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The automatic identification of musical instruments is a relatively unexplored and potentially very
important field for its promise to free humans from time-consuming searches on the Internet and
indexing of audio material. Speaker identification techniques have been used in this paper to
determine the properties~features! which are most effective in identifying a statistically significant
number of sounds representing four classes of musical instruments~oboe, sax, clarinet, flute!
excerpted from actual performances. Features examined include cepstral coefficients, constant-Q
coefficients, spectral centroid, autocorrelation coefficients, and moments of the time wave. The
number of these coefficients was varied, and in the case of cepstral coefficients, ten coefficients were
sufficient for identification. Correct identifications of 79%–84% were obtained with cepstral
coefficients, bin-to-bin differences of the constant-Q coefficients, and autocorrelation coefficients;
the latter have not been used previously in either speaker or instrument identification work. These
results depended on the training sounds chosen and the number of clusters used in the calculation.
Comparison to a human perception experiment with sounds produced by the same instruments
indicates that, under these conditions, computers do as well as humans in identifying woodwind
instruments. ©2001 Acoustical Society of America.@DOI: 10.1121/1.1342075#

PACS numbers: 43.60.Gk, 43.75.Cd, 43.75.Ef@JCB#

I. INTRODUCTION AND BACKGROUND

Despite the massive research which has been carried out
on automatic speaker identification, there has been little
work done on the identification of musical instruments by
computer. See Brown~1999! for a summary. Applications of
automatic instrument identification include audio indexing
~Wilcox et al., 1994!, automatic transcription~Moorer,
1975!, and Internet search and classification of musical ma-
terial.

One technique used widely in speaker identification
studies is pattern recognition. Here, the most important step
is the choice of a set of features which will successfully
differentiate members of a database. Brown~1997, 1998a,
1999! applied this technique to the identification of the oboe
and the saxophone using a Gaussian mixture model with
cepstral coefficients as features. Included in this reference is
an introduction to pattern recognition and to the method of
clusters. Definitions which will be useful for this paper can
be found in the Appendix.

Two later reports on computer identification of musical
instruments also use cepstral coefficients as features for pat-
tern recognition. Dubnov and Rodet~1998! used a vector
quantizer as a front end and trained on 18 short excerpts
from 18 instruments, but reported no quantitative classifica-
tion results. Marques~1999! examined eight instruments
trained on excerpts from one CD with the test set excerpted

from other CDs~one per instrument class! and reported a
67% success rate. In a study which will be examined further
in this paper, Dubnovet al. ~1997! explored the effectiveness
of higher-order statistics using the calculation of moments
for musical instrument identification. They concluded that
these features were effective in distinguishing families of
musical instruments, but not the instruments within families.
As with earlier work, none of these studies includes enough
samples for statistically valid conclusions.

In marked contrast to the relatively few articles on au-
tomatic recognition of musical instruments, there has been a
great deal of interest in human timbre perception. For com-
parison with this study, we focus on experiments involving
the woodwind family. These instruments are difficult to dis-
tinguish from each other since they have similar attacks and
decays, overlapping frequency ranges, and similar modes of
excitation. The literature on these experiments is summa-
rized in Table I. For a short, general summary of human
perception experiments, see Brown~1999!. For more com-
plete reviews, see McAdams~1993!, Handel ~1995!, and
Hajdaet al. ~1997!.

Although the vast majority of the experiments of Table I
has been on single notes or note segments, Saldanha and
Corso ~1964! pointed out that the transitional effects from
note to note could provide one of the major determiners of
musical quality. In the earliest study including note-to-note
transitions, Campbell and Heller~1978! found more accurate
identifications using transitions than with isolated tones.
They called the transition region the legato transient. In an-a!Electronic mail: brown@media.mit.edu
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other study using musical phrases, Kendall~1986! empha-
sized the importance of context and demonstrated that results
on musical phrases were significantly higher than on single
notes.

More recently, Brown~1997, 1998a, 1998b, 1999! has
found excellent results using multinote segments from actual
musical performances. Martin~1999! has explored both
types of experiments and found more accurate results with
multinote segments than with isolated single notes. The re-
sults of Houix, McAdams, and Brown~unpublished! on mul-
tinote human perception will be compared to our calculations
in a later section.

In this paper we have used a large database of sounds
exerpted from actual performances with the oboe, saxo-
phone, clarinet, and flute. We present calculations to show:

~i! The accuracy with which computers can be used to
identify these very similar instruments;

~ii ! The best signal processing features for this task; and
~iii ! The accuracy compared with experiments on human

perception.

II. SOUND DATABASE

A. Source and processing

Sounds were excerpted as short segments of solo pas-
sages from compact disks, audio cassettes, and records from
the Wellesley College Music Library. This method of sample
collection ensured a selection of typical sounds produced by
each instrument, such as might be encountered on Internet
sites or stored audio tapes. At least 25 sounds for each in-
strument were used to provide statistical reliability for the
results. Features were calculated for 32-ms frames overlap-
ping by 50% and having rms averages greater than 425~for
16-bit samples!.

B. Training and test sets

Sounds of longer duration~1 min or more! representing
each instrument were chosen as training sounds and are
given in Table II. These training sounds were varied in the
calculations with one sound representing each instrument in
all possible combinations to determine the optimum combi-

nation for identification. From Table II, with two, four, three,
and four sounds for each of the four instruments, there were
96 combinations.

The constant-Q transforms of the most effective training
sounds are shown in Fig. 1. Both the oboe and flute examples
have strong peaks at a little over 1000 Hz. The oboe has an
additional bump at 1200 Hz, giving rise to its nasal quality.
The saxophone has a low-frequency spectral-energy distribu-
tion with a peak around 400 Hz, while the clarinet has less
prominent peaks at around 400 and 900 Hz.

Properties of the test set are given in Table III. The
training sounds were included in the identification calcula-
tions but were not included in the calculation of the average
durations reported here. Two longer flute sounds with dura-
tions on the order of 40 s were also omitted as their durations
were not representative of the flute data as a whole and
skewed the average.

TABLE I. Summary of percent correct for previous human perception experiments on wind instruments.
Results for the oboe, sax, clarinet, and flute are given when possible. The final column is the total number of
instruments included in the experiment.

Date Oboe Sax Clar Flute Overall Number of instruments

Eagleson/Eagleson 1947 59 45 20 56 9
Saldanha/Corso 1964 75 84 61 41 10
Berger 1964 59 10
Clark/Milner 1964 90 3~flute, clar, oboe!
Strong/Clark 1967a 85 8
Campbell/Heller 1978 72 6~2-note legato!
Kendall 1986 84 3~trumpet, clar, violin!
Brown 1999 85 92 89 2~oboe, sax!
Martin 1999 46 27~isolated tone!

67 27 ~10-s excerpt!
Houix/McAdams/Brown 87 87 71 93 85 4~oboe, sax, clar, flute!

TABLE II. Training sounds identified by performer and piece of music
performed. The third column is the length of the sound in seconds which
was exerpted for the calculation.

Performer Music
Length

~s!

Peter Christ Persichetti’s Parable for Solo Oboe 60.7
Joseph Robinson Rochberg’s Concerto for Oboe and Orchestra 82.2

Frederick Tillis ‘‘Motherless Child’’ 77.7
Johnny Griffin ‘‘Light Blue’’ 99.3
Coleman Hawkins ‘‘Picasso’’ 63.0
Sonny Rollins ‘‘Body and Soul’’ 88.8

Benny Goodman Copland’s Concerto for Clarinet and
String Orch

74.05

Heinrich Matzener Eisler’s Moment Musical pour clarinette Solo 70.1
David Shifrin Copland’s Concerto for Clarinet and

String Orch
63.2

Samuel Baron Martino’s Quodlibets for Flute 74.1
Sue Ann Kahn Luening’s Third Short Sonata for Flute

and Piano
69.0

Susan Milan Martinu’s Sonata for Flute and Piano 54.3
Fenwick Smith Koechlin’s Sonata for 2 Flutes Op 75 106.0
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III. CALCULATIONS

A. Probability calculation

The details of the calculations described in Brown
~1999! will be summarized here. For each training sound,
cepstral coefficients or other features were calculated for
each frame; and from these values, ak-means algorithm was
used to calculate clusters. A Gaussian mixture model~Rey-
nolds and Rose, 1995!, i.e., a sum of weighted Gaussians,
was then calculated based on the meanmk , standard devia-
tion sk , and population given by the cluster calculation for
this sound; this model was used to give the probability den-
sity function representing the data calculated for the training
sounds. For a single clusterk belonging to classV, the prob-
ability density of measuring the feature vectorxi is

p~xiuVk!5
1

A2psVk

2
exp2~xi2mVk

!2/2sVk

2 . ~1!

Summing over allK clusters, the total probability density
that feature vectorxi is measured if unknown soundU be-
longs to classV is

p~xiuV!5 (
k51

K

pkp~xiuVk!, ~2!

wherepk is the probability of occurrence of thekth cluster. It
is equal to the number of vectors in the training set assigned
to this cluster divided by the total number of vectors in the
training set. If we defineX5$x1,...,xN% as the set of all
feature vectors measured forU, then the total probability
density that all of theN feature vectors measured for un-
known U belong to classV is given by the product of the
individual probability densities

p~XuV!5p~x1,...,xNuV!5)
i 51

N

p~xiuV!. ~3!

This assumes statistical independence of the feature vectors.
While this simplifying assumption is not strictly valid here, it
is a widely accepted technique in the speech community and
has been experimentally shown to be effective in calcula-
tions ~Rabiner and Huang, 1993!. As the sounds used in the
study had many rapid note changes, it proves a better as-
sumption here than for speech. Equation~3! is the probabil-
ity density of measuring the set of feature vectorsX for
unknownU if U belongs to classV, whereas the quantity of
interest for a Bayes decision rule is thea posterioriprobabil-
ity

V̂5arg max Pr~V~m!uX! ~4!

that a measurement ofX means it is more probable thatU is
a member of a particular classV (m) than another class. Here,
V (m) represents themth class,V̂ is the class which maxi-
mizes this probability, andm51,2,...,M .

Using the argument that the four classes are equally
probable and dropping terms which do not vary with class, it
can be shown for the present case~Brown, 1999! that V̂ in
Eq. ~4! above can be expressed as

V̂5arg maxp~XuV~m!!. ~5!

This equation states the results in terms of the probability
density of Eq.~3!, which is the quantity calculated in our

FIG. 1. Comparison of the constant-Q spectra for ex-
amples of successful training sounds for each of the
four instrument classes. These were the sounds per-
formed by Christ, Griffin, Matzener, and Baron. See
Table II for details.

TABLE III. Data on sounds in the test set by instrument class. The number
of sounds is given in column two with the average length and standard
deviation in the last two columns.

Instrument Number of sounds
Average length

~s!
Standard deviation

~s!

Oboe 28 2.5 2.1
Sax ~Gp I! 31 2.0 0.8
Sax ~Gp II! 21 7.8 2.4
Clarinet 33 6.1 2.1
Flute 31 7.8 4.1
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experiment. Here,m51,2,3,4, and each sound in the test set
is assigned to the class which maximizes the probability in
this equation.

The values for the features from each frame of a particu-
lar sound from the test set were used to calculate the prob-
ability density of Eq.~3! for each of the four instrument
classes. That sound was then assigned to the class for which
this function was a maximum. After this was done for each
of the sounds, a four-by-four confusion matrix was computed
showing what percent of each of the test sounds in each of
the classes was assigned to each of the four possibilities. An
overall percent correct~equal to the total number of correct
decisions divided by the total number of members of the test
set! for this particular set of training sounds was also com-
puted.

The training sounds~listed in Table II! and total number
of clusters were then varied. Pairwise comparisons were also
made with calculations identical to those described in Brown
~1997, 1998a, 1998b, 1999!.

B. Features

Features from both the frequency and time domains
were examined; in some cases approximations to the fre-
quency and time derivatives were calculated as well.

1. Frequency domain

Cepstral coefficients provide information about formants
for speech/speaker identification in humans which translates
into resonance information about musical instruments. They
were calculated~O’Shaughnessy, 1987! from 22 constant-Q
coefficients with frequency ratio 1.26 and frequencies rang-
ing from 100–12 796 Hz. Channel effects were explored,
where the long-term average is subtracted from each coeffi-
cient to eliminate the effects of different recording environ-
ments~Reynolds and Rose, 1995!. Cepstral time derivatives
~approximated by subtracting coefficients separated by four
time frames! were calculated, again to eliminate effects of
the recording environment. Other features derived from the
spectrum were the constant-Q coefficients and their bin-to-
bin differences as a measure of spectral smoothness~McAd-
ams, Beauchamp, and Meneguzzi, 1999!. Spectral centroid
~the Fourier amplitude-weighted frequency average! and av-
erage energy~Beauchamp, 1982! were calculated from the
Fourier transform.

2. Time domain

In addition to autocorrelation coefficients, the Dubnov
et al. ~1997! method of calculating moments of the residual
of the LPC~linear prediction coefficients! filtered signal was
examined along with the straightforward calculation of the
third ~skew!, fourth ~kurtosis!, and fifth moments of the raw
signal. Finally, the second through fifth moments of the en-
velope of the signal were examined by taking the Hilbert
transform~Hartmann, 1998! of the signal and low-pass fil-
tering its magnitude.

IV. RESULTS AND DISCUSSION

A. Four instruments

1. Feature dependence

Results with different sets of features are summarized in
Fig. 2. The optimum choice of training sounds and clusters is
indicated by ‘‘Opt.’’ The mean is the average over all train-
ing sounds and numbers of clusters, and is the accuracy ob-
tainable with an arbitrary set of training sounds. The stan-
dard deviation is a measure of the confidence interval of the
results. Note that all features except moments of the time
wave gave much better identification than chance.

Feature sets and number of coefficients are indicated on
the graph. The most successful feature set was the frequency
derivative of the constant-Q coefficients measuring spectral
smoothness~also called spectral irregularity in the human
perception literature! with 84% correct. Next most successful
were bin-to-bin differences~quefrency derivative! of the cep-
stral coefficients with 80%, even though, considering the
roughly 7% standard deviation, this does not mark a signifi-
cant difference from cepstral coefficients. An explanation for
this slight advantage is that taking differences removes the
effect of frequency-independent interference, and this gives a
constant additive term for all cepstral coefficients.

Other successful features were cepstral coefficients and
autocorrelation coefficients with over 75% correct. From the
point of view of computational efficiency, the best choice is
cepstral coefficients, since only ten were required. The cep-
stral transform acts as an information compaction transform
with most of the variance~and hence information! in the
lower coefficients.

Spectral centroid alone, i.e., a one-dimensional feature
or single number per frame, was sufficient to classify the
sounds with close to 50% accuracy. There is an optimum
range for the number of features~10–22 for cepstra and
25–49 for autocorrelation! as has been discussed for pattern
recognition calculations~Schmid, 1977; Kanal, 1974!.

Unlike improvements obtained in calculations for
speaker identification with the inclusion of channel effects
and frame-to-frame differences in cepstral coefficients, we
found no such improvement in our results. This indicates that
for music, in contrast to speech, significant information is
contained in the long-term average value.

That autocorrelation coefficients were successful as fea-
tures is surprising since they have not been used for speaker
or vowel identification, and there is noa priori reason to
anticipate this success. Also of note is the fact that changing
the sample rate from 11 to 32 kHz has little effect on the
autocorrelation results, since the time range examined varies
by a factor of about 3. This indicates the importance of high-
frequency or formant information present in both representa-
tions.

Cepstral coefficients were combined with spectral cen-
troid to determine whether combining features would lead to
better identifications. The result was slightly poorer than that
with cepstral coefficients alone, although not outside the
standard deviation.

Finally, consistent with the findings of Dubnovet al.
~1997!, the average moment calculations gave results no bet-
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ter than random, indicating that instruments cannot be distin-
guished within an instrumental family with these features.

The most successful feature sets~cepstra, constant-Q
differences, and autocorrelation coefficients! can all be de-
rived from the Fourier transform and in that sense can be
considered as transformations of spectral information. The
advantage of taking the transforms is that they decorrelate
the components of the feature vector, as tacitly assumed in
Eq. ~1!. In contrast, components of the Fourier transform are
highly correlated since they are proportional to the amplitude
of the original sound wave. Decorrelation occurs in taking
the log for the transformation to cepstral coefficients; the
amplitude information is all contained in the dc component,
which is usually dropped. Similarly, with the constant-Q dif-
ferences, the overall amplitude term is a constant additive
term for each coefficient~expressed in dB! and drops out
when taking the differences~Machoet al., 1999!.

2. Number of clusters

The maximum number of clusters was varied, with the
results given in Fig. 3. They show no significant change in
going from seven to ten clusters, and only 4 percent from
two to ten clusters, so calculations can be carried out using
seven clusters with confidence that there will be no loss of
accuracy.

3. Training sounds

The results shown in Fig. 2 indicate that the choice of
training sound combinations is significant in obtaining opti-
mum results. Information on the best training sounds and
corresponding number of clusters for the most successful
features is collected in Table IV. The features are identified
in column one, followed by the number of combinations of
training sounds which gave identical results. Column three
indicates the number of combinations from column two in
which only the number of clusters varied, i.e., the sounds

were identical. Finally, in columns four to seven, the training
sounds referred to in column three are identified along with
the range of cluster values of each in parentheses.

The sounds by Christ~oboe!, Griffin ~sax!, Matzener
~clarinet!, and Baron~flute! were the most effective for the
majority of these feature sets, indicating that a single set of
training sounds is optimum for different feature sets. Analy-
sis of these sounds shows that it is important to have many
notes~rapid passages! over a wide frequency range with a
reasonably smooth spectrum.

As a further test of generality of training sounds, the
sounds in the test set were split arbitrarily~odd and even
sample numbers! into two halves and run independently. As
shown in Fig. 2, the results were similar~82% vs 79%!,
indicating no disparity in the two sets of data. The calcula-
tion was then carried out using the optimum training sounds
for the second half on the first half and vice versa. The re-
sults on the first half changed from 82% correct with its
optimum training sounds to 73% correct with the sounds
from Table IV optimized for the second half. The corre-
sponding change for the second half of the sounds was from
79% to 67%. The effect is greater than the 7% significance
level, but the results are still quite good and indicate that this
method is generalizable.

4. Confusion matrices

Confusion matrices were calculated for each of the fea-
ture sets and can be obtained from the author. Figure 4 is a
summary of the diagonal elements~percent correct for each
instrument! of the confusion matrices for the best feature
sets.

For ten cepstral coefficients, the clarinet identification is
poor with only 50% correct. It was confused with the sax
27% of the time, with all other confusions 12% or less. With
18 cepstral coefficients, the results on the clarinet are much
better than with ten coefficients, although more confusions of

FIG. 2. Accuracy as a function of features. ‘‘Opt’’
gives the percentage correct with the optimum choice of
training sounds and number of clusters for the four in-
struments. The mean and standard deviation were ob-
tained by varying the training sounds and clusters.
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other instruments identified as clarinet occur. Results on the
oboe and flute are somewhat poorer. For better overall iden-
tifications, 18 coefficients would be preferable to ten. The
largest confusions were of the flute as clarinet~26%! and the
oboe as clarinet~19%!. Strong and Clark~1967b! also found
oboe–clarinet confusions.

Results with 25 autocorrelation coefficients were quite
good overall with all identifications of instruments 70% or
above. The major confusions were sax–clarinet confusions
of 19% and 24%. Better overall correct identifications were
found for 49 autocorrelation coefficients as seen in Fig. 4.
Here, all diagonal elements are over 75%. Confusions in the
range 10%–16% were found for sax as oboe, clarinet as sax,
clarinet as flute, and flute as clarinet.

The results for the bin-to-bin frequency differences were
of particular interest since they are directly related to the
spectral smoothness studied by McAdams, Beauchamp, and
Meneguzzi~1999!. These are the best overall results, and
unlike the others, clarinet identifications are the best. This is

due to the missing even harmonics at the lower end of the
spectrum, which make bin-to-bin differences distinctive, and
is consistent with the results of Saldanha and Corso~1964!.
The oboe was identified as a flute almost 30% of the time.
Other confusions were all less than 10%.

For all other feature sets, oboe and sax identifications
are best overall.

B. Pairs of instruments

The sounds from the four instruments were also com-
pared in pairs, as was done for the oboe and sax in Brown
~1999!. Results are given in Fig. 5, which plots percent error
for each of the six pairs along with an overall percent error.
As with the four-way calculations, the poorest results were
obtained with spectral centroid, a single number. Again, the
best results occurred with bin-to-bin differences of
constant-Q coefficients as features. There, the error was only
7% overall. Confusions of the flute with each of the three

FIG. 3. Effect of varying the maximum number of clus-
ters with ten cepstral coefficients as features. ‘‘Opti-
mum’’ gives the percent correct for the optimum choice
of training sounds and number of clusters. The mean
and standard deviation are taken over all combinations
of training sounds and cluster numbers up to the maxi-
mum. ‘‘Num equiv’’ is the number of combinations
which gave identical optimum results.

TABLE IV. Optimum choice of training sounds for different features for four instrument identification. Column
one indicates the features. Column two (NW5number of winners! gives the number of combinations of training
sounds and clusters which gave optimum results. Column three gives the number of identical~NI! sounds from
column two in which only the number of clusters is different. The last four columns give the optimum training
sound for each instrument with the range of cluster values in parentheses or simply the number if there was a
single cluster value.

Features NW NI Oboe Sax Clarinet Flute

10 Cepstral coefficients 3 3 Christ2 Griffin~2–3! Matzener~9–10! Baron2
18 Cepstral coefficients 24 24 Christ~6–10! Griffin~9–10! Goodman10 Baron~7–9!
22 Cepstral coefficients 8 8 Christ~8–10! Griffin~9–10! Goodman10 Baron~5–6!
10 Cepstra—half of sounds 12 12 Christ2 Griffin~2–3! Matzener~9–10! Baron~2–6!
10 Cepstra—other half of sounds 4 4 Christ4 Griffin~6–7! Goodman9 Baron~4–6!
17 Cepstral diffs~bin-to-bin! 6 6 Robinson6 Griffin~6–9! Matzener10 Baron~4–10!
17 Constant-Q diffs~bin-to-bin! 1 1 Christ~9! Griffin~5! Matzener~9! Luening~10!
49 Autoc coeffs (SR511 kHz) 14 12 Christ~7–10! Griffin~5,10! Matzener~4–6! Luening~7–10!
49 Autoc coeffs (SR532 kHz) 2 2 Christ9 Griffin10 Matzener9 Baron9
25 Autoc coeffs 12 12 Christ~9–10! Griffin~8–9! Matzener~9–10! Baron~7–8!
10 Autoc coeffs 6 3 Christ~9–10! Griffin~7–8! Matzener~7,10! Baron~7–8!
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other instruments were highest, consistent with Berger’s
finding of maximum confusions for the flute as oboe and
flute as sax. The clarinet was most easily identified, in agree-
ment with Saldanha and Corso’s~1964! finding.

C. Human perception experiment

None of the published human perception studies was
carried out with exactly the same instruments as were used in
these calculations; for the most part, they were carried out on
single notes. For purposes of comparison, therefore, we con-
ducted a free classification experiment on short solo seg-
ments of music played by the oboe, sax, clarinet, and flute. In
many cases these were the same segments used for the cal-
culations.

Fifteen musicians were asked to classify 60 sound
samples into as many categories as they wished, but to make
no distinction regarding the register of instrument, e.g., so-
prano or alto. They organized the sounds into five major
groups. If four of these groups are named for the instrument
with the most sounds present~one group was a mixture of
several instruments!, then the percent correct is given in the
last row of Table I. More details on this experiment will be
given in a subsequent paper~Houix, McAdams and Brown,
unpublished!.

Confusions were on average small, with no overall pat-
tern. The overall percent correct for all classifications is
85%, which is close to the results for the computer calcula-
tions.

FIG. 4. Summary of correct identifications of each in-
strument class taken from diagonal elements of confu-
sion matrices for feature sets indicated. Note that data
are in inverse order from captions.

FIG. 5. Errors in identification of pairs of instruments.
Instruments are given in the legend. The total represents
the total number of errors divided by the total number
of decisions for all pairs for a given feature set. Note
that data are in inverse order from captions.
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V. CONCLUSIONS

The success of cepstral coefficients~77% correct! for
identification indicates that these woodwind instruments
have distinct formant structures and can be categorized with
the same techniques used for speaker/speech studies. Spec-
tral smoothness~bin-to-bin differences of the constant-Q
spectrum! was also effective~over 80% correct! and indi-
cates a characteristic shape of the spectrum for sounds pro-
duced by these instruments. The success of these features is
due to the property that individual components of their fea-
ture vectors are uncorrelated.

The actual numerical percentage correct for these sounds
is dependent on the particular training set and number of
clusters chosen. The choice of training sounds is generaliz-
able for a randomly chosen set of test sounds with about a
10% drop in accuracy.

Most important, several sets of features can be used for
computer identification of the oboe, sax, clarinet, and flute
with 75%–85% accuracy. Because a much larger test set was
used than in previous studies, the feature sets and methods
used are applicable to arbitrary examples of these instru-
ments. These results are as good or better than results on
human perception and indicate that the computer can do as
well as humans on woodwind instrument identification under
the present conditions.
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APPENDIX: TERMS USED IN PATTERN RECOGNITION
AND THE METHOD OF CLUSTERS

Pattern recognition—A method in which a set of un-
known patterns called thetest setis grouped into two or
more classesby comparison to atraining setconsisting of
patterns known to belong to each class.

Features—also calledfeature vectors—Properties~the
patterns! calculated for the test set which are compared to the
same properties of the training set for classification. In gen-
eral, a feature hasN associated values and can be considered
an N-dimensional vector, e.g., for autocorrelation coeffi-
cients, each lag time gives one component of the vector.

Clustering—a means of summarizing the calculations
on members of the training set to simplify comparison to the
test set. In the calculation described in this paper, a feature
vector is calculated every 16 ms for each training sound,
each time contributing a point in anN-dimensional feature
space. These data are summarized by grouping nearby points
into clusterseach with a meanm, standard deviations, and
probability p given by the number of points in that cluster
divided by the total number of points for the sound.

Gaussian mixture model—A probability density func-
tion is formed as a sum of Gaussian functions obtained from
the means, standard deviations, and probabilities for each
cluster of a given member of the training set. This is de-
scribed in more mathematical detail in Sec. III.
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