Feature Detection in fMRI Data:
The Information Bottleneck Approach

Bertrand Thirion and Olivier Faugeras

Odyssée Laboratory (ENPC-Cermics/ENS-Ulm/INRIA)

Abstract. Clustering is a well-known technique for the analysis of fMRI
data, whose main advantage is certainly flexibility: given a metric on the
dataset, it defines the main features contained in the data. But intrinsic
to this approach are also the problem of defining correctly the quantiza-
tion accuracy, and the number of clusters necessary to describe the data.
The Information Bottleneck (IB) approach to vector quantization [11]
addresses these difficulties: 1) it deals with an explicit tradeoff between
quantization and data fidelity; 2) it does so during the clustering proce-
dure and not post hoc; 3) it takes into account the statistical distribution
of the features within the feature space and not only their most likely
value; last, it is principled through an information theoretic formulation,
which is relevant in many situations. In this paper, we present how to
benefit from this method to analyze fMRI data. Our application is the
clustering of voxels according to the magnitude of their responses to sev-
eral experimental conditions. The IB quantization provides a consistent
representation of the data, allowing for an easy interpretation.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) of blood oxygen level-dependent
(BOLD) contrast is a common tool for the localization of brain processes asso-
ciated with any kinds of psychological tasks. It is in fact an indirect measure of
the latter, based on brain oxygenation. Moreover, many confounds are known
to be present in fMRI data (subject movements, respiratory and heart artifacts,
temperature drift, machine noise), making the analysis of such data a challeng-
ing task. Commonly used methods belong to one of the following families: 1)
hypotheses-based techniques (e.g. [6]), which parametrically fit a prior model
to the data through analysis of variance or correlation and ii) exploratory tech-
niques, that give an account of the data content with little prior knowledge, like
Principal /Independent Components Analysis (PCA/ICA) or clustering.

In this paper, we describe another use of clustering that performs the recog-
nition of structures present in the data, after some preprocessing. Actually, clus-
tering analysis (C-means algorithm [1] , fuzzy C-means [2], [4], dynamical cluster
analysis [3], deterministic annealing [12]) has been essentially used in fMRI data
analysis to give a simplified account of the data by gathering voxels with sim-
ilar time courses. This similarity can be measured by the Euclidean distance
in the signal space of origin or another distance based on cross correlation
[B], or a Mahalanobis metric [7]. These methods are efficient [2] and can isolate
interesting patterns in the data, but they suffer from several limitations
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— The choice of a correct metric is not obvious; an Euclidean metric can rep-
resent a suboptimal choice []].

Clustering algorithms can spend a lot of efforts trying to isolate patterns of
no interest; this is due to the absence of prior information.

— The quality of clustering results is difficult to assess. To solve these prob-
lems, authors have proposed some heuristics [5] [9], but these are not neces-
sarily optimal; moreover they are used after convergence of the algorithms,
or sometimes yield complex multistage strategies [4].

This is related to the problem of the selection of the number of clusters [5]: Tt
is intuitively clear that the choice of a given number of clusters corresponds
to a certain bias/variance tradeoff, but this tradeoff is usually implicit.

These problems motivate the introduction of a new clustering method by
Bialek et al. [TT], namely the Information Bottleneck (IB) method. This method
performs a kind of fuzzy quantization of the data, but by minimizing a function
that explicitly balances quantization efficiency and data fidelity. Here we try to
preserve the estimated voxel-based response to the experimental stimuli, given
the uncertainty of these responses measured by a dispersion matrix.

The paper is organized as follows: in section [2] we present how to build a low
dimensional feature space from fMRI datasets. Then we show how to quantify it
with the IB formulation . We illustrate and validate the method on a synthetic
example in section[3, and present results on a real dataset. Last, we discuss the
limitations of the method and possible extensions in section Hl

2 Methods

fMRI Data Analysis: Let us denote Y a fMRI dataset, considered as an N x T
matrix, where N is the number of voxels in the dataset, and 7' the length of
the time series. Y;,(¢) is thus the signal at voxel n and time t. We assume that
the subject undergoes different conditions of a given experimental paradigm.
We model the effects of interest in the experiment as temporal regressors G =
(g-(t)),r = 1..R,t = 1..T. For instance, the temporal regressors may include
the time courses of the experimental conditions convolved with a hemodynamic
filter (hrf) and potential confounding signals (motion estimates, constant, low
frequency signals).

As in [6] we compute the projection of the data in the space spanned by the
regressors (g,,r = 1..R):

R
Yo(t) = Z’YT(”)QT (t) + €n(t)v (1)
r=1

for t = 1.T and n = 1..N, where v(n) = (v+(n)),=1..g is the projection of Y,
onto the rows of G. y(n) is obtained in a least-square sense, together with the
dispersion matrix:

A(n) = (GGT)~'GY,, (2)
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Since some of the regressors are potentially of no interest (they are used only for
estimation improvement purposes), we only consider (v,.(n),r = 1..5 < R) and
the corresponding reduced dispersion matrix, which we still note A ).

Next we propose to study the estimates of y(n) as a feature space through
clustering/vector quantization, taking into account the uncertainty in the esti-
mation of the response, A (n).

Data Quantization within the Information Bottleneck Framework: The IB
method, described in [I1], addresses the following problem: Given a discrete
dataset X (the set of voxels, isomorphic to [1,.., N]), a space of interest I" (the
set of possible values for ), and the conditional probability densities (pdf), here
the normal densities

p(I'|X =n) = N(5(n), Ay(n)) (4)

find the fuzzy clusters X that maximize compression while retaining most of the
information p(I'|X). In mathematical terms this leads to the minimization of

ql(X,X)-BI(X,T) (5)

with respect to X, where I (X, X ) is the mutual information between the dataset
and its compressed representation, [ ()~( ,I') is the mutual information between
the compressed representation and the variable of interest, and [ a positive
scalar. The minimization of I(X, X ) yields compression of the original data X
into X, while the maximization of I (X I') implies that the compressed data
must preserve as much information as possible on I'. The problem, when stated
in this manner, has been shown to have a formal solution: Given

p(&|x)p(z), (6)

- p(7l)
B)=) p@)exp| =0 p(y|z)log=——== ], 7
)= X0 S vtoleios 501 @
in terms of p(Z|z), the solution satisfies the equation

= P@ 1o PO12)
p(E[x) = p( ﬂ;p(vl )1 gp(wz)) (8)

p(v]@

> 5 p(v]z) log Z m;g is nothing but the Kullback-Leibler divergence between the

two pdfs p(y]z) and p(y]Z), which we write henceforth as d(z, ). Equation ([
rewrites

Zp &) exp (—Bd(x, #)) 9)

This problem does not have a closed form solution. Nevertheless, the following
result holds: FEquation (§) is satisfied at the minima of the functional

F(p(E|z), p(2),p(117)) = — (log Z(2,8)) 0y = 1(X, X) + B(d(2,2)) (o) (10)
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where (S(a)),, stands for the expectation of the quantity S for the proba-
bility law p. The minimization can be done independently over the sets of the
normalized distributions p(Z), p(Z|z) and p(vy|Z) by the converging alternating
iterations (¢ being here the iteration step):

(k) = s cop(~pd(e,7) (1)
pea(®) = 3 pla)p ) (12)
P (118) = 3 prfe)pe(ale) (13)

The above algorithm provides a possibly suboptimal solution (i.e. a local mini-
mum of F, exactly as any EM algorithm). An excessive number of clusters are
generated randomly at the beginning; the IB algorithm (eq. (ITF I3)) is ap-
plied to the data until convergence (typically a few hundred iterations); we
then use the final probability laws p(Z|n) for a hard clustering of the data
(cl(n) = argmaxz p(Z|n)); the final number of clusters is given by the ones
whose probability has not canceled during the iterations (i.e. {Z/3n/z = cl(n)}).
The number of remaining clusters is thus provided by the algorithm and depends
highly on the choice of 3, whose interpretation as a scale parameter is obvious.

In practice, the use of a finite grid for the sampling of the pdfs is important.
From our experiments, the grid precision does not seem to have much importance
on the result as long as it is not coarser than the intrinsic data dispersion.

3 Experimental Results

Synthetic data: We have created a synthetic dataset by simulating one slice of
fMRI data containing N = 1963 voxels. 3 small foci of 21 voxels are created
and an i.i.d. gaussian noise is added to all voxels, so that the SNR is 0.5 in
the activated areas. The length of the series is T' = 200; the simulated paradigm
comprises two conditions (see figure[I}(a)); the simulated time courses, and spatial
maps are presented in figure [(b), (¢). The data has been smoothed spatially as
commonly done for fMRI. Through eq. ([23), we obtain a S = 2 dimensional
feature-space. We have displayed the estimated feature at each voxel in figure
[[(d). Then, we have discretized the feature space on a (20x20) grid and analyzed
it with the IB method. To study the dependence of the number £ of final clusters
on (3, we present the cluster hierarchy, indexed by £, in figure [Mi(e).

Figure[l(e) shows that the 4 clusters configuration is the main non-trivial one.
The associated pdf p(v|Z) ( figure [(f)) confirms the pertinence of this model.
For comparison, we have applied a fuzzy-C-Means algorithm with 4 clusters on
the same feature space, with 10* random initializations. In no case did we obtain
the results described in figure [Il. This may be attributable to the small number
of activated voxels, and to the choice of the Euclidean metric.

Real data: The data is taken from an experiment published in [I0]. The present
analysis is reduced to one subject performing the following experiment (called
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Fig. 1. (a) Simulated experimental paradigm (two conditions, alternating block design
with resting periods). (b) Synthetic activations time courses. The three patterns are
obtained by convolving the canonical hrf with three different linear combination of the
stimuli time courses. (c) Spatial layout of the activations simulated in the experiment.
(d) Estimated features at each voxel 4(n) = (91(n),J2(n)) (the dispersion is not repre-
sented). (e) Cluster hierarchy obtained by letting the scale parameter § vary. Clusters
appear by successive bifurcations or splittings. The terms activation clusters and back-
ground clusters refer to post hoc interpretation. The configuration with 4 clusters is
stable over a large scale interval; we refer to this configuration in the remainder of
the section. The associated spatial map cl(n) (not shown) is identical to map (c). (f)
Probability density functions associated with the four clusters p(y|Z). Note that they
correspond readily to the main mode and the three “arms” of the feature distribution
clearly visible in figure (d).
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fMRI2 in [10]): A visual stimulation is performed, with 4 conditions: Heading,
dimming static, dimming flow, and baseline. The Heading condition means that
the subject views a ground plane optic flow pattern that simulates self-motion;
dimming static is a control task where no self-motion is simulated, but a part
of the stimulus display is slightly dimmed, and dimming flow is another control
condition specially designed to disentangle spatial and featural attention.

Details about the data are available in [10]. Let us notice that the number of
scans is 7' = 720, and that the number of voxels considered is N = 30094. We
derive a 3 dimensional feature-space (7y1,72,7s), which is discretized on a finite
(15 x 15 x 15) grid. The hierarchy of clusters obtained with the IB algorithm
is described in figure PYa). We concentrate only on the three clusters that are
significantly far from 0: one of them shows negative patterns, and the other
two present positive responses, one cluster having higher scores. The cluster
maps are given in figure Blc), together with spatial maps of the contrasts of
interest heading-dimming static (d) and heading-dimming flow (e) obtained from
standard SPM procedure. The average feature per cluster is shown in figure 2(b).

The results obtained here are consistent with those obtained with standard
Statistical Maps: the black cluster corresponds broadly to the negative part of
either SPM map (in black), while the white and grey clusters correspond more
to the positive patterns, with the white cluster corresponding to the maxima of
the activation maps; nevertheless, the interpretation of the two latter clusters
in terms of contrasts is more subtle, as can be seen in figure [2(b), the contrast
heading-dimming flow being positive for only the grey cluster. See [10] for the
interpretation of the contrastdl. Last, we do not have any satisfactory interpre-
tation for the negative signals, not been reported in [10].

4 Discussion

Our method is based on the specification of the feature space made prior to data
analysis. This is a difference with respect to current exploratory methods used
for fMRI datasets (independent components analysis, clustering). The rationale
for that choice is that the whole signal is not interesting to the experimenter,
but only parts of it that contain relevant information, i.e. essentially consistently
task-related responses. It is thus dependent on the correct specification of the
space of interest; but in the bloc experiments considered here, at least a very
good approximation to the actual response can be computed a priori using a
standard hemodynamic response function (hrf).

In spite of the simplicity of the simulated dataset, it appeared that a fuzzy C-
means method does not yield the 4 clusters solution that corresponds actually
to the generative process of the dataset. Here the IB performs clearly better;
moreover, it gives a truly hierarchical representation of the data indexed by /3
and takes into account the dispersion of the estimators. On the other hand, the
implementation of the method implies the use of a discretized pdf of the feature

L Color figures are available at
http://www-sop.inria.fr/odyssee/research/2/index.en.html.
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Fig.2. (a) Cluster hierarchy obtained by letting the scale parameter [ vary. The
clusters appear by successive bifurcations or splittings. The terms positive clusters
and negative clusters refer to the post hoc interpretation. We do not further study
the background clusters. (b) Centers of the three other clusters in the feature space.
Two of the clusters (dashed and dotted) represent a positive signal, while the other
one represents a negative signal. The contrast “heading-dimming flow” is null for the
dashed pattern while it is positive for the dotted one. (¢) Four axial slices extracted
from the spatial maps of the three clusters (in white, grey and black respectively), (d)
a SPM map of the test of the contrast heading-dim. static, and (e) a SPM map of the
test of the contrast heading-dim. flow, both thresholded at the level |t| = 2.5; on these
maps, positive activations are represented in white, and negative responses in black.
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vector for each voxel; this can be done only within low dimensional feature spaces.
We face here the well-known curse of dimensionality which standard clustering
techniques (C-means, fuzzy C-means) do not suffer from, or less critically. The
computational cost of the method is reasonable in our implementation, in spite of
the number of voxels considered, and the number of iterations (a few hundred).
For example, we need about one minute to process the real dataset.

Future work involves the test on more realistic simulations, the use of ana-
lytical approximations of Kullback divergence between pdfs, e.g. with gaussian
mixture models, the statistical inference at the cluster level, and the initialization
of the algorithm on pre-clustered data in order to approach optimal solutions.

Conclusion: Clustering can be used for analyzing fMRI data beyond purely ex-
ploratory analysis: it is also a tool to study the data structure within a specified
feature space. Among known clustering techniques, the Information Bottleneck
gives a principled way to handle the robustness/accuracy tradeoff -but does not
solve it- and gives a solution to the selection of the cluster number. Additionally,
it takes into account the dispersion in the estimation of the feature data.
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