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The automatic identification of musical instruments is a relatively unexplored and potentially very
important field for its promise to free humans from time-consuming searches on the Internet and
indexing of audio material. Speaker identification techniques have been used in this paper to
determine the propertidéeature$ which are most effective in identifying a statistically significant
number of sounds representing four classes of musical instrunfebte, sax, clarinet, flute
excerpted from actual performances. Features examined include cepstral coefficients, constant-Q
coefficients, spectral centroid, autocorrelation coefficients, and moments of the time wave. The
number of these coefficients was varied, and in the case of cepstral coefficients, ten coefficients were
sufficient for identification. Correct identifications of 79%—-84% were obtained with cepstral
coefficients, bin-to-bin differences of the constant-Q coefficients, and autocorrelation coefficients;
the latter have not been used previously in either speaker or instrument identification work. These
results depended on the training sounds chosen and the number of clusters used in the calculation.
Comparison to a human perception experiment with sounds produced by the same instruments
indicates that, under these conditions, computers do as well as humans in identifying woodwind
instruments. ©2001 Acoustical Society of AmericdDOI: 10.1121/1.1342075

PACS numbers: 43.60.Gk, 43.75.Cd, 43.79.EEB|

I. INTRODUCTION AND BACKGROUND from other CDs(one per instrument clas&nd reported a
67% success rate. In a study which will be examined further
Despite the massive research which has been carried oy this paper, Dubnoet al. (1997 explored the effectiveness
on automatic speaker identification, there has been littief higher-order statistics using the calculation of moments
work done on the identification of musical instruments byfor musical instrument identification. They concluded that
computer. See Brow(1999 for a summary. Applications of these features were effective in distinguishing families of
automatic instrument identification include audio indexingmysical instruments, but not the instruments within families.
(Wilcox etal, 1994, automatic transcription(Moorer,  As with earlier work, none of these studies includes enough
1975, and Internet search and classification of musical magamples for statistically valid conclusions.
terial. In marked contrast to the relatively few articles on au-
One technique used widely in speaker identificationiomatic recognition of musical instruments, there has been a
studies is pattern recognition. Here, the most important stegreat deal of interest in human timbre perception. For com-
is the choice of a set of features which will successfullyparison with this study, we focus on experiments involving
differentiate members of a database. Bro@997, 1998, the woodwind family. These instruments are difficult to dis-
1999 applied this technique to the identification of the oboeingyish from each other since they have similar attacks and
and the saxophone using a Gaussian mixture model witQecays, overlapping frequency ranges, and similar modes of
cepstral coefficients as features. Included in this reference igycitation. The literature on these experiments is summa-
an introduction to pattern recognition and to the method ofi,cq in Table I. For a short, general summary of human
clusters. Definitions which will be useful for this paper can perception experiments, see Browt099. For more com-

be found in the Appendix. S _ plete reviews, see McAdam&993, Handel (1995, and
Two later reports on computer identification of musical Hajdaet al. (1997).

instruments also use cepstral coefficients as features for pat- Although the vast majority of the experiments of Table |

tern recognition. Dubnov and Rode998 used a vector pas peen on single notes or note segments, Saldanha and

quantizer as a front end and trained on 18 short excerpig s (1964 pointed out that the transitional effects from
from 18 instruments, but reported no quantitative classificay,qte to note could provide one of the major determiners of

tion results. Marqueg1999 examined eight instruments nsjcal quality. In the earliest study including note-to-note
trained on excerpts from one CD with the test set excerptef’ransitions, Campbell and Hellét978 found more accurate

identifications using transitions than with isolated tones.
dElectronic mail: brown@media.mit.edu They called the transition region the legato transient. In an-
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TABLE |. Summary of percent correct for previous human perception experiments on wind instruments.
Results for the oboe, sax, clarinet, and flute are given when possible. The final column is the total number of
instruments included in the experiment.

Date Oboe Sax Clar Flute Overall Number of instruments

Eagleson/Eagleson 1947 59 45 20 56 9
Saldanha/Corso 1964 75 84 61 41 10
Berger 1964 59 10
Clark/Milner 1964 20 Jflute, clar, obog
Strong/Clark 1967a 85 8
Campbell/Heller 1978 72 &@-note legatp
Kendall 1986 84 Jtrumpet, clar, violin
Brown 1999 85 92 89 20boe, sax
Martin 1999 46 27(isolated tong

67 27(10-s excerpt
Houix/McAdams/Brown 87 87 71 93 85 @boe, sax, clar, fluje

other study using musical phrases, Kendd®86 empha- nation for identification. From Table Il, with two, four, three,

sized the importance of context and demonstrated that resulgsd four sounds for each of the four instruments, there were

on musical phrases were significantly higher than on singl®g combinations.

notes. The constant-Q transforms of the most effective training
More recently, Brown(1997, 1998a, 1998b, 1999as 54 nds are shown in Fig. 1. Both the oboe and flute examples

found excellent results using multinote segments from actue“ave strong peaks at a little over 1000 Hz. The oboe has an
musical performances. Martii1999 has explored both dditional bump at 1200 Hz, giving rise to its nasal quality.

types of experiments and found more accurate results wit h h h low-f ral distrib
multinote segments than with isolated single notes. The re- € Saxophone has a low-lrequency spectral-energy distribu-

sults of Houix, McAdams, and Browfunpublishedion mul- tion with a peak around 400 Hz, while the clarinet has less

tinote human perception will be compared to our calculationgrominent peaks at around 400 and 900 Hz.
in a later section. Properties of the test set are given in Table Ill. The

In this paper we have used a large database of soundeining sounds were included in the identification calcula-
exerpted from actual performances with the oboe, saxotions but were not included in the calculation of the average
phone, clarinet, and flute. We present calculations to showdurations reported here. Two longer flute sounds with dura-
Q) The accuracy with which computers can be used tdions on the order of 40 s were also omitted as their durations

identify these very similar instruments; were not representative of the flute data as a whole and
(i)  The best signal processing features for this task; andkewed the average.
(iii) The accuracy compared with experiments on human

perception.

1. SOUND DATABASE TABLE II. Training sounds identified by performer and piece of music
performed. The third column is the length of the sound in seconds which
A. Source and processing was exerpted for the calculation.

Sounds were excerpted as short segments of solo pas- Length
sages from compact disks, audio cassettes, and records fronPerformer Music (s
the nglesley College Musp L|brary._Th|s method of samplepgie; christ Persichetti's Parable for Solo Oboe 60.7
collection ensured a selection of typical sounds produced byoseph Robinson  Rochberg’s Concerto for Oboe and Orchestra ~ 82.2
each instrument, such as might be encountered on Internet

. : - Erederick Tillis ~ “Motherless Child” 77.7
sites or stored audio tapes. At least 25 sounds for each |r3£i?]i;CGrif'ﬁr'f otherless Child

. - - “Light Blue” 99.3
strument were used to provide statistical reliability for the cgieman Hawkins “Picasso” 63.0
results. Features were calculated for 32-ms frames overlaonny Rollins “Body and Soul” 88.8
ing by 50% and having rms averages greater than(#225 .
26 % y (l) 9 ges g ( Benny Goodman  Copland’s Concerto for Clarinet and 74.05
-bit samples String Orch
Heinrich Matzener Eisler's Moment Musical pour clarinette Solo  70.1
David Shifrin Copland’s Concerto for Clarinet and 63.2
B. Training and test sets String Orch
Sounds of longer duratiofl min or more representing Samuel Baron Martino’s Quodlibets for Flute 74.1

each instrument were chosen as training sounds and af¥€ Ann Kahn Lzeg_ing's Third Short Sonata for Flute  69.0

. . - . : an lano
given m. Table. Il. These training sounds were Yaned N thF.'\Susan Milan Martinu’s Sonata for Flute and Piano 54.3
calculations with one sound representing each instrument iBnyick smith ~ Koechlin's Sonata for 2 Flutes Op 75 106.0

all possible combinations to determine the optimum combi
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Ill. CALCULATIONS wherep, is the probability of occurrence of theh cluster. It
is equal to the number of vectors in the training set assigned
to this cluster divided by the total number of vectors in the
The details of the calculations described in Browntraining set. If we defineX={x%,...x"} as the set of all
(1999 will be summarized here. For each training soundfeature vectors measured far, then the total probability
cepstral coefficients or other features were calculated fogensity that all of theN feature vectors measured for un-
each frame; and from these valuek-means algorithm was known U belong to clasd) is given by the product of the
used to calculate clusters. A Gaussian mixture moRely-  individual probability densities
nolds and Rose, 1995i.e., a sum of weighted Gaussians,
was then calculated based on the megn standard devia-
tion o, and population given by the cluster calculation for

this sound; this model was used to give the probability den- o
This assumes statistical independence of the feature vectors.

sity function representing the data calculated for the trainin%N - UITIES Sidl S | : ;

sounds. For a single clustkibelonging to class, the prob- | h|Ie_th|s simplifying assur_nptlo_n is not strictly valid hefe, it

ability density of measuring the feature veciis is a widely accepted technique in the speech _com_munlty and
has been experimentally shown to be effective in calcula-

A. Probability calculation

N

p<><|ﬂ>=|c><x1,...,xN|ﬂ>:i[[1 p(x]Q). ®3)

i B 1 i 292 tions (Rabiner and Huang, 1983As the sounds used in the
p(X|Q)= \/Ta-flke)(p_(x ~ Mo ) 207, . (1) study had many rapid note changes, it proves a better as-

sumption here than for speech. Equati@nis the probabil-
Summing over allK clusters, the total probability density ity density of measuring the set of feature vectotsfor
that feature vectok' is measured if unknown sourld be-  unknownU if U belongs to clas$), whereas the quantity of

longs to clasq) is interest for a Bayes decision rule is thgosterioriprobabil-
K ity
p(Xi|Q)=k§=:1 pkp(xi|Qk)7 (2) ﬁ:arg max P(rQ(m)|X) (4)

that a measurement of means it is more probable thdtis

a member of a particular cla$¥™ than another class. Here,
TABLE lIl. Data on sounds in the test set by instrument class. The numberﬂ(m) represents thenth class,fl is the class which maxi-
of sounds is given in column two with the average length and standard__. hi babilit nh=1.2,...M
deviation in the last two columns. mizes t IS probabiiity, a o
Using the argument that the four classes are equally

Average length Standard deviation  probable and dropping terms which do not vary with class, it

Instrument  Number of sounds (s (8) can be shown for the present ca@zown, 1999 that () in
Oboe 28 25 2.1 Eq. (4) above can be expressed as

Sax(Gp ) 31 2.0 0.8 -

Sax(Gp II) 21 7.8 2.4 Q=arg maxp(X| Q™). (5)
Clarinet 33 6.1 21 . . . -
Flute 31 78 a1 This equation states the results in terms of the probability

density of Eq.(3), which is the quantity calculated in our
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experiment. Heren=1,2,3,4, and each sound in the test setlV. RESULTS AND DISCUSSION
is assigned to the class which maximizes the probability in _
this equation. A. Four instruments
The values for the features from each frame of a particu4. Feature dependence
lar sound from the test set were used to calculate the prob-

bility density of Eq.(3) f h of the f inst ¢ Results with different sets of features are summarized in
ability density of Eq.(3) for each of the four instrumen Fig. 2. The optimum choice of training sounds and clusters is

classes. That sound was then assigned to the class for whighy, . by “Opt.” The mean is the average over all train-

this function was a maximum. After_ this was done for eaCh'ng sounds and numbers of clusters, and is the accuracy ob-
of the sounds, a four-by-four confusion matrix was computeclL

howi hat *of h of the test ds i h qfinable with an arbitrary set of training sounds. The stan-
showing what percent of each ot the test Sounds In €ach Qf,.q yeyiation is a measure of the confidence interval of the
the classes was assigned to each of the four possibilities.

A\Qesults. Note that all features except moments of the time
overall percent corrediequal to the total number of correct

decisi divided by the total ber of b fthe © \{vave gave much better identification than chance.
ecisions divided by the total number of members of the tes Feature sets and number of coefficients are indicated on

;ﬁ?efgr this particular set of training sounds was aiso COMhe graph. The most successful feature set was the frequency

. . . derivative of the constar® coefficients measuring spectral
The training sounddisted in Table I) and total number e g sp

f clust th ied. Pairwi X Ismoothness{also called spectral irregularity in the human
of clusters were then varied. Fairwise comparisons Were a erception literatunewith 84% correct. Next most successful
made with calculations identical to those described in Brow

ere bin-to-bin difference&uefrency derivativeof the cep-
(1997, 1998a, 1998b, 1989 stral coefficients with 80%, even though, considering the
roughly 7% standard deviation, this does not mark a signifi-
cant difference from cepstral coefficients. An explanation for
B. Features this slight advantage is that taking differences removes the

Features from both the frequency and time domaingffect of frequency-independent interference, and this gives a

quency and time derivatives were calculated as well. Other successful features were cepstral coefficients and

autocorrelation coefficients with over 75% correct. From the

point of view of computational efficiency, the best choice is
1. Frequency domain cepstral coefficients, since only ten were required. The cep-

Cepstral coefficients provide information about formantsSt_ral transform acts as an information (;ompact_ion_ transform

for speech/speaker identification in humans which translatedith most of the variancéand hence informationin the
into resonance information about musical instruments. TheyPWer coefficients. _ _ .
were calculatedO’Shaughnessy, 1987rom 22 constan® _Spectral centroid alone, i.e., a one_:-gllmensmnal feature
coefficients with frequency ratio 1.26 and frequencies rang®" Single number per frame, was sufficient to classify the
ing from 100-12796 Hz. Channel effects were explored,sounds with close to 50% accuracy. There is an optimum
where the long-term average is subtracted from each coeffl@nge for the number of featur¢d0-22 for cepstra and
cient to eliminate the effects of different recording environ-25—49 for autocorrelatigras has been discussed for pattern
ments(Reynolds and Rose, 19pCepstral time derivatives "€cognition calculationgSchmid, 1977; Kanal, 1974
(approximated by subtracting coefficients separated by four ~Unlike improvements obtained in calculations for
time frames were calculated, again to eliminate effects of speaker identification 'Wlth the mplusmn of chanpgl effects
the recording environment. Other features derived from thé@nd frame-to-frame differences in cepstral coefficients, we
spectrum were the consta@tcoefficients and their bin-to- found no su_ch improvement in our re_-su!tg. Th|§ |nd|catt_es that
bin differences as a measure of spectral smoothfdsAd- for music, in contrast to speech, significant information is
ams, Beauchamp, and Meneguzzi, 19%8pectral centroid Contained in the long-term average value.

(the Fourier amplitude-weighted frequency avejamed av- That autocorrelation coefficients were successful as fea-
erage energyBeauchamp, 1992were calculated from the tUres is surprising since they have not been used for speaker
Fourier transform. or vowel identification, and there is n@ priori reason to

anticipate this success. Also of note is the fact that changing
the sample rate from 11 to 32 kHz has little effect on the
autocorrelation results, since the time range examined varies
by a factor of about 3. This indicates the importance of high-
In addition to autocorrelation coefficients, the Dubnovfrequency or formant information present in both representa-
et al. (1997 method of calculating moments of the residual tions.
of the LPC(linear prediction coefficienjdiltered signal was Cepstral coefficients were combined with spectral cen-
examined along with the straightforward calculation of thetroid to determine whether combining features would lead to
third (skew), fourth (kurtosig, and fifth moments of the raw better identifications. The result was slightly poorer than that
signal. Finally, the second through fifth moments of the enwith cepstral coefficients alone, although not outside the
velope of the signal were examined by taking the Hilbertstandard deviation.
transform(Hartmann, 1998of the signal and low-pass fil- Finally, consistent with the findings of Dubnaet al.
tering its magnitude. (1997, the average moment calculations gave results no bet-

2. Time domain

1067 J. Acoust. Soc. Am., Vol. 109, No. 3, March 2001 Brown et al.: Automatic identification of woodwinds 1067



FEATURE DEPENDENCE
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ter than random, indicating that instruments cannot be distinwere identical. Finally, in columns four to seven, the training
guished within an instrumental family with these features. sounds referred to in column three are identified along with
The most successful feature sdtepstra, constar@  the range of cluster values of each in parentheses.
differences, and autocorrelation coefficigontan all be de- The sounds by Christobog, Griffin (saX, Matzener
rived from the Fourier transform and in that sense can béclarined, and Baron(flute) were the most effective for the
considered as transformations of spectral information. Thenajority of these feature sets, indicating that a single set of
advantage of taking the transforms is that they decorrelatgaining sounds is optimum for different feature sets. Analy-
the components of the feature vector, as tacitly assumed isis of these sounds shows that it is important to have many
Eqg. (). In contrast, components of the Fourier transform arenotes(rapid passaggsover a wide frequency range with a
highly correlated since they are proportional to the amplitudeeasonably smooth spectrum.
of the original sound wave. Decorrelation occurs in taking  As a further test of generality of training sounds, the
the log for the transformation to cepstral coefficients; thesounds in the test set were split arbitrarilydd and even
amplitude information is all contained in the dc component,sample numbejsnto two halves and run independently. As
which is usually dropped. Similarly, with the const&pdif- shown in Fig. 2, the results were similé82% vs 79%,
ferences, the overall amplitude term is a constant additivéndicating no disparity in the two sets of data. The calcula-
term for each coefficientexpressed in dBand drops out tion was then carried out using the optimum training sounds

when taking the differencedachoet al,, 1999. for the second half on the first half and vice versa. The re-
sults on the first half changed from 82% correct with its
2 Number of clusters optimum training sounds to 73% correct with the sounds

Th : ber of cl ied. with th from Table IV optimized for the second half. The corre-
€ maximum number of clusters was varied, with t _esponding change for the second half of the sounds was from

results given in Fig. 3. They show no significant change N79% to 67%. The effect is greater than the 7% significance

going from seven to ten clustgrs, and only 4 Perce”t fro,”]evel, but the results are still quite good and indicate that this
two to ten clusters, so calculations can be carried out us'n?nethod is generalizable

seven clusters with confidence that there will be no loss o
accuracy.

4. Confusion matrices

3. Training sounds Confusion matrices were calculated for each of the fea-

The results shown in Fig. 2 indicate that the choice ofture sets and can be obtained from the author. Figure 4 is a
training sound combinations is significant in obtaining opti-summary of the diagonal elemer{gercent correct for each
mum results. Information on the best training sounds andnstrument of the confusion matrices for the best feature
corresponding number of clusters for the most successfidets.
features is collected in Table IV. The features are identified  For ten cepstral coefficients, the clarinet identification is
in column one, followed by the number of combinations of poor with only 50% correct. It was confused with the sax
training sounds which gave identical results. Column thre€7% of the time, with all other confusions 12% or less. With
indicates the number of combinations from column two in18 cepstral coefficients, the results on the clarinet are much
which only the number of clusters varied, i.e., the sounddetter than with ten coefficients, although more confusions of

1068 J. Acoust. Soc. Am., Vol. 109, No. 3, March 2001 Brown et al.: Automatic identification of woodwinds 1068
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other instruments identified as clarinet occur. Results on thdue to the missing even harmonics at the lower end of the

oboe and flute are somewhat poorer. For better overall iderspectrum, which make bin-to-bin differences distinctive, and

tifications, 18 coefficients would be preferable to ten. Theis consistent with the results of Saldanha and C@iS864).

largest confusions were of the flute as clari(®§%) and the  The oboe was identified as a flute almost 30% of the time.

oboe as clarinef19%). Strong and Clark1967h also found  Other confusions were all less than 10%.

oboe—clarinet confusions. For all other feature sets, oboe and sax identifications
Results with 25 autocorrelation coefficients were quiteare best overall.

good overall with all identifications of instruments 70% or

above. The major confusions were sax—clarinet confusiong Pairs of instruments

of 19% and 24%. Better overall correct identifications were™"

found for 49 autocorrelation coefficients as seen in Fig. 4.  The sounds from the four instruments were also com-

Here, all diagonal elements are over 75%. Confusions in theared in pairs, as was done for the oboe and sax in Brown

range 10%-16% were found for sax as oboe, clarinet as sak1999. Results are given in Fig. 5, which plots percent error

clarinet as flute, and flute as clarinet. for each of the six pairs along with an overall percent error.
The results for the bin-to-bin frequency differences wereAs with the four-way calculations, the poorest results were

of particular interest since they are directly related to theobtained with spectral centroid, a single number. Again, the

spectral smoothness studied by McAdams, Beauchamp, armbst results occurred with bin-to-bin differences of

Meneguzzi(1999. These are the best overall results, andconstant®) coefficients as features. There, the error was only

unlike the others, clarinet identifications are the best. This i¥% overall. Confusions of the flute with each of the three

TABLE IV. Optimum choice of training sounds for different features for four instrument identification. Column
one indicates the features. Column two (N\WWumber of winnerggives the number of combinations of training
sounds and clusters which gave optimum results. Column three gives the number of idtjisaunds from

column two in which only the number of clusters is different. The last four columns give the optimum training
sound for each instrument with the range of cluster values in parentheses or simply the number if there was a
single cluster value.

Features NW NI Oboe Sax Clarinet Flute
10 Cepstral coefficients 3 3 Christ2 Griffl+3) Matzene(9—-10 Baron2
18 Cepstral coefficients 24 24 Cht1l0 Griffin(9—10 Goodmanl0 Bardii—9
22 Cepstral coefficients 8 8 Chii8t10 Griffin(9—10 Goodmanl0 Bard®-6)
10 Cepstra—half of sounds 12 12 Christ2 Grifin3 Matzene(9—-10 Baron2-6)
10 Cepstra—other half of sounds 4 4  Christ4 Grign7) Goodman9 Bara@—6)
17 Cepstral diffgbin-to-bin) 6 6 Robinson6  Griffil6—9 Matzenerl0 Baro@—-10

17 Constant-Q diffgbin-to-bin) 1 1 Christ9) Griffin(5) Matzene(9) Luening10)
49 Autoc coeffs (SR 11 kHz) 14 12 Chrig7-10 Griffin(5,10 Matzene(4—6) Luening7-10

49 Autoc coeffs (SR32 kHz) 2 2 Christ9 Griffin10 Matzener9 Baron9
25 Autoc coeffs 12 12 Chri@-10 Griffin(8—9 Matzeneft9—-10 Baron7-8
10 Autoc coeffs 6 3 Chrigd—10 Griffin(7—8 Matzene(7,10 Baron7-8

1069 J. Acoust. Soc. Am., Vol. 109, No. 3, March 2001 Brown et al.: Automatic identification of woodwinds 1069



FEATURE DEPENDENCE by INSTRUMENT
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2 : : : 2 z : : 3 : Il Oboe
e e b P TRA - Sax
12 B e = pEF'STF(A 22 3 Clar
: : . - S > : : : : Flute
11 | ——_ “18 s 1
1 | o |
p— — -5 .
B e 10 DIFFERENCES (BINto BIN) -
1)) " : 5 5 g . : : § i B e - .
O et I . : : : 'SPECTRAL CENTROID i FIG. 4. Summary of correct_ldentlﬂcatlons of each in-
2 : ; strument class taken from diagonal elements of confu-
I 6 ‘CONSTANT Q - 10 : sion matrices for feature sets indicated. Note that data
v : : are in inverse order from captions.
5 17 DIFFERENCES(BIN to BIN)
4 AUTOC - 49 (SR = 11 kH2) -
3 _549 (SR = 32 kHz) i
P e ——————— " _525 (SR = 32 kHz) i
1 R —— . _10(SR =32 kH2) .
- ! § : | t i Z : '
0 50 100 150

PERCENT CORRECT

other instruments were highest, consistent with Berger's Fifteen musicians were asked to classify 60 sound
finding of maximum confusions for the flute as oboe andsamples into as many categories as they wished, but to make
flute as sax. The clarinet was most easily identified, in agreeno distinction regarding the register of instrument, e.g., so-

ment with Saldanha and Corsd$964) finding. prano or alto. They organized the sounds into five major
groups. If four of these groups are named for the instrument
C. Human perception experiment with the most sounds preseftine group was a mixture of

None of the published human perception studies Wafeveral instrumentsthen the percent correct is given in the

carried out with exactly the same instruments as were used RSt FoW of Table I. More details on this experiment will be
these calculations; for the most part, they were carried out oflVen in @ subsequent papgtouix, McAdams and Brown,
single notes. For purposes of comparison, therefore, we coinPublished

ducted a free classification experiment on short solo seg- Confusions were on average small, with no overall pat-
ments of music played by the oboe, sax, clarinet, and flute. Itern. The overall percent correct for all classifications is
many cases these were the same segments used for the &B%, which is close to the results for the computer calcula-
culations. tions.

PERCENT ERROR for PAIRS of INSTRUMENTS by FEATURE
T T T T

I Oboe-Sax
Il Oboe-Clar
[ Oboe-Flute
Sax-Clar
Sax-Flute
Clar-Flute
Bl Total H

CEPSTRA - 22
~18 : : ? : 1

~-10 B g 4 : 3 ud

: : : ] : : FIG. 5. Errors in identification of pairs of instruments.
SPECTRAL CENTROID : 1 Instruments are given in the legend. The total represents
: : : : : the total number of errors divided by the total number
of decisions for all pairs for a given feature set. Note
that data are in inverse order from captions.

FEATURES

CONSTANT QE— 10 .
517 DIFFEI}&ENCES(;BIN 0 BINE) .
AUT(?)C T (:j;a -1 klé_lz) .
— 49 (SR = 32 kHz) .
- 25 (SR = 32 kHz) 1

_10(SR=82kH2): 5 : : 4

L L I L L I
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PERCENT CORRECT
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V. CONCLUSIONS Gaussian mixture modet—A probability density func-
tion is formed as a sum of Gaussian functions obtained from

identification indicates that these woodwind instrumentsthe means, standard deviations, and probabilities for each

have distinct formant structures and can be categorized Witﬁlu;ter c.)f a given membe.r of the .tr_almng set. This is de-
the same techniques used for speaker/speech studies. Spgg-'bed in more mathematical detail in Sec. lll.

tral smoothnesgbin-to-bin differences of the consta-

spectrum was also effectivgover 80% corregtand indi-

cates a CharaCte,”StIC shape of the spectrum for sounds prgéauchamp, J. W1982. “Synthesis by spectral amplitude and brightness
duced by these instruments. The success of these features igatching of analyzed musical instrument tones,” J. Audio Eng. S6c.
due to the property that individual components of their fea- 396-406. _ N _

ture vectors are uncorrelated. Berger, K. W.(1964. “Some factors in the recognition of timbre,” J.

Th tual ical t t for th Acoust. Soc. Am36, 1888—-1891.
€ actual numerical percentage correct 1or these Sounqsﬁown, J. C.(1997. “Cluster-based probability model for musical instru-

is dependent on the particular training set and number of ment identification,” J. Acoust. Soc. Ani01, 3167.
clusters chosen. The choice of training sounds is generaliBrown, J. C.(19983. “Computer identification of wind instruments using

able for a randomly chosen set of test sounds with about gce‘)s"a' coefficients,” J. Acoust. Soc. A0S 1889-18901).
. rown, J. C.(1998b. “Musical instrument identification using autocorrela-
10% drop in accuracy.

] tion coefficients,” Proceedings of the International Symposium on Musi-
Most important, several sets of features can be used forcal Acoustics 1998, Leavenworth, Washington, pp. 291—295.
computer identification of the Oboe, sax, C|arinet, and fluteBrown, J. C.(1999. “Computer identification of musical instruments using

; 0/ QL0 attern recognition with cepstral coefficients as features,” J. Acoust. Soc.
with 75%—85% accuracy. Because a much larger test set wa m. 105, 1933-1941.

used than in p.revious StUdi?S. the feature sets and meth0@§mpbell, W. C., and Heller, J. (1978. “The contribution of the legato
used are applicable to arbitrary examples of these instru-transient to instrument identification,” in Proceedings of the Research
ments. These results are as good or better than results orfymposium on the Psychology and Acoustics of Music, edited by E. P.

. i smus, Jr.(University of Kansas, Lawrence, KSpp. 30—44.
human perception and indicate that the computer can do ark, M., and Milner, P.(1964. “Dependence of timbre on the tonal

well as humans on woodwind instrument identification under |oudness produced by musical instruments,” J. Audio Eng. $8c28—

the present conditions. 31.

Dubnov, S., and Rodet, X(1998. “Timbre recognition with combined
stationary and temporal features,” Proceedings of the International Com-
puter Music Conference, Los Angeles.

. - _ Dubnov, S., Tishby, N., and Cohen, [1997. “Polyspectra as measures of
J.C.B. is very grateful to the Marilyn Brachman Hoff sound texture and timbre,” J. New Music R@$, 277314,

man Committee of Wellesley College for a fellowship sup-gagleson, H. V., and Eagleson, O. \947. “Identification of musical
porting this study. Part of this work was carried out during a instruments when heard directly and over a public-address system,” J.
sabbatical leave by J.C.B. tenured in the Music Perception/Acoust. Soc. Am19, 338-342.

. . Hajda, J. M., Kendall, R. A., Carterette, E. C., and Harshberger, M. L.
and Cogpnition group at IRCAM and was made possible by (1997. “Methodological issues in timbre research” iRerception and

Wellesley College’s generous sabbatical leave policy. Fi- cognition of Music edited by Irene Deliege and John Slobd@sychol-
nally, thanks go to Peter Cariani for suggesting the use of ogy, East Essex, UK pp. 253-307.

autocorrelation coefficients as features, and to Dan Ellis angandel, S.(1995. “Timbre perception and auditory object identifica-
D las R ds f luabl il (,j . tion,” in Hearing edited by B. C. J. MooréAcademic, New York
ouglas reynolds for valuable e-mail discussions. Hartmann, W. M.(1998. Signals, Sound, and Sensatiai@pringer, New

York, Secaucus, NJ

APPENDIX: TERMS USED IN PATTERN RECOGNITION Houix, O., McAdams, S., and Brown, J. @npublishedl

Kanal, L. (1974. “Patterns in pattern recognition 1968-1974,” |EEE
AND THE METHOD OF CLUSTERS Trans. Inf. TheoryT-206, 697-722.

Pattern recognition—A method in which a set of un- Kendall, R. A.(1986. “The role of acoustic signal partitions in listener

: . categorization of musical phrases,” Music Perceptl85-214.
known patterns called theest setis grouped into two or Macho, D.. Nadeu, C., Janovic, P.. Rozinaj, G., and Hernand.999.

more classesby comparison to draining setconsisting of “Comparison on time and frequency filtering and cepstral-time matrix
patterns known to belong to each class. approaches in ASR,” Proceedings of Eurospeech '99, Vol. 1, pp. 77-80.

Features—also calledfeature vectors—Properties(the Marques, J(1999. “An automatic annotation system for audio data con-

. taining music,” Master’s thesis, MIT, Cambridge, MA.
patterns calculated for the test set which are compared to th%/Iartin, K. D. (1999. “Sound-source recognition: A theory and computa-

same properties of the training set for classification. In gen- tional model,” Ph.D. thesis, Massachussetts Institute of Technology,
eral, a feature hald associated values and can be considered Cambridge, MA. N _
an N-dimensional vector, e.g., for autocorrelation coeffi-McAdams, S.(1993. "Recognition of Auditory Sound Sources and

ient hi fi . t of th t Events,” in Thinking in Sound: The Cognitive Psychology of Human Au-
cients, each lag ime gives one component ot the VECIOr.  iion edited by S. McAdams and E. Bigari®xford University Press,

Clustering—a means of summarizing the calculations oOxford).
on members of the training set to simplify comparison to theMcAdams, S., Beauchamp, J. W., and Meneguzz{1899. “Discrimina-
test set. In the calculation described in this paper, a featuretion of musical instrument sounds resynthesized with simplified spec-
N lculated f h L d trotemporal parameters,” J. Acoust. Soc. Ab@5 882-897.
vector Is calculated every ]_-6 ms for each training soundygorer, J. A.(1975. “On the segmentation and analysis of continuous
each time contributing a point in al-dimensional feature  musical sound by digital computer,” Ph.D. dissertation, Stanford Depart-
space. These data are summarized by grouping nearby pointgent of Music Report No. STAN-M3.

into clusterseach with a mean, standard deviatiow, and O’Shaughnessy, D(1987. Speech Communication: Human and Machine
! ! (Addison-Wesley, Reading, MA

probability p given by the number of points in that cluster rapiner, L. R., and Huang, B.-H1993. Fundamentals of Speech Recog-
divided by the total number of points for the sound. nition (Prentice Hall, Englewood Cliffs, NJ

The success of cepstral coefficierii&’% correct for
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