
Feature Detection and Tracking with the

Dynamic and Active-pixel Vision Sensor (DAVIS)

David Tedaldi, Guillermo Gallego, Elias Mueggler and Davide Scaramuzza

Abstract— Because standard cameras sample the scene at
constant time intervals, they do not provide any information
in the blind time between subsequent frames. However, for
many high-speed robotic and vision applications, it is crucial
to provide high-frequency measurement updates also during
this blind time. This can be achieved using a novel vision
sensor, called DAVIS, which combines a standard camera and
an asynchronous event-based sensor in the same pixel array.
The DAVIS encodes the visual content between two subsequent
frames by an asynchronous stream of events that convey pixel-
level brightness changes at microsecond resolution. We present
the first algorithm to detect and track visual features using
both the frames and the event data provided by the DAVIS.
Features are first detected in the grayscale frames and then
tracked asynchronously in the blind time between frames using
the stream of events. To best take into account the hybrid
characteristics of the DAVIS, features are built based on large,
spatial contrast variations (i.e., visual edges), which are the
source of most of the events generated by the sensor. An event-
based algorithm is further presented to track the features using
an iterative, geometric registration approach. The performance
of the proposed method is evaluated on real data acquired by
the DAVIS.

I. INTRODUCTION

Feature detection and tracking are the building blocks of

many robotic and vision applications, such as tracking, struc-

ture from motion, place recognition, etc. Extensive research

has been devoted to feature detection and tracking with

conventional cameras, whose operation principle is to tem-

porally sample the scene at constant time intervals. However,

conventional cameras still suffer from several technological

limitations that prevent their use in high speed robotic and

vision applications, such as autonomous cars and drones: (i)
low temporal discretization (i.e., they provide no information

during the blind time between consecutive frames), (ii) high

redundancy (i.e., they wastefully transfer large amounts of

redundant information even when the visual content of the

scene does not change), (iii) high latency (i.e., the time

needed to capture and process the last frame). Since the

agility of an autonomous agent is determined by the latency

and temporal discretization of its sensing pipeline, all these

advantages put a hard bound on the maximum achievable

agility of a robotic platform.

Bio-inspired event-based sensors, such as the Dynamic

Vision Sensor (DVS) [1], [2], [3] or the Asynchronous Time-

based Image Sensor (ATIS) [4], [5], [6], overcome the above-

mentioned limitations of conventional cameras. In an event-

The authors are with the Robotics and Perception Group, Department
of Informatics, University of Zurich, Switzerland—http://rpg.ifi.

uzh.ch. This research was supported by the DARPA FLA Program and
the National Centre of Competence in Research Robotics (NCCR).

Fig. 1: Spatio-temporal view of the output of the DAVIS

(frames and events) and the trajectories of the tracked fea-

tures (in different colors, one for each feature). In this exam-

ple, the scene consists of a rotating object. The motion in the

blind time between consecutive frames is accurately tracked

using the stream of events; e.g., rotation is clearly visible in

the spiral-like trajectories of the event-based tracked features.

To facilitate the visualization, only 10% of the events is

displayed.

based sensor, each pixel operates independently of all other

pixels, and transmits asynchronously pixel-level brightness

changes, called “events”, at microsecond resolution at the

time they occur. Hence, an event camera virtually eliminates

latency and temporal discretization. Also, it avoids redun-

dancy, as no information is transmitted if the scene does not

change. However, this comes at a price: the output of an event

camera (a stream of events) is fundamentally different from

that of conventional cameras; hence, mature computer vision

algorithms cannot be simply adapted, and new, event-driven

algorithms must be developed to exploit the full potential of

this novel sensor.

More recently, hybrid vision sensors that combine the

benefits of conventional and event-based cameras have been

developed, such as the Dynamic and Active-pixel VIsion

Sensor (DAVIS) [7]. The DAVIS implements a standard

grayscale camera and an event-based sensor in the same pixel

array. Hence, the output consists of a stream of asynchronous

high-rate (up to 1MHz) events together with a stream of

synchronous grayscale frames acquired at a low rate (on

demand and up to 24Hz).

We present the first algorithm to detect features from

the DAVIS frames and perform event-driven high-temporal

http://rpg.ifi.uzh.ch
http://rpg.ifi.uzh.ch

resolution tracking of these features in the blind time between

two frames. The key challenge consists of designing an

algorithm that best takes into account the hybrid charac-

teristics of the DAVIS output to solve the detection-and-

tracking problem (Fig. 1). Since events are generated by

changes of brightness in the scenes, features are built based

on large, spatial contrast variations (i.e., visual edges), which

are the source of most of the events generated by the sensor.

An event-based algorithm is further presented to track the

features using an iterative, geometric registration approach.

The paper is organized as follows. Section II reviews the

related work on event-based feature detection and tracking.

Section III describes the DAVIS sensor. Section IV describes

the proposed detection and tracking algorithm. Section V

presents the experimental results. Finally, section VI draws

the conclusion and gives future perspectives.

II. RELATED WORK

A. From Frame-based to Event-based Tracking

Feature detection and tracking methods for frame-based

cameras are well-known [8], [9], [10]. The pixel intensities

around a corner point are used as a template that is compared

frame-by-frame with the pixels around the estimated position

of the corner point. The photometric error is then used to

update the parameters describing the position and warping

of the template in the current frame. These appearance-

based methods do not apply to event cameras; however, the

approach of using a parametric template model and updating

its parameters according to data fitting still applies.

From a high-level point of view, two relevant questions

regarding event-based tracking are what to track and how

to track. The first question refers to how are the objects of

interest modeled in terms of events so that object instances

can be detected in the event stream. The answer to this ques-

tion is application dependent; the object of interest is usually

represented by a succinct parametric model in terms of shape

primitives. The second question, “how to track?”, then refers

to how to update the parameters of the model upon the

arrival of data events (caused by relative motion or by noise).

For a system that answers the aforementioned questions,

a third relevant question is “what kind of object motions

or distortions can be tracked?” The above-mentioned three

questions are key to understand existing tracking approaches.

B. Event-based Tracking Literature

Early event-based feature trackers were very simple

and focused on demonstrating the low-latency and low-

processing requirements of event-driven vision systems,

hence they tracked moving objects as clustered blob-like

sources of events [11], [12], [13], [14], [15] or lines [16].

Accurate tracking of general shapes can be performed by

continuously estimating the warping between the model and

the events. This has been addressed and demonstrated for

arbitrary user-defined shapes using event-based adaptions of

the Iterative Closest Point (ICP) algorithm [17], gradient

descent [18], or Monte-Carlo methods [19] (i.e., by matching

events against a uniformly-sampled collection of rotated and

scaled versions of the template). Detection and tracking of

locally-invariant features, such as corners, directly from event

streams has been addressed instead in [20].

Notice, however, that all above-mentioned papers were

developed for event-only vision sensors. In this paper, we

build upon these previous works and present the first algo-

rithm to automatically detect features from the DAVIS frames

and perform event-driven high-temporal resolution tracking

of these features in the blind time between two frames.

III. THE DYNAMIC AND ACTIVE-PIXEL VISION SENSOR

The DAVIS [7] is a novel vision sensor combining a

conventional frame-based camera (active pixel sensor - APS)

and a DVS in the same array of pixels. The global-shutter

frames provide absolute illumination on demand and up to

24Hz, whereas the event sensor responds asynchronously

to pixel-level brightness changes, independently for each

pixel. More specifically, if I(t) is the illumination sensed

at pixel (x, y) of the DVS, an event is triggered if relative

brightness change exceeds a global threshold: |∆ ln I| :=
| ln I(t) − ln I(t − ∆t)| > C, where ∆t is the time since

the last event was triggered (at the same pixel). An event

is a tuple e = (x, y, t, p) that conveys the spatio-temporal

coordinates (x, y, t) and sign (i.e., polarity p = ±1) of the

brightness change. Events are time-stamped with microsec-

ond resolution and transmitted asynchronously when they

occur, with very low latency 15 µs. The DAVIS has a very

high dynamic range (130 dB) compared with the 70 dB of

high-quality, traditional image sensors. The low latency, the

high temporal resolution, and the very high dynamic range

make the DAVIS extremely advantageous for future robotic

applications in uncontrolled natural lighting, i.e., real-world

scenarios.

A sample output of the DAVIS is shown in Fig. 1. The

spatial resolution of the DAVIS is 240× 180 pixels. This is

still limited compared to the spatial resolution of state-of-the-

art conventional cameras. Newer sensors, such as the color

DAVIS (C-DAVIS) [21] will have higher spatial resolution

(640× 480 pixels), thus overcoming current limitations.

IV. FEATURE DETECTION AND TRACKING

WITH THE DAVIS

Since events are generated by changes of brightness, this

implies that only edges are informative. Intersecting edges

create corners, which are “features” that do not suffer from

the aperture problem and that have been proven to be opti-

mally trackable in frame-based approaches [10]. Therefore,

event-based cameras also allow for the perception of corners,

as shown in [20]. We exploit these observations to extract

and describe features using the DAVIS frames, and then track

them using the event stream, as illustrated in Fig. 2. Our

method builds upon the customized shapes in [19] and the

update scheme in [17]. The technique comprises to main

steps: feature detection and tracking, as we detail in the next

sections.

(a) (b) (c) (d)

Fig. 2: Feature detection and tracking. (a) Frame with centers of detected features (green crosses). (b) Edge map (black and

white) and square patches defining the features (i.e, model point sets, in red) (b)-(c) Zoomed views of the data point sets

(i.e., events; blue circles) and model point sets (red stars) of the features, shortly after initialization.

Algorithm 1 High temporal resolution tracking

Feature detection:

- Detect corner points on the frame (Harris detector).

- Run Canny edge detector (returns a binary image, 1 if

edge pixel; 0 otherwise).

- Extract local edge-map patches around corner points, and

convert them into model point sets.

Feature tracking:

- Initialize a data point set per patch

for each incoming event do

- Update the corresponding data point set.

for each corresponding data point set do

- Estimate the registration parameters between the

data and the model point sets.

- Update registration parameters of the model points.

A. Feature Detection From Frames

The absolute brightness frames of the DAVIS are used

to detect edges (e.g., Canny’s method [22]) and corners

(e.g., Harris detector [23]). Around the strongest corners,

we use the neighboring pixels of the Canny edge-map to

define patches containing the dominant source of events. We

simplify the detection by converting the edge-map patches

to binary masks indicating the presence (1) or absence (0)

of an edge. The binary masks define the interest shapes for

tracking in terms of 2D point sets, called “model point sets”.

These steps are summarized at the beginning of Algorithm 1.

We use square patches of the same size, which is an

adjustable parameter. However, it is straightforward to extend

the method to consider different aspect ratios and sizes.

Frames are not required to be provided at a constant rate

since they are only used to initialize features; they can be

acquired on demand to replace features that are lost or fall

out of the field of view of the sensor.

B. Feature Tracking From the Event Stream

Extracted features are tracked using subsequent events

from the DAVIS. The input to the event-based tracking

algorithm consists of multiple, local model point sets. The

second part of Algorithm 1 summarizes our tracking strategy.

1) Sets of Events used for Feature Registration: For every

feature, we define a data point set of the same size as the

model point set. Therefore, the size can be different for

every feature, depending on edge information. Data point sets

consist of local space-time subsets of the incoming events:

an event is inserted in a data point set if the event coordinates

are inside the corresponding patch. Once a data point set has

been filled, registration of the point sets can be done. Hence,

a data point set defines the set of events that are relevant

for the registration of the associated feature. Registration

is carried out by minimization of the distance between the

data and the model point sets, as explained next. Data point

sets are continuously updated: the newest event replaces the

oldest one and the registration iteration proceeds.

This procedure is event-based, i.e., the parameters of the

tracked feature are updated every time an incoming event

is considered relevant for that feature. The algorithm is

asynchronous by design, and can process multiple features

simultaneously. Several strategies to assign an incoming

event to one or more overlapping patches can be used, in

a way similar to [18]. We updated all models around the

ambiguous event.

2) Registration: The data point set from the events, {pi},

is registered to the model point set (feature), {mi}, by

minimization of the Euclidean distance between the sets, and

including outlier rejection:

argmin
A

∑

(pi,mi)∈Matches

‖A(pi)−mi‖
2, (1)

where A is the registration transformation between the

matched point sets. For simplicity, we choose A within the

class of Euclidean motions, but the method can be extended

to more complex transformations. We choose the iterative

closest point algorithm (ICP) [24] to minimize (1). Matches

pi ↔ mi are established according to nearest neighbor; a

predefined distance of 2 pixels between the events in the data

point set and the model point set is used for outlier rejection.

Each algorithm iteration has three stages: first, candidate

matches are established, then the geometric transformation

is estimated, and, finally, the transformation is applied to

the model point set. The operation proceeds until the error

difference between two consecutive iterations is below a

certain threshold.

(a) Before registration (b) After registration

Fig. 3: A feature tracker, with the model point set (in red), the

data point set (in blue). Same color notation as in Figs. 2c-

2d. The black square represents the patch around the model

point set. (a) Before registration: the current event (in green)

updates the data point set and is used for registration of the

point sets. (b) After registration: the events marked in yellow

are classified as outliers, and the registration parameters are

updated, aligning the model and data point sets.

Fig. 3a shows both the model and the data point sets. When

a new event arrives, the geometric transformation that defines

the tracker is updated according to the minimization of (1).

The result is depicted in Fig. 3b. By discounting the points

classified as outliers by the algorithm (in yellow), registration

is accurate. Feature trajectories are given by the positions of

the features returned by the registration step.

Due to the high temporal resolution of the DAVIS, the

transformation between consecutive events (in the same

feature) is close to the identity (Fig. 3b), and so, our method

yields good results even after a single iteration. In practice,

it is more efficient to compute the registration transformation

every M events, e.g., of half the size of the model point set.

V. EXPERIMENTS

We present the tests performed to validate the algorithm

and to study its performance in different scenes with increas-

ing level of complexity: a very large contrast (i.e., black

and white) scene, a piecewise constant scene (a cartoon),

and a natural scene (the leaves of a tree; see Fig. 11). The

first scene depicts a black star on a white background; this

scene has sharp transitions between the two intensity levels,

showing clear edges (Fig 1) and well-localized features. The

second scene consists of a cartoon image with piecewise

constant regions (Fig 8a); intensity is concentrated in a few

grayscale levels and there are moderately abrupt transitions

between them. The third scene is a representative of a natural

image, rich in texture and brightness changes of different

magnitudes (Fig. 11a) coming from the leaves of a tree. The

scene datasets show dominant translational and rotational

motions.

We used patches of 25×25 pixels, which is approximately

1/10 of the image width. This size was empirically found to

be best for a broad class of scenes.

We measured the tracking error over time. The tracking

error is computed against ground truth, which was generated

using a frame-based Lucas-Kanade tracker [8] and linearly

interpolating the feature motion in the time interval between

frames. The ground truth has sub-pixel accuracy. Features

were detected in the first frame (t = 0) and then tracked

over the entire sequence using only events. In all scenes, the

mean tracking error is less than 2 pixels. Notice that in spite

of the sequences being short, they contain several million

events.

A. Large-Contrast Scene (“Star”)

1) Translation: We moved a 10-point star sideways, back

and forth, in front of the DAVIS. The algorithm detected one

feature every two edges of the star (so there are 20 corners).

The mean tracking error plot for all features is shown in

Fig. 4. As it can be observed in the plot, there is a short pause

after 1.5 s, marked with a constant error, before changing

direction. In this interval, there are virtually no events, and

so, the feature tracks do not move, waiting to observe new

events in order to keep updating the features’ position and

orientation.

Fig. 4: Star (translation) dataset: feature tracking error of our

event-based algorithm on translational motion facing the star

shown in Fig. 1. The mean tracking error of all features is

marked in black. The blue bands around the mean indicate

the ±1 standard-deviation confidence interval. The overall

mean error is 1.52 pixels.

2) High-Speed Rotation: Next, we made the 10-point star

pattern rotate, accelerating from rest to 1.600 °/s (see Fig. 5)

using a electro-mechanical device. Observe that, while the

overall motion of the star is a rotation approximately around

the center of the image, features are much smaller than

the whole star and so they only “see” parts of the peaks,

consisting of at most two lines. Nevertheless, these very

simple features are able to track the motion of the scene

very well.

Because of the offset of the features from the rotation

center of about 65 pixels, the features translate at high

speeds (more than 1800 pixels/s on the image plane). For this

dataset, ground truth was annotated since the frame-based

solution failed: since the star is rotating by up to two points

(peaks) between frames, aliasing prevented from obtaining

the correct motion. This speed at which there is frame-

based aliasing is not a problem for event-based tracking due

to the microsecond temporal resolution of the pixels. The

orientation error of the features is shown in Fig. 6. The mean

orientation error remains below 20° over more than two full

revolutions, leading to a relative error of 2.3%. The feature

tracks form spirals in image space-time, as shown in Fig. 7.

All of the 20 features (one per vertex) of the 10-point star

were accurately tracked during the entire sequence.

Fig. 5: Star (rotation) dataset: angular speed of rotating star.

With an approximately constant acceleration (i.e., linear ve-

locity profile), the angular speed reaches more than 1600 °/s.

Fig. 6: Star (rotation) dataset: feature tracking error of our

event-based algorithm on the dataset shown in Fig. 1. The

mean tracking error of all features is marked in black.

The blue bands around the mean indicate the ±1 standard-

deviation confidence interval. The overall mean error is 6.3°.

Fig. 7: Star (rotation) dataset: space-time locations of the

features. Due to the rotation of the star, the feature tracks

form spirals. The spiral step gets smaller as the angular speed

increases, in this case, with constant acceleration.

B. Cartoon Scene (“Lucky Luke”)

Fig. 8 shows several snapshots of the tracked features on

a sequence of the cartoon scene. The dominant motion is a

horizontal translation, back and forth. We observe that 81

features well distributed in the object are correctly tracked

throughout the event stream. The tracking error is reported in

Fig. 9. As observed in the plot, there is a short pause after

1 s (constant error), before changing the motion direction.

A slight increase of the error can be observed when the

motion resumes. However, the mean error in this part of the

motion is less than 2 pixel and the overall mean error is small:

1.22 pixel. Tracking in this scene is very good due to two

reasons: (i) most of the events are located at the strong edges,

which are captured by the features, and regions of constant

intensity do not generate events. (ii) there are more than two

edges per feature, and with a complex shape (edges in several

directions) that make them distinctive for alignment. The

tracked features in image space-time are shown in Fig. 10.

Fig. 9: Lucky Luke dataset: feature tracking error of our

event-based algorithm. The mean tracking error of all fea-

tures is marked in black. The blue bands around the mean

indicate the ±1 standard-deviation confidence interval. The

overall mean error is 1.22 pixels.

Fig. 10: Lucky Luke dataset: space-time view in the image

plane of the tracked features’ trajectories. The sideways

motion is clearly visible in the feature trajectories.

(a) DAVIS frame for initializa-
tion.

(b) Events (white over black) and
features (solid colors) shortly af-
ter initialization.

(c) Features during motion. (d) Features during motion, at a
later time than (c).

Fig. 8: Lucky Luke (cartoon) dataset. The DAVIS is moving sideways while viewing a natural scene consisting of leaves (a).

Individually tracked features (model point sets) are marked in different colors in (b) to (d).

(a) DAVIS frame for initializa-
tion.

(b) Events (white over black) and
features (solid colors) shortly af-
ter initialization.

(c) Features during motion. (d) Features during motion, at a
later time than (c).

Fig. 11: Leaves dataset. The DAVIS is moving sideways while viewing a natural scene consisting of leaves (a). Individually

tracked features (model point sets) are marked in different colors in (b) to (d).

C. Natural Scene (“Leaves”)

In natural scenes (Fig. 11a), edges can have all sort of

different magnitudes, but our features still track the most

dominant ones. In this experiment, we moved the DAVIS

in front of a natural scene containing both edges (mostly

at leave borders) and smooth intensity variations (within

the leaves). The motion was oscillatory and predominantly

translational (Fig. 11). Fig. 12 shows the feature position

error; the mean error is 1.48 pixels.

Fig. 12: Leaves dataset: feature tracking error of our event-

based algorithm. The mean tracking error of all features is

marked in black. The blue bands around the mean indicate

the ±1 standard-deviation confidence interval. The overall

mean error is 1.48 pixels.

Feature tracks in image space-time are shown in Fig. 13.

Fewer features are tracked compared to the simpler scenes

Fig. 13: Leaves dataset: space-time view in the image plane

of the tracked features’ trajectories. The oscillating motion

of the DAVIS is correctly captured by the feature trajectories.

(large contrast and cartoon) because of two reasons: (i) the

detected features are based on a binary edge-map of the

scene (resulted from the Canny detector), but such binary

map is an exact representation of the underlying grayscale

scene only if the contrast is sufficiently large. (ii) we do not

model many of the non-linearities of the DAVIS, such as

non-white noise and other dynamic properties, which have a

larger effect on natural scenes than in simpler ones because

events are triggered all over the patches. Notwithstanding,

for some robotics applications there is no need to track many

features; for example, in perspective-N-point problems) it is

sufficient to track as few as three features [25].

Notice that, overall, all the experiments show that our

proposed and automatically-detected features can be tracked

for a considerable amount of time, much larger than the

time between consecutive frames. Hence, lost features (e.g.,

falling out of the field of view) could be replaced by new

ones that would be initialized using frames at a much lower

rate (e.g. 1Hz) or on demand.

Our method has been tested with real data, with different

types of motion, and the results show accurate tracking (less

than 2 pixels mean error). Better and more accurate results

could be obtained by incorporating the edge strength and the

event generation model.

VI. CONCLUSIONS

We have developed a high-temporal tracking algorithm

for hybrid sensors such as the DAVIS. We used principled

arguments of event data generation to justify our choice of

relevant features to track, and proposed a pipeline to extract

those features from the frames. Then we used an event-

based tracking algorithm that exploits the asynchronous

and high temporal resolution of the event stream. In our

method, features are automatically and accurately initialized,

and are adapted to the scene content, thus overcoming the

shortcomings of existing methods. We tested the algorithm

on real data from several sequences, and the results validate

the approach.

Inspired by the achieved tracking accuracy, we intend to

build a visual-odometry pipeline on top of this event-based

feature tracking method. Finally, the frames used in our

algorithm to initialize the features suffer from motion blur

and limited dynamic range, as in any standard camera. To

overcome these limitations, we plan to investigate methods

to extract features directly from the event stream.

ACKNOWLEDGMENT

We thank Tobi Delbruck for providing the DAVIS240C

and Beat Kueng for helping with data recording.

REFERENCES

[1] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120dB 30mW
asynchronous vision sensor that responds to relative intensity change,”
in Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of

Technical Papers. IEEE International, Feb 2006, pp. 2060–2069.
[2] ——, “A 128x128 120 dB 15 µs latency asynchronous temporal

contrast vision sensor,” IEEE J. of Solid-State Circuits, vol. 43, no. 2,
pp. 566–576, 2008.

[3] T. Delbruck, B. Linares-Barranco, E. Culurciello, and C. Posch,
“Activity-driven, event-based vision sensors,” in IEEE Intl. Symp. on

Circuits and Systems (ISCAS), May 2010, pp. 2426–2429.
[4] C. Posch, D. Matolin, and R. Wohlgenannt, “An asynchronous time-

based image sensor,” in IEEE Intl. Symp. on Circuits and Systems

(ISCAS), May 2008, pp. 2130–2133.
[5] ——, “A QVGA 143dB dynamic range asynchronous address-event

PWM dynamic image sensor with lossless pixel-level video compres-
sion,” in Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2010 IEEE International, Feb 2010, pp. 400–401.

[6] ——, “A QVGA 143 dB Dynamic Range Frame-Free PWM Image
Sensor With Lossless Pixel-Level Video Compression and Time-
Domain CDS,” IEEE J. of Solid-State Circuits, vol. 46, no. 1, pp.
259–275, Jan 2011.

[7] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A
240x180 130dB 3us Latency Global Shutter Spatiotemporal Vision
Sensor,” IEEE J. of Solid-State Circuits, 2014.

[8] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. 7th Int. Joint Conf. on

Artificial Intelligence (IJCAI) - Volume 2, 1981, pp. 674–679.
[9] C. Tomasi and T. Kanade, “Detection and tracking of point features,”

Carnegie Mellon University, Tech. Rep., 1991.
[10] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision

and Pattern Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE

Computer Society Conference on, June 1994, pp. 593 –600.
[11] M. Litzenberger, C. Posch, D. Bauer, A. Belbachir, P. Schon, B. Kohn,

and H. Garn, “Embedded vision system for real-time object tracking
using an asynchronous transient vision sensor,” in Digital Signal

Processing Workshop, 12th - Signal Processing Education Workshop,

4th, Sept 2006, pp. 173–178.
[12] M. Litzenberger, A. Belbachir, N. Donath, G. Gritsch, H. Garn,

B. Kohn, C. Posch, and S. Schraml, “Estimation of vehicle speed
based on asynchronous data from a silicon retina optical sensor,” in
Intelligent Transportation Systems Conference, 2006. ITSC ’06. IEEE,
Sept 2006, pp. 653–658.

[13] T. Delbruck and P. Lichtsteiner, “Fast sensory motor control based on
event-based hybrid neuromorphic-procedural system,” in IEEE Intl.

Symp. on Circuits and Systems (ISCAS), May 2007, pp. 845–848.
[14] T. Delbruck and M. Lang, “Robotic goalie with 3ms reaction time at

4% CPU load using event-based dynamic vision sensor,” Frontiers in

Neuroscience, vol. 7, no. 223, 2013.
[15] E. Piatkowska, A. Belbachir, S. Schraml, and M. Gelautz, “Spatiotem-

poral multiple persons tracking using Dynamic Vision Sensor,” in
IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition

Workshops (CVPRW), June 2012, pp. 35–40.
[16] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R. Douglas, and

T. Delbruck, “A Pencil Balancing Robot using a Pair of AER Dynamic
Vision Sensors,” in IEEE Intl. Symp. on Circuits and Systems (ISCAS),
2009.

[17] Z. Ni, A. Bolopion, J. Agnus, R. Benosman, and S. Regnier, “Asyn-
chronous Event-Based Visual Shape Tracking for Stable Haptic Feed-
back in Microrobotics,” IEEE Trans. Robotics, vol. 28, pp. 1081–1089,
2012.

[18] Z. Ni, S.-H. Ieng, C. Posch, S. Regnier, and R. Benosman, “Visual
Tracking Using Neuromorphic Asynchronous Event-Based Cameras,”
Neural Computation, vol. 27, pp. 925–953, 2015.

[19] X. Lagorce, C. Meyer, S.-H. Ieng, D. Filliat, and R. Benosman,
“Asynchronous Event-Based Multikernel Algorithm for High-Speed
Visual Features Tracking,” IEEE Trans. Neural Networks and Learning

Systems, vol. 26, no. 8, pp. 1710–1720, Aug 2015.
[20] X. Clady, S.-H. Ieng, and R. Benosman, “Asynchronous event-based

corner detection and matching,” Neural Networks, vol. 66, pp. 91 –
106, 2015.

[21] C. Li, C. Brandli, R. Berner, H. Liu, M. Yang, S. Liu, and T. Delbruck,
“An RGBW Color VGA Rolling and Global Shutter Dynamic and
Active-Pixel Vision Sensor,” in International Image Sensor Workshop

(IISW), Vaals, Netherlands, June 2015.
[22] J. Canny, “A computational approach to edge detection,” IEEE Trans.

Pattern Anal. Machine Intell., vol. 8, no. 6, pp. 679–698, Nov 1986.
[23] C. Harris and M. Stephens, “A combined corner and edge detector,”

in Proceedings of The Fourth Alvey Vision Conference, vol. 15.
Manchester, UK, 1988, pp. 147–151.

[24] P. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 14, no. 2, pp. 239–256,
1992.

[25] L. Kneip, D. Scaramuzza, and R. Siegwart, “A novel parametrization
of the perspective-three-point problem for a direct computation of
absolute camera position and orientation,” in Proc. IEEE Int. Conf.

Computer Vision and Pattern Recognition, 2011, pp. 2969–2976.

	Introduction
	Related Work
	From Frame-based to Event-based Tracking
	Event-based Tracking Literature

	The Dynamic and Active-pixel VIsion Sensor
	Feature Detection and Tracking with the DAVIS
	Feature Detection From Frames
	Feature Tracking From the Event Stream
	Sets of Events used for Feature Registration
	Registration

	Experiments
	Large-Contrast Scene (``Star'')
	Translation
	High-Speed Rotation

	Cartoon Scene (``Lucky Luke'')
	Natural Scene (``Leaves'')

	Conclusions
	References

