. Normals are
differently colored according to their orientations. The boundary between the zoomed purple and
green surfaces is not explicit.

However, the selected points x1, x2, x3 do not always belong to an existing mesh. Thus,
we suggest that the introduced angles, ∠xc in PMD, should be considered along with
∠(ni, ∆xc,i),∠(nc, ni) in PPF, so as to make a trade-off between them. In this case, PMD
appears to be more generalizing than the PPF or other features in that the aforementioned
five angles correct each other. As is proposed in RPMNet, PMD is concatenated with xc
and ∆xi, forming a 13D descriptor to capture both global and local features.

3.2. L f e: Feature-Aware Loss towards Feature Consistency

Deep learning methods mainly consist of a couple of modules, including a feat extrac-
tor and an SVD for computing transformation. Previous works compute the loss regarding
SVD, ignoring the extractor, leading to in-explicit connection information between them.
RPMNet [66] uses a Euclidean distance loss and a second loss to encourage the inliers.
Ref. [67] implements Cross-entropy between estimated and ground-truth correspondence.
PointNetLk [45] calculates the loss with estimated transformation Ĝ and ground-truth GGT .
In these cases, the gradient may remain still when back-propagated to the feature extractor,
leading to poor updates.

RPMNet defines the total loss Ltr as the weighted sum of the Euclidean distance Lel
between the estimated and reference clouds, and a second loss Linlier to encourage inliers.

Lel =
1
N

N

∑
i=1
||P× R̂ + t̂− P× RGT − tGT ||2 (4)

Linlier = −
1
J

J

∑
j

K

∑
k

mj,k −
1
K

K

∑
k

J

∑
j

mj,k (5)

Ltr = Lel + λinlierLinlier (6)

However, theLtr is not feature-aware. Thus, we introduce another loss,L f e (Equation (7)),
to calculate the difference between two features. L f e is transformation-free and only works in
feature extractor:
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L f e =
1
J

J

∑
j=1

Γ(Fsrc,j, GGT)⊕ Γ(Fsrc,j, Ĝ) (7)

where F is the extracted 13D feature, Γ(F , G) transforms the input F with a given trans-
formation G. ⊕ calculates the difference between two features.

The overall loss is now the weighted sum of L f e and Ltr:

Ltotal = (1− λ f e)Ltr + λ f eL f e (8)

3.3. Annealing Parameter Network

Instead of hard correspondence, we use soft correspondence to predict transforms:

MJ×K = {mj,k} = {e
−β(||Fxj−Fyk ||

2−α)} (9)

subject to (1) ∑K
k=1 Mj,k ≤ 1, ∀j; (2) ∑J

j=1 Mj,k ≤ 1, ∀k; (3) arg max
i∗

Mj1,i∗ 6= arg max
i∗

Mj2,i∗ ,

∀j1 6= j2. Where:

• F is the hybrid feature in high dimensional space generated by the extractor.
• α serves as a threshold to preserve inliers and punish outliers.
• β is an annealing parameter to ensure convergence.

Considering α, β are usually distinct on various datasets, RPMNet uses a parameter
network that takes both source and reference point clouds as input to predict α, β in an
iterative manner. To be specific, the two clouds are concatenated into PJ+K,3. After that,
another column in which all the elements are either 0 or 1 is added to P . Finally, P is fed
to a PointNet baseline with softmax activation in the final layer to ensure the predicted
parameters are always positive.

4. Experiments

We use ModelNet40 [68] as a common registration problem to train our PMDNet. It
contains 12,311 samples of 40 categories. Figure 4 illustrates part of its samples. The clouds
used for PMDNet are furthermore subsampled to 512 points for reducing the calculation.
We conducted extensive experiments to evaluate the detailed performance of PMDNet
against other methods.
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Figure 4. Example of ModelNet40 samples.Figure 4. Example of ModelNet40 samples.

In each experiment, we follow approximately the same process. Firstly, the raw cloud
of 2048 points is input. Then, a rigid transformation matrix M ∈ SE(3) is generated with
random rotation between [0, 45◦] and random translation between [−0.5, 0.5] about each
axis. Afterward, a copy of the raw serves as the reference cloud (Y), and another copy is used
as the source (X), which will be transformed afterward by M. Both X and Y are furthermore
shuffled and subsampled randomly to 512 points. Finally, The source (X) and reference (Y)
clouds are input to PMDNet to get the estimated transformation Ĝ = Ĝ(R̂, t̂). which would
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be evaluated against GGT = GGT(RGT , tGT) = M−1 using the metrics aforementioned.
Figure 5 illustrates the whole process.
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provide both mean square error(MSE) and mean absolute error(MAE) for consistency
with previous works [46]. All the metrics are listed in Table 2. Cham f erDistance(CD)is
universally used in registration problems, however, it is extremely sensitive to outliers
considering CDinlier ≈ 0 and CDoutlier ≫ 0. Hence, we clip this distance with a threshold
of d = 0.1 for mitigation. In addition, considering that cloud computing technologies are
nowadays widely used in many fields but are often constrained by resources [70], time
efficiency is also an essential metric to evaluate the likelihood of a model being deployed to
mobile devices.
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1
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|Error(R)j| (11)
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The parameters of our PMDNet are listed in Table 1.

Table 1. Parameters of PMDNet.

Parameter Value

learning rate 1× 10−4

epochs 1024
batch size 8
optimizer Adam

All the competing methods are evaluated using their pre-trained models on ModelNet40.

4.1. Metrics

All the metrics are based on the rotation and translation errors:

Error(R) = ∠(R−1
GT R̂), Error(t) = ||tGT − t̂||2 (10)

where {RGT , R̂} and {tGT , t̂} denote the ground-truth and estimated rotation and translation,
respectively. ∠(A) = arccos( tr(A)−1

2 ) returns the angle of rotation matrix A. We provide
both mean square error (MSE) and mean absolute error (MAE) for consistency with previous
works [46]. All the metrics are listed in Table 2. Cham f er Distance (CD) is universally
used in registration problems, however, it is extremely sensitive to outliers considering
CDinlier ≈ 0 and CDoutlier � 0. Hence, we clip this distance with a threshold of d = 0.1
for mitigation. In addition, considering that cloud computing technologies are nowadays
widely used in many fields but are often constrained by resources [69], time efficiency is also
an essential metric to evaluate the likelihood of a model being deployed to mobile devices.

ERM =
1
J

J

∑
j
|Error(R)j| (11)

ETM =
1
J

J

∑
j
|Error(t)j| (12)

CD(X, Y) =
1
|X| ∑

x∈X
min
y∈Y
||x− y||2 + 1

|Y| ∑
y∈Y

min
x∈X
||x− y||2 (13)

CCD(X, Y) = ∑
x∈X

min(min
y∈Y

(||x− y||2), d) + ∑
y∈Y

min(min
x∈X

(||x− y||2), d) (14)
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Table 2. Evaluate Metrics.

Metrics Ref Equation Notes

err_r_deg_mean (ERM) Equation (11) Mean of isotropic Error of Rotation
err_t_mean (ETM) Equation (12) Mean of isotropic Error of Translation

CCD Equation (14) Clip Chamfer Distance

MAE(R) -
Mean Absolute Error of Rotation,

in the unit of degrees

MAE(T) -
Mean Absolute Error of Translation,

in the unit of degrees

Recall(ω, δ) -
Proportion of samples with,

MAE(R) < ω(◦) and MAE(t) < δ(m)

4.2. Ablation Experiment

In this subsection, we compare the contribution of different components of our PMD
feature to determine the best choice in afterward experiments. According to its definition,
we set up five controlled groups with various components to determine their influence on
the overall performance of clean, noise, and unseen data.

Table 3 illustrates all the detailed results. Most groups show bare differences in noise
scenarios, however, their performance on clean and unseen vary largely from one to an-
other. PMDNetA achieves the best of all, reaching up to over 90% Recall, outperforming
PMDNetE (which is the same definition with PPF) by over 10% Recall on clean and unseen.
Comparing PMDNetB and PMDNetC, it is easy to find that, ∠xc alone fails to improve the
representation of local geometry. ∠xc has worsened the learning, leading to an obvious de-
cline in accuracy. It goes the same with ∠(ni, ∆xc,i),∠(nc, ni) despite ∠(ni, ∆xc,i),∠(nc, ni)
only lead to a slight decline on clean and unseen. Only when ∠(ni, ∆xc,i),∠(nc, ni) and
∠xc are both included at the same time, can they together improve the registration greatly.
In previous sections, we have made a reasonable explanation for this when introducing the
PMD (Section 3.1). We suggest the added angles in PMD, ∠xc, and the original ones in PPF,
∠(ni, ∆xc,i),∠(nc, ni) be considered together, so they can compensate each other to achieve
higher performance and generalization. Because ∠xc only works for those boundaries on
multiple hard edges where ∠(ni, ∆xc,i),∠(nc, ni) fails to calculate an explicit normal. This
explains the huge gap between PMDNetA and PMDNetB, PMDNetC, PMDNetsE.

Table 3. Ablation results. PMDNetA, PMDNetB, PMDNetC, PMDNetD, PMDNetE is the same as
introduced in Table 4. Bold and underline denote best and second best performance.

ID Scene MAE(R)↓ MAE(T)↓ CCD(1e−3)↓ Recall↑ (1.0, 0.1) Recall↑ (0.1, 0.01)

PMDNetA Clean 0.0467 0.00039 0.003226 99.83% 91.76%
PMDNetB Clean 0.1680 0.00116 0.019487 98.50% 44.67%
PMDNetC Clean 0.0939 0.00066 0.007329 99.25% 76.70%
PMDNetD Clean 0.3773 0.00216 0.062771 95.59% 45.25%
PMDNetE Clean 0.1026 0.00075 0.006270 99.25% 76.45%

PMDNetA Noise 1.1201 0.00990 0.840589 80.28% 1.33%
PMDNetB Noise 1.1571 0.01000 0.840061 81.19% 1.16%
PMDNetC Noise 1.1957 0.01040 0.869413 79.36% 0.74%
PMDNetD Noise 1.4199 0.01190 0.998256 62.14% 0.83%
PMDNetE Noise 1.1365 0.01010 0.856646 80.61% 1.49%

PMDNetA Unseen 0.0423 0.00037 0.003137 100.00% 92.02%
PMDNetB Unseen 0.1642 0.00117 0.022608 98.65% 44.70%
PMDNetC Unseen 0.0858 0.00063 0.006717 99.68% 78.27%
PMDNetD Unseen 0.1947 0.00148 0.045716 97.70% 49.28%
PMDNetE Unseen 0.0803 0.00058 0.005054 99.52% 80.64%
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Table 4. Ablation setup. PMDNetA, PMDNetB, PMDNetC, PMDNetD, PMDNetE select different
components of the PMD feature.

ID xc xc− xi ∠(xc) ∠(nr , ni)

PMDNetA X X X X
PMDNetB X X X
PMDNetC X X
PMDNetD X X
PMDNetE X X X

In the following experiments, we keep the components in PMDNetA since it outper-
forms other groups. All the following PMDNet refers to PMDNetA.

4.3. Registration Comparing on ModelNet40
4.3.1. Generalization Capability

First, we provide the performance on clean data of each method in Table 5, along with
the qualitative results of our method in Figure 6. In this case, all the methods are trained,
tested, and evaluated on the whole ModelNet40 dataset.

Table 5. Results on clean data. Bold and underline denote best and second best performance.

Method MAE(R)↓ MAE(t)↓ ERM↓ ETM↓ CCD↓ Recall(1.0, 0.1)↑
ICP 6.4467 0.05446 3.079 0.02442 0.030090 74.19%
FGR 0.0099 0.00010 0.006 0.00005 0.000190 99.96%

RPMNet 0.2464 0.00050 0.109 0.00050 0.000890 98.14%
IDAM 1.3536 0.02605 0.731 0.01244 0.044700 75.81%

DeepGMR 0.0156 0.00002 0.001 0.00001 0.000030 100.00%
PMDNet 0.0467 0.00039 0.087 0.00081 0.000003 99.83%

Figure 6. Qualitative results of the PMDNet on clean data. (a) source and reference clouds. (b) ref-
erence and predicted clouds. (c) correspondence between source and reference. (d) ground-truth
correspondence. (e) correspondence between predicted and reference cloud.

We can see DeepGMR and FGR achieve the best performance on clean data, outmatch-
ing PMDNet and RPMNet by approximately 1%, which means the differences between
DeepGMR, FGR, RPMNet, and our PMDNet are quite bare. Actually, except for ICP and
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IDAM, the remaining methods roughly reach the same accuracy and Recall, proving their
performance on basic clean data.

Then, we evaluate the performance of unseen data, to test the generalization capability
of each competing method. The training set only consists of the first twenty categories
of ModelNet40, and all the competing methods are evaluated on the remaining twenty
categories. This experiment is quite challenging for the generalization of point cloud
features because all the data used in the evaluation is never seen during training. The more
generalizing the feature is, the more promising results it outputs.

Table 6 shows the comparison of all the candidate methods. Our method achieves the
best performance and greatly outmatches the second place, RPMNet, and other methods,
reaching a 100% Recall. DeepGMR, FGR, and IDAM show a large decline (over 70% to less
than 10%) here compared with their performance on clean data. Figure 7 illustrates the
qualitative results of our method. Be advised that, ICP is not listed here since it is not a
learning-based method.

Table 6. Results on unseen data. Bold and underline denote best and second best performance. They
are trained on the first twenty categories and tested on the remaining categories.

Method MAE(R)↓ MAE(t)↓ ERM↓ ETM↓ CCD↓ Recall(1.0, 0.1)↑
FGR 41.9631 0.29106 23.950 0.14067 0.123700 5.13%

RPMNet 1.9826 0.02276 1.041 0.01067 0.087040 75.59%
IDAM 19.3249 0.20729 10.158 0.10063 0.129210 0.95%

DeepGMR 71.0677 0.44632 44.363 0.22039 0.147280 0.24%
DCP v2 2.0072 0.00370 3.150 0.00503 NA NA

PMDNet 0.0423 0.00037 0.076 0.00075 0.000003 100.00%

Figure 7. Qualitative results of the PMDNet on unseen categories. (a) source and reference clouds.
(b) reference and predicted clouds. (c) correspondence between source and reference. (d) ground-
truth correspondence. (e) correspondence between predicted and reference cloud.

Generally, our method achieves state-of-the-art performance both on unseen categories
and clean data.

4.3.2. Gaussian Noise

In this experiment, we evaluate the robustness of each competing method in presence
of Gaussian noise. After subsampled, each pair of inputs, the source cloud, and the reference
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cloud is randomly noised with N (0, 0.01) and clipped to [−0.05, 0.05] to prevent extreme
outliers, respectively. In this case, the one-on-one correspondence in dense clouds is corrupted
due to the noise. That’s why we have been using sparse clouds from the beginning.

Table 7 illustrates the results. RPMNet and DCP v2 are the top 2 best methods in this
experiment, reaching less than 1deg loss and over 90% Recall. Taking ICP (6.5 MAE(R),
0.05MAE(t), 77% Recall) as a baseline, we divide the methods into two categories, those
worse than ICP (DeepGMR, FGR, and IDAM) and those better than ICP (RPMNet, DCV v2,
and PMDNet). Despite being less accurate than DCP v2 or RPMNet, PMDNet still achieves
acceptable results, reaching 80% Recall.

Table 7. Results on Gaussian noise data. Bold and underline denote best and second best performance.

Method MAE(R)↓ MAE(t)↓ ERM↓ ETM↓ CCD↓ Recall(1.0, 0.1)↑
ICP 6.5030 0.04944 3.127 0.0225 0.05387 77.59%
FGR 10.0079 0.07080 5.405 0.0338 0.06918 30.75%

RPMNet 0.5773 0.00532 0.305 0.0025 0.04257 96.68%
IDAM 3.4916 0.02915 1.818 0.0141 0.05436 49.59%

DeepGMR 2.2736 0.01498 1.178 0.0071 0.05029 56.52%
DCP v2 0.7374 0.00105 1.081 0.0015 NA NA

PMDNet 1.1201 0.00990 2.224 0.0208 0.00084 80.28%

We attribute the vulnerability of PMDNet to our PMD feature. It solves the normal am-
biguity of boundaries by introducing mesh angles. However, noise causes the coordinates
of points to shift—on the one hand, the original boundaries are off the surrounding meshes;
and on the other hand, points that are originally not boundaries become the boundaries.

4.4. Registration Comparing on BIM Scenarios

In this section, we test the performance of each competing method on BIM scenarios,
more specifically, on clouds of uniform density and clouds with varying density, using their
pre-trained models. We select 30 CAD models(.dwg) and uniformly subsample a cloud(.ply)
on each of them, consisting of points varying from 0.1 million to 1.0 million. During
evaluating, the ground-truth rotation RGT and translation tGT is fixed to [45◦, 45◦, 45◦] and
[1, 1, 1], respectively. Other settings are still the same as introduced above.

4.4.1. Clouds of Uniform Density

In this experiment, to test the basic performance on BIM scenarios, only the dataset is
changed from ModelNet40 to BIM clouds, the density of which is left unchanged.

Table 8 illustrates the results of each competing method. PMDNet outperforms any
other method. Compared with others, the error of PMDNet is only about 20% of that of
others, and the CCD is even one ten thousand of that of the second best. Meanwhile, It is
worth noting that PMDNet has once again achieved a 100% Recall, twice as high as that of
DCP v2. Figure 8 visually illustrates the input and output of PMDNet.

We perform another robust experiment to examine the robustness of candidate meth-
ods in noisy BIM scenarios. In this section, a random noise fromN (0.01, 0.01) is added and
clipped to [–0.05, 0.05] like aforementioned.

Table 8. Results on clean density-uniform BIM scenarios. Bold and underline denote best and second
best performance, respectively.

Methods MAE(R)↓ MAE(T)↓ ERM↓ ETM↓ CCD↓ Recall(1.0, 0.1)↑
DCP v1 3.9788 0.00433 5.641 0.08823 0.089453 13.33%
DCP v2 1.0328 0.01319 1.415 0.02614 0.088061 50.00%
IDAM 23.7044 0.08125 50.176 0.16067 0.094456 0.00%

PMDNet 0.1447 0.00089 0.522 0.00181 0.000009 100.00%



Sensors 2022, 22, 9694 12 of 17Version October 28, 2022 submitted to Journal Not Specified 12 of 17

Figure 8. Qualitative results of the PMDNet on density-uniform clean BIM data.
src, re f , pred clouds are colored in green, red, and blue, respectively.

Table 9. Results on noise density-uniform BIM scenarios. Bold and underline denote best and
second best performance, respectively. PMDNet fails on three scenarios, contributing to large

MAE(R) and ERM, but achieves great performance on all the other samples. PMDNet† shows the
metrics on successfully predicted scenarios.

Methods MAE(R)↓ MAE(T)↓ ERM↓ ETM↓ CCD↓ Recall(1.0, 0.1)↑
DCP v1 3.8952 0.04443 5.528 0.08900 0.088047 10.00%
DCP v2 0.0298 0.02985 1.241 0.05893 0.088041 56.67%
IDAM 21.9374 0.08308 48.064 0.16032 0.088634 0.00%
PMDNet 3.7088 0.01696 10.097 0.04232 0.002669 90.00%
PMDNet† 0.3039 0.00241 0.496 0.00490 0.000442 100.00%

Density Sampling & Noise. For each cloud P ∈ RM×3, we select a certain axis of
XYZ coordinates, and apply sigmoid and normalize function to calculate a probability ρ1,
of all M points, which will be applied during sampling.

Pω ∈ RM = µ × 1
1 + e−σ×Px

(15)

ρ1 ∈ RM =
Pω

∑ Pω
(16)

Pϵ ∈ RM = N (0, 0.01)× Pω (17)

where µ and σ are two introduced weights. ρ1,i is the probability of Pi to be selected
during the afterward sampling. Pϵ is a density aware Gaussian noise.

Table 10 illustrates the metrics of each method on clean data. It is obvious that
PMDNet is still outstanding, reaching MAE(R) ≤ 0.1, MAE(t) ≤ 0.001, 100% Recall.
Furthermore, it is interesting that, compared to density-uniform Clean results (Table 8),
PMDNet achieves better performance here, while others make little progress. A major
factor contributing to this is the higher continuity of the PMD feature. Although the clouds
become sparser and noisier with increasing distance, the nearby points remain accurate
and dense, producing more information than uniform sampling, which is exactly what was
applied in the density-uniform experiment.

Table 11 summaries the results on noise data. Be noticed that, PMDNet fails again
on three samples. The major reason is discussed in Section 4.3.2. ∠(xc) produces less
accurate representation since the mesh geometry is corrupted by noise. On the other
hand, these three samples consist of mostly planes, with little other geometry for learning.
Comparing Table10 and Table 11, we can see a larger decline in accuracy, where MAE(R)
rises from 0.0622 to 4.6186, and MAE(t) from 0.00041 to 0.03232, than that in density-

Figure 8. Qualitative results of the PMDNet on density-uniform clean BIM data. src, re f , and pred
clouds are colored green, red, and blue, respectively.

Table 9 illustrates the results of each competing method. PMDNet fails on exactly
three samples, which leads to high MAE(R) and ERM. Despite the three failed samples,
the overall performance of PMDNet is still of top class since the Recall is 90%.

Table 9. Results on noise density-uniform BIM scenarios. Bold and underline denote best and second
best performance, respectively. PMDNet fails on three scenarios, contributing to large MAE(R) and
ERM, but achieves great performance on all the other samples. PMDNet† shows the metrics on
successfully predicted scenarios.

Methods MAE(R)↓ MAE(T)↓ ERM↓ ETM↓ CCD↓ Recall(1.0, 0.1)↑
DCP v1 3.8952 0.04443 5.528 0.08900 0.088047 10.00%
DCP v2 0.0298 0.02985 1.241 0.05893 0.088041 56.67%
IDAM 21.9374 0.08308 48.064 0.16032 0.088634 0.00%

PMDNet 3.7088 0.01696 10.097 0.04232 0.002669 90.00%
PMDNet† 0.3039 0.00241 0.496 0.00490 0.000442 100.00%

4.4.2. Clouds with Varying Density

Our PMDNet achieves great performance on density-uniform scenarios. However,
scan in real BIM practice shows a tendency to fade as the distance increases, which leads
to sparse points. In this section, a declining density is applied to simulate the real scans,
besides which the other settings remain the same as above. Also, we perform experiments
on both clean and noisy datasets.

Density Sampling & Noise. For each cloud P ∈ RM×3, we select a certain axis of XYZ
coordinates, and apply sigmoid and normalize function to calculate a probability ρ1, of all
M points, which will be applied during sampling.

Pω ∈ RM = µ× 1
1 + e−σ×Px

(15)

ρ1 ∈ RM =
Pω

∑ Pω
(16)

Pε ∈ RM = N (0, 0.01)× Pω (17)

where µ and σ are two introduced weights. ρ1,i is the probability of Pi to be selected during
the afterward sampling. Pε is a density-aware Gaussian noise.

Figure 9 visually illustrates the input and output of PMDNet. Table 10 illustrates the
metrics of each method on clean data. It is obvious that PMDNet is still outstanding, reaching
MAE(R) ≤ 0.1, MAE(t) ≤ 0.001, 100% Recall. Furthermore, it is interesting that, compared
to density-uniform Clean results (Table 8), PMDNet achieves better performance here, while
others make little progress. A major factor contributing to this is the higher continuity of the
PMD feature. Although the clouds become sparser and noisier with increasing distance, the
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nearby points remain accurate and dense, producing more information than uniform sampling,
which is exactly what was applied in the density-uniform experiment.

Table 11 summaries the results on noise data. Be noticed that, PMDNet fails again on
three samples. The major reason is discussed in Section 4.3.2. ∠(xc) produces a less accurate
representation since the mesh geometry is corrupted by noise. On the other hand, these three
samples consist of mostly planes, with little other geometry for learning. Comparing Table 10
and Table 11, we can see a larger decline in accuracy, where MAE(R) rises from 0.0622 to
4.6186, and MAE(t) from 0.00041 to 0.03232, than that in the density-uniform experiment,
where MAE(R) rises from 0.1447 to 3.7088, and MAE(t) from 0.00089 to 0.01696.

Table 10. Results on clean density-decreasing BIM scenarios. Bold and underline denote best and
second best performance, respectively.

Methods MAE(R)↓ MAE(T)↓ ERM↓ ETM↓ CCD↓ Recall(1.0, 0.1)↑
DCP v1 3.6161 0.95663 5.130 1.12523 0.198468 0.00%
DCP v2 0.9948 0.96918 1.410 1.11823 0.198336 0.00%
IDAM 23.0635 1.56710 26.303 1.78247 0.199977 0.00%

PMDNet 0.0622 0.00041 0.101 0.00061 0.000002 100.00%

Table 11. Results on noise density-decreasing BIM scenarios. Bold and underline denote best and
second best performance, respectively. PMDNet fails on three scenarios, contributing to large
MAE(R) and ERM, but achieves great performance on all the other samples. PMDNet† shows the
metrics on successfully predicted scenarios.

Methods MAE(R)↓ MAE(T)↓ ERM↓ ETM↓ CCD↓ Recall(1.0, 0.1)↑
DCP v1 3.1935 0.93363 4.281 1.09541 0.198179 0.00%
DCP v2 1.0033 0.94744 1.295 1.08987 0.198062 0.00%
IDAM 23.0495 1.52381 26.616 1.71634 0.200000 0.00%

PMDNet 4.6186 0.03232 23.987 0.13219 0.001516 90.00%
PMDNet† 0.4358 0.00305 0.736 0.00604 0.000493 96.67%
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4.5. Time Efficiency

Time efficiency is another important metric regarding registration methods. Thus, we
finally test our PMDNet against other learning-based methods in terms of time efficiency.
All the methods are evaluated on Windows 11, Intel i5 12400f, NVIDIA RTX 3060TI, 16GB
3200MHz RAM.

Table 12 illustrates the results. We perform this experiment on clouds of 512 and
1024 resolution, with each method fixed to 3 iterations. IDAM is definitely the fast of all,
followed by DCP v2. Despite slower than IDAM and DCP v2, PMDNet is over 40% faster
compared to RPMNet.

5. Conclusion

In this work, we firstly introduce a novel local reference frame, the PMD feature, to
solve the normal ambiguity of boundaries. Moreover, as we suggest feature matching
precision of equal importance as spatial accuracy, we introduce feature loss to registration.

Figure 9. Qualitative results of the PMDNet on density-decreasing clean BIM data. src, re f , and pred
clouds are colored green, red, and blue, respectively.

4.5. Time Efficiency

Time efficiency is another important metric regarding registration methods. Thus, we
finally test our PMDNet against other learning-based methods in terms of time efficiency.
All the methods are evaluated on Windows 11, Intel i5 12400f, NVIDIA RTX 3060TI, 16 GB
3200 MHz RAM.

Table 12 illustrates the results. We perform this experiment on clouds of 512 and 1024
resolution, with each method fixed to 3 iterations. IDAM is definitely the fastest of all
methods in this study, followed by DCP v2. Despite being slower than IDAM and DCP v2,
PMDNet is over 40% faster compared to RPMNet.
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Table 12. Results on time efficiency. Bold and underline denote best and second best performance,
respectively. All the results are in the unit of milliseconds.

Points DCP v2(3 Iters) RPMNet(3 Iters) IDAM(3 Iters) PMDNet(3 Iters)

512 15.04 32.47 5.84 17.72
1024 18.81 38.35 7.11 21.58

5. Conclusions

In this work, we first introduce a novel local reference frame, the PMD feature, to
solve the normal ambiguity of boundaries. Moreover, as we suggest feature matching
precision of equal importance as spatial accuracy, we introduce feature loss to registration.

Extensive experiments show our PMDNet achieves state-of-the-art performance. More
specifically, PMDNet achieved a 100% Recall in the Unseen scenario with the generic dataset,
which is 25% higher than the second-best, RPMNet. Meanwhile, PMDNet also achieved a
100% Recall on density-decreasing BIM scenarios. Last but not least, PMDNet is 40% faster
than RPMNet, and 16% slower than DCP v2. However, it is 3× slower than IDAM.

PMD feature is defined to encourage the key points, however, coordinates show little
robustness against noise. That’s why an obvious decline in accuracy is witnessed on noisy
clouds. We are interested in further studies focused on robust detection and feature extraction
on key points.
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