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Abstract—Displaying the abundant information contained in a
remotely sensed hyperspectral image is a challenging problem.
Currently, no approach can satisfactorily render the desired in-
formation at arbitrary levels of detail. In this paper, we present a
feature-driven multilayer visualization technique that automati-
cally chooses data visualization techniques based on the spatial
distribution and importance of the endmembers. It can simulta-
neously visualize the overall material distribution, subpixel level
details, and target pixels and materials. By incorporating inter-
active tools, different levels of detail can be presented per users’
request. This scheme employs five layers from the bottom to the
top: the background layer, data-driven spot layer, pie-chart layer,
oriented sliver layer, and anomaly layer. The background layer
provides the basic tone of the display; the data-driven spot layer
manifests the overall material distribution in an image scene; the
pie-chart layer presents the precise abundances of endmember
materials in each pixel; the oriented sliver layer emphasizes the
distribution of important anomalous materials; and the anomaly
layer highlights anomaly pixels (i.e., potential targets). Displays
of the airborne AVIRIS data and spaceborne Hyperion data
demonstrate that the proposed multilayer visualization scheme
can efficiently display more information globally and locally.

Index Terms—Hyperspectral image visualization, mixed-pixel
visualization, multilayer visualization.

I. INTRODUCTION

A HYPERSPECTRAL imaging sensor collects data with

hundreds of contiguous and narrow spectral bands. Its

high spectral resolution permits more accurate detection, classi-

fication, identification, and quantification. However, visualiza-

tion of the information contained in such a huge data volume is

a challenge. Displaying high-dimensional data in a single image

results in information loss. Our goal is to visualize information

and to enhance data features as much as possible.

Visualization has been part of remote sensing for decades,

beginning with false-color display. For example, the typical

way of displaying multispectral data is a color infrared (CIR)
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composite, which maps the near-infrared, red, and green bands

to the RGB channels. It provides a synoptic overview of the

scene, where vegetation can be effectively visualized in red [1].

Robertson et al. mapped an original multispectral image into

a perceptual uniform color space to generate a color image

with high contrast [2]. Due to the low signal-to-noise ratio

(SNR) of remotely sensed images, Durand et al. selected three

bands and enhanced color contrast by balancing the SNR of the

three bands [3]. Demir et al. proposed a low complexity hyper-

spectral visualization scheme that used one-bit-transformation-

based band selection to preserve the maximum information

contained in the original imagery [4]. When these algorithms

are used to display hyperspectral imagery, they may not be

sufficient because they cannot handle the large amount of

information contained in hundreds of spectral channels.

Compacting the information in a hyperspectral image for

display is another common approach. For instance, Principal

Component Analysis (PCA) condenses the information in hun-

dreds of bands into major principal components (PCs) and then

displays the PCs in a color image. Tyo et al. employed PCA

to display hyperspectral images by mapping the first three PCs

to the hue–saturation–value (HSV) color space [5]. Segmented

PCA was used to visualize and classify hyperspectral imagery

in [6]. However, PCA-based methods do not balance the SNR

well. Noise may dominate some PCs, which results in a higher-

ranking PC containing less signal information than a lower-

ranking PC. Therefore, a noise-adjusted principal component

analysis (NAPCA) may be a better choice [7]. A PCA-class

method for hyperspectral image color display was studied in

[8], [9]. In general, these unsupervised transformation tech-

niques still result in great loss of useful information.

Jacobson et al. [10], [11] visualized hyperspectral images by

fixing a linear spectral weight for each channel or adjusting

the weights with the SNR. In this way, the same material in

different data sets can be visualized in a similar color. An

interactive visualization approach using convex optimization

was introduced to visualize hyperspectral imagery by Cui et al.

[12]. However, these approaches visualize all the information

in one image and do not help observers distinguish different

materials, which may be easily separated in the original data

due to its high dimensionality.

Another way to display hyperspectral images is to visualize

the classification results. For hard classification, a distinctive

visual representation could be formed by assigning a color

label to each class [13]. This approach, however, eliminates the

mixture information in hyperspectral pixels. Due to the relative

low spatial resolution, the signature of each pixel normally

consists of the signatures of different materials. It is more
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appropriate to conduct mixed-pixel classification, where a pixel

is classified according to the percentage of each material

present [14], [15]. Traditionally, these mixed classification re-

sults are displayed as grayscale images separately and viewed

side-by-side. This makes it difficult to reveal the spatial re-

lationship among classes. Wessels et al. tried to solve this

problem by displaying them in a single image [16]. In their

work, the pixel color chosen was the one assigned to the most

abundant material resident in that pixel area, unfortunately

suppressing the abundances from other materials.

It should be noted that the display of classification results

can be considered a multivariate visualization problem. This

problem has been studied for many years. In [17], multiple flow

variables were mapped to different visual elements and multiple

fields were presented on a surface successfully. Forsell et al.

employed texture and 3-D surface shape to display multivariate

data simultaneously [18]. Bokinsky showed that different sizes

and distributions of dots could successfully represent different

variables [19]. Multiple scalar fields have been visualized by

textured splats [20], oriented texture slivers [21], [22], syn-

thesized cell texture (SCT) [23], and hue and oriented texture

[24], [25]. In Urness’s work, multiple collocated flow fields

and scalar variables were displayed using texture, glyph, and

color [26]. All of these methods only qualitatively visualize

the collocated multiple vector or scalar fields, and cannot

indicate the quantitative information precisely. In addition, they

consider the multivariate data as independent quantities and do

not show the relationship between variables.

Previously, we presented a new approach for the visualiza-

tion of hyperspectral imagery that employed a pie-chart layer to

visualize the mixed-pixel information [27]. This approach takes

advantage of the classification result from fully constrained

linear unmixing such as the technique in [14]. At the very

detailed level, it displays pixel composition at the subpixel

level. On the other hand, it is able to display the overall

material distribution in an image scene. Viewers can choose

any detail level for information display. However, this approach

has some limitations. Since the double-layer scheme employed

color combination to display the overall distribution, new colors

could be generated by the color mixing processing and mislead

the observers. The statistical distribution of a specific material

within a certain area is difficult to know. Quick decision-

making on targets with low occurrence probability may be

impossible without zooming into them and reading many pie-

charts. To provide more information with better visibility both

globally and locally, the pie-chart layer needs to be improved

and integrated with other existing multivariate visualization

methods.

This paper is organized as follows. Section II briefly de-

scribes the linear mixture analysis of hyperspectral imagery and

presents the mixed-pixel classification that can be achieved;

Section III reviews several existing techniques that can be

applied to hyperspectral image visualization and discusses their

limitations; Section IV proposes a new multilayer visualization

technique that overcomes those limitations; Section V presents

an additional example using Hyperion data; Section VI evalu-

ates the presented approaches by subject tests; and Section VII

gives the conclusion.

II. LINEAR MIXTURE MODEL

In a remotely sensed image, the reflectance of each pixel is

considered as the mixture of the reflectance from distinctive

materials residing in an image scene. These materials are

referred to as endmembers. The linear mixture model (LMM)

assumes the mixture mechanism is linear and is widely used to

analyze hyperspectral imagery [14], [15], [28], [29].

Let r denote a pixel vector with dimensionality L, where

L is the number of spectral bands. Assume the number of

endmember materials is p. Let M be the signature matrix of

these materials denoted as M = [m1, . . . ,mk, . . . ,mp], where

mk is the signature of the kth endmember material. According

to the LMM, a pixel vector r can be represented as

r = Mα + n (1)

where α = (α1, . . . , αk, . . . , αp)
T is a p × 1 abundance vector,

whose kth element αk represents the proportion of the kth

endmember mk present in r. Here, n accommodates additive

noise or sensor measurement error.

Since a α represents endmember abundance, it should be a

nonnegative value. Also, the whole pixel is constructed by all

the endmembers. Hence, their sum should be one. These two

constraints can be expressed as

p
∑

k=1

αk = 1 and 0 ≤ αk ≤ 1. (2)

A constrained optimization problem can be formulated to es-

timate the α that yields the minimum error in pixel recon-

struction while the constraints in (2) are satisfied. This is

referred to as a fully constrained least squares linear unmixing

(FCLSLU) problem. If M is known, it can be easily achieved

via quadratic programming. If M is unknown, then an unsu-

pervised FCLSLU algorithm needs to be performed [14]. The

procedure in FCLSLU can be described as follows.

Step 1) Select the two pixels with the maximum and min-

imum norm from the image and construct the ini-

tial endmember signature matrix M̂ = [m1,m2].
Then, use quadratic programming to estimate α̂ =
(α̂1α̂2)

T .

Step 2) Calculate the reconstruction error, e, between the

pixel vector r and its estimate, i.e., e = ‖r − M̂α̂‖.

Step 3) Find the pixel that has the maximum error and take

it as a third endmember, i.e., M̂ = [m1,m2,m3].
This is done because this pixel is considered as the

most dissimilar pixel from m1 and m2.

Step 4) Repeat Steps 2) and 3) for additional endmembers

until the maximum error is less than a given thresh-

old ξ or the maximum number of endmembers is

reached.

When the number of endmembers is unknown, a large num-

ber can be assumed first to run the unsupervised FCLSLU al-

gorithm. Then, similar endmember signatures can be combined

using a spectral angle mapper (SAM) [30], and the endmember

signatures corresponding to noisy abundance images with large

entropies can be removed. The remaining signatures are used

for the supervised FCLSLU to generate the final abundance

images for visualization.
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Fig. 1. AVIRIS Lunar Lake scene of size 200× 200.

Fig. 2. Abundance images of the AVIRIS Lunar Lake scene.

The Lunar Lake data taken by Airborne Visible/InfraRed

Imaging Spectrometer (AVIRIS) was used in this study. The

subscene of size 200 × 200 in Fig. 1 was classified by the

unsupervised FCLSLU algorithm. Fig. 2 shows the abundance

images of the six materials, namely, {Playa Lake, Rhyolite,

Vegetation, Anomaly, Cinder, and shade} based on some prior

information [31]. In a grayscale abundance image, a dark pixel

represents low abundance of the corresponding material.

III. VISUALIZATION TECHNIQUES FOR

HYPERSPECTRAL IMAGERY

The major disadvantage of viewing the grayscale abundance

images side-by-side is the difficulty of perceiving the spatial

relationship between materials. Displaying them in a single im-

age offers several advantages. For instance, the overall spatial

distribution of materials can be easily presented, and it is pos-

sible to show the detailed pixel composition. In this section, we

review the existing multivariate visualization techniques such

as color combination, double-layer display, oriented slivers, and

data-driven spots (DDS). Their pros and cons for hyperspectral

image visualization are then discussed.

A. Color Representation of Hard Classification

The abundance images are converted into binary images

using the following criterion:

αk =

{

1, if αk is the maximum in α

0, otherwise.
(3)

Fig. 3. Color representation of hard classification. (a) Overall display.
(b) Zoomed-in display for the ROI highlighted in (a).

Then, the resulting hard classification maps can be displayed

in a single color image. Fig. 3(a) shows the color composite

after the abundance images in Fig. 2 are converted into binary

and combined into one image. Fig. 3(b) shows the color display

of a region of interest (ROI), including the anomaly marked in

Fig. 3(a). Obviously, the mixed-pixel information is lost.

B. Color Combination Result

Because the hard classification loses mixed-pixel informa-

tion, a color assignment scheme that depends on the abundances

of each endmember should be applied. Let the color vector

assigned to the kth endmember be ck = (rk, gk, bk)T . Then,

a color matrix can be formed as

C=[c1, . . . , ck, . . . , cp]=

⎡

⎣

r1 · · · rk · · · rp

g1 · · · gk · · · gp

b1 · · · bk · · · bp

⎤

⎦ . (4)

The final color c(i, j) for a pixel rij with abundance vector

α(i, j) is

c(i, j) = Cα(i, j). (5)

Because the final color for each pixel is the linear combina-

tion of the colors assigned to endmembers, the final color is a

function of the endmember abundances. Compared to the color

representation of hard classification, Fig. 4(a) displays not only

the spatial location of each endmember, but also the distribution

variations. As shown in Fig. 4(b), the small ROI has greater

variations than shown in Fig. 3(b). However, it is difficult to

predict the final color appearance due to the nonlinear nature of

color perception.

C. Double-Layer Visualization

In addition to the general material distribution, the detailed

composition of each pixel may be of interest in many cases.

The double-layer visualization was proposed for this purpose

[27]. It employs the color representation as a background layer

and a pie-chart layer as a foreground layer.

In a pie-chart, each endmember is assigned to a fan-shaped

region (shown as Fig. 5). Without loss of generality, the first

endmember is assigned to the first region, the second endmem-

ber to the second region, and so on. The area of the fan-shaped
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Fig. 4. Color representation of soft classification. (a) Overall display.
(b) Zoomed-in display for the ROI highlighted in (a).

Fig. 5. Fan-shaped superpxiel with its mixture composition.

region for the kth endmember is proportional to the angle θk,

which is determined by its abundance αk, i.e.,

θk = αk · 360◦. (6)

Its starting and ending positions can be represented, respec-

tively, as

βs
k =

k−1
∑

j=1

θj and βe
k =

k
∑

j=1

θj . (7)

They can be related by θk = βe
k − βs

k, and βs
1

= 0◦.

Because α is constrained by (2), a pixel is shown as a full

disk, i.e., βe
p = 360◦.

Opacity is the parameter used to control the blending of

these two layers. The opacity of the pie-charts in the foreground

layer is associated with a zooming parameter automatically or

manually. When the combined image is zoomed out to display

the overall distribution, the opacity of the pie-charts is set to

a low value; therefore, the background layer dominates the

image, as shown in Fig. 6(a). If the opacity of the pie-chart layer

is set to a high value when viewers zoom in for detail, then the

pie-chart of each pixel pops out. Fig. 6(b) shows the ROI when

the opacity is set to 1.0.

D. Oriented Slivers

Oriented slivers were employed to visualize multivariate data

in [21] and [22]. The main idea of oriented slivers is that slivers

with different slopes are used to represent different variables

and the transparency of the slivers is controlled by the data

value. The more visible a sliver is, the greater the value it

represents.

To visualize a hyperspectral image pixel, a sliver is used to

represent an endmember. In order to manifest the endmember

Fig. 6. Double-layer visualization. (a) Overall display. (b) Zoomed-in display
for the ROI highlighted in (a).

Fig. 7. Oriented sliver representation. (a) Overall display. (b) Zoomed-in
display for the ROI highlighted in (a).

distribution, the color, orientation, and transparency of a sliver

are encoded by the endmember type and its abundance in

the corresponding pixel. As shown in Fig. 7(a), the overall

distribution of endmembers is revealed by colors with different

tone and saturation. Compared to Fig. 6(a), the blue material is

more perceivable in the right bottom corner. In Fig. 7(b), the

detailed information of endmembers in each pixel is shown.

The primary endmember information is obvious, but other

endmember information usually cannot be easily perceived.

E. Data-Driven Spots (DDS)

The DDS technique was introduced by Bokinsky [19] to

visualize multiple collocated variables. The major idea is to

map different variables such as cats, dogs, and chickens into

Gaussian-shaped spots in different sublayers. Each variable

occupies one sublayer. The quantity of a variable controls the

transparency of a related spot in the corresponding sublayer. In

each sublayer, spots are not displayed at every grid; instead,

they are displayed at the sampled grid. Thus, information of

lower sublayers can be read through the upper sublayers.

Fig. 8 shows the DDS visualization of the AVIRIS Lunar

Lake scene, where colors are used to encode uniformly shaped

spots representing different endmember materials. If a material

is highly abundant in a certain area, then the number of spots

with a specific color is large. The general distribution of end-

members is visible in Fig. 8(a) and the detailed distribution

is shown in the ROI in Fig. 8(b). We can see that the spot

transparency reflects the value of material abundance. If the
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Fig. 8. DDS representation. (a) Overall display. (b) Zoomed-in display for the
ROI highlighted in (a).

abundance is larger, the corresponding spot is more visible. Un-

fortunately, the anomaly in the ROI is missed in Fig. 8(a), which

is due to the sampling process required for DDS visualization.

F. Discussion

The aforementioned techniques have certain capabilities to

display the distribution of endmember materials in a hyperspec-

tral image, but limitations need to be resolved mainly due to the

importance of subpixel level analysis in hyperspectral imagery.

Hard classification obviously distorts the material distribu-

tion since it ignores the materials with smaller abundances,

so it will not be used in this research. Color representation

of mixed-pixel classification and DDS can display the overall

distribution, but they cannot reveal the detailed information at

subpixel level. In particular, the DDS representation reveals

the statistical distribution, but it is prone to miss small targets.

The oriented sliver representation can present both the overall

distribution and part of the mixed-pixel information.

The pie-chart display visualizes the general distribution as

background and the detail information as foreground. In some

cases, it may be helpful if the visualized image can directly

display the important mixed-pixel information without the need

of zooming into each pie-chart. For instance, an anomaly is

a pixel whose spectral signature is very different from the

surrounding pixels and has low probability to appear as a

potential target. If a visualization technique can assist in rapidly

locating an anomaly in the mixed-pixel composition, it will

greatly facilitate the decision-making. Obviously, two layers are

not enough to meet the requirements. Therefore, a multilayer

visualization technique is proposed in the next section.

IV. MULTILAYER VISUALIZATION

To overcome the limitations of each technique in Section III,

a feature-driven multilayer visualization technique is proposed

in this paper. This algorithm analyzes the spatial distribution

and importance of each endmember and then assigns a proper

visualization technique to visualize this endmember. This ap-

proach emphasizes the visibility of the anomalous and low-

probability materials; at the same time, it adequately visualizes

the widely distributed endmembers and the detailed distribution

at the subpixel level.

A. Functions of Five Layers

Five layers are employed to maximize the information to

be visualized. The five layers are, from bottom to top, the

background layer, DDS layer, pie-chart layer, oriented sliver

layers, and anomaly layers. Special considerations are needed

to create the final display with acceptable texture. Each layer

has a specific purpose as described below.

Background Layer: No information is presented by this

layer. It is used to enhance the overall appearance of the display.

Because it can be seen through the upper layers, the color in the

background layer should be carefully chosen to make the final

display more appealing. Neutral gray is chosen as suggested in

[17] and [19].

DDS Layer: This layer displays the statistical distributions

of the endmember materials that are widely distributed in the

scene (i.e., background materials most likely). For an image

with p materials, q sublayers (q ≤ p) are needed with one for

each background material. Gaussian-shaped spots were recom-

mended in the original DDS technique [19]. To make it suitable

for multiple layer representation, solid circles are used with the

radius equal to half of a pixel extent. Moreover, the uniform

sampling in the original DDS technique is changed to non-

uniform, which is more efficient in capturing subtle variations.

Hence, the fact that spots with the same color are densely

packed in a unit area means the corresponding material is more

concentrated in this area. The opacity of a spot is controlled by

the corresponding abundance in the sampled pixel it represents.

In other words, if pixel rij is the sampled pixel for the spot at

(i, j) in the kth DDS sublayer representing the kth endmember,

the opacity ok(i, j) is determined as

ok(i, j) = αk(i, j) (8)

where αk(i, j) is the abundance of mk in pixel rij .

Pie-Chart Layer: This layer is used to display the detailed

composition of each sampled pixel. The opacity should be

low when visualizing the overall distribution to reduce the line

pattern artifacts. Medium or high opacity is more appropriate

for the ROI visualization. In addition, the radius of the pie-

charts has to be reduced from that used in [27] and distinct

from that of the dots in the DDS layer to work effectively in

the multiple layer situation. The overall opacity of the pie-chart

layer is associated with a zooming parameter.

Oriented Sliver Layer: This layer is to represent anomalous

materials (associated with anomalies or targets), which are

not spatially well distributed. These materials cannot be well

represented by the DDS layer because of their low occurrence

probability. Thus oriented slivers are used to emphasize these

materials as long as they are present in a pixel. Different ma-

terials are distinguished by orientation. The opacity of a sliver

is controlled by the abundance of the anomalous endmember in

the pixel.

Anomaly Layer: An anomaly is a potential target. The anom-

alous pixels should be significantly highlighted. In order to

make the anomalies preattentive and distinguished from other

materials, large 3-D icons with bright colors are employed in

this layer to represent anomalies.
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It should be noted that the colors assigned to endmembers in

all layers (DDS, pie-chart, oriented slivers, and anomaly) are

the same. Layer transparency/opacity can be automatically or

manually adjusted.

B. Material Categorization

The anomalous endmembers are not widely distributed. Un-

der an unsupervised situation, the category of endmember mk

can be determined by calculating the overall distribution index,

Ik, defined as

Ik =
MkNk

N2
(9)

where Mk is the total distributed amount of endmember

mk, i.e.,

Mk =
∑

i,j

αk(i, j). (10)

Nk is the total number of pixels whose maximum abundance is

from mk, and N is the total number of pixels in the scene. If

Ik is less than a threshold ηm, mk is considered an anomalous

endmember; otherwise, it is a non-anomalous endmember. ηm

is set to be 1 × 10−3 in this study. An anomalous material will

be emphasized by the oriented sliver layer, which can be a

foreground material. For a pixel to be considered an anomaly

and thus be highlighted in the anomaly layer, the abundance

value should be greater than a threshold ηp. In this study, ηp

is set to be 0.8–0.9. A non-anomalous endmember is widely

distributed and is usually a background material. It will be

displayed by the DSS layer.

C. Resampling

In Bokinsky’s DDS technique [19], spot density is in-

dependent of the scalar field because uniform sampling is

used. This makes any subtle variation in distribution unno-

ticeable. Therefore, non-uniform sampling is proposed in this

research. The sampling process for the kth material represented

by the kth sublayer has the following steps:

Step 1) Set two controlling parameters: D1 and D2. The

initial sampled pixel set Ω = ∅.

Step 2) Randomly choose a pixel rij from the image scene.

Step 3) Calculate the threshold ηD for rij as

ηD(i, j) = (1 − ak(i, j)) (D1 − D2) + D2. (11)

Step 4) Calculate the coordinate distance between rij and

each pixel in Ω. If all the distances are greater than

ηD, rij is added to the sample set Ω.

Step 5) Repeat Steps 2) through 4) until the number of

iterations are sufficiently large, say, 0.5N .

Here, D1 and D2 are the minimum distances allowed be-

tween two samples when αk(i, j) takes the smallest (i.e.,

αk(i, j) = 0) and the largest value (i.e., αk(i, j) = 1), respec-

tively. Together, they control the final spot density. In our

experiments D1 = 5 and D2 = 1. Obviously, this sampling

algorithm is well correlated with the local abundance of the kth

Fig. 9. Results of two sampling methods. (a) Uniform sampling. (b) Non-
uniform sampling. (c) Uniform sampling after transparency control. (d) Non-
uniform sampling after transparency control.

material. Because the threshold in (11) is smaller for pixels with

larger abundance, these pixels have a greater chance of being

selected. Even if a pixel with very low abundance is selected,

the opacity control in (8) makes it almost invisible.

Fig. 9 shows the sampling results for Playa Lake (the 1st

endmember material in Fig. 2). It is concentrated at the lower-

right corner. Fig. 9(a) is the (original) uniform sampling result

and Fig. 9(b) is the non-uniform sampling result where spots

at the lower-right corner have higher density. After the trans-

parency/opacity control using (8), Fig. 9(d) reflects the actual

distribution variation of Playa Lake while Fig. 9(c) does not.

D. Layer Combination

After each layer has been generated, the final display is

formed by alpha-blending, a standard computer graphics al-

gorithm for semitransparent image display. By default, the

blending parameter for the anomaly layer and background layer

is 1.0, which means 100% opacity; those for the DDS layer

and the oriented sliver layer are determined by the abundance

value of a pixel (i, j); that for the pie-chart is associated with

the zooming parameter. It should be noted that the sublayers in

the DDS layer go through a similar blending process.

The final multilayer display for the AVIRIS Lunar Lake

scene is shown in Fig. 10. Compared to the DSS display in

Fig. 8(a), the overall display in Fig. 10(a) better manifests

the variations of the six endmember materials; compared to

the oriented sliver display in Fig. 7(a), the anomaly is more

visible. Fig. 10(b) is the ROI with the anomaly layer; the precise

location of the anomaly can be easily identified. Fig. 10(c)–(e)

are the images when the opacity of the pie-chart layer is varied

to increase the visibility of the detailed pixel information. In
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Fig. 10. Multilayer visualization of AVIRIS Lunar Lake. (a) Overall display
with five layers. (b) ROI in the anomaly layer. (c)–(e) Displays with the opacity
of the pie-chart layer being 0.1, 0.5, and 1.0, respectively (without the anomaly
layer).

Fig. 10(c)–(e), the anomaly layer is deselected. We can also see

the role of the oriented sliver layer, which is to make the pixels

with the anomalous materials be more easily detected.

V. HYPERION EXAMPLE

A Hyperion data set was used to verify the proposed mul-

tilayer algorithm. As the first spaceborne hyperspectral sensor,

Hyperion images contain lots of sensor noise such as dark lines

as shown in Fig. 11. The same preprocessing steps used in [27]

Fig. 11. Hyperion image scene of size 150 × 150.

Fig. 12. Five abundance images of the Hyperion data.

were employed to remove the water absorption and noisy bands.

152 out of 220 bands were left for linear mixture analysis. Five

abundance images were generated by the FCLSLU algorithms

and color labels were automatically assigned. These are shown

in Fig. 12.

According to the criterion in Section IV-B, materials 2 and

5 are considered as anomalous target materials while the other

three materials are considered as widely distributed background

materials. Several pixels were determined to be anomalies and

are shown in green and blue depending on the material. Fig. 13

shows the multilayer display with and without the anomaly

layer. When the anomaly layer was deployed as in Fig. 13(a),

the anomalies could be more easily identified (in the areas

marked with boxes). The DDS layer effectively visualized the

three background materials in red, yellow, and purple, respec-

tively. For instance, the locally concentrated red material was

appropriately sampled and displayed. The sampled spots of

the yellow and purple materials accurately reflected the actual

distributions of these two materials.

Fig. 14 is a higher resolution rendering of the ROI indicated

by the red box in Fig. 13. Fig. 14(a) contains the anomaly

layer that pinpoints the locations of the anomalies, which are

highlighted by the 3-D icons. When the anomaly layer is not

shown, as in Fig. 14(b), we can see via the oriented sliver

layer that neighboring pixels contain these two anomalous

materials. Fig. 14(c)–(f) shows the data at various levels of

transparency of the pie-chart layer. When the details of pixel
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Fig. 13. Multilayer visualization for the Hyperion data set (a) with the
anomaly layer and (b) without the anomaly layer.

composition are not needed, the pie charts are made completely

transparent as in Fig. 14(c). When the pixel composition needs

to be studied, this layer can be made completely opaque as in

Fig. 14(f). To prevent the DSS layer and oriented sliver layer

from interfering with the analysis, these layers can be made

completely transparent as well. As described in [27], a window

can be popped up which lists the quantified abundances in

each pixel.

VI. EVALUATION AND DISCUSSION

Objective assessment is widely used to evaluate the multi-

spectral/hyperspectral image fusion and compression. For

instance, perceptual color distance [9], correlation coefficient

[4], distance preservation and feature separability [12], and

spectral angle preservation [10] were found to measure the

Fig. 14. Zoomed-in results of the ROI highlighted in the red box in Fig. 13.
(a) With the anomaly layer and (b) without the anomaly layer. (c)–(f) Displays
with the transparency of the pie-chart layer being changed from 0.0 (completely
transparent), 0.1, 0.5, to 1.0 (completely opaque).

fusion results. The Kullback–Leibler (KL) divergence was em-

ployed to assess the information content in color images [34].

Toet et al. extended a universal grayscale image quality index

to a perceptually decorrelated color space to measure color

image fidelity [33]. A broad range of perceptual quality metrics

and their applications to still image compression have been

reviewed by Eckert et al. [32]. However, these metrics cannot

be directly used to validate the proposed approach since it is a

feature-based visualization.

One of the objectives of hyperspectral image visualization

is to help observers analyze the scene. For instance, if dif-

ferent classes are displayed distinctively, then classification

can be accomplished more easily and accurately. Therefore,

subjective measurement is employed to validate the presented

visualization methods based on practical objectives. Subjective

evaluation is widely used to study the pros and cons of visual-

ization [38]. Bair et al. conducted a user study to find the op-

timal viewing for layered texture surfaces [35]. Acevedo et al.

employed subjective evaluation to investigate how the percep-

tual interactions among visual elements impact the efficiency of
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data exploration [36]. Ward and Theroux identified three phases

of a user study: defining goals, creating data sets, and perform-

ing studies [37]. Cai et al. designed a user study to evaluate

the layered visualization scheme for visualizing hyperspectral

images [39].

In our subjective evaluation, five remote sensing researchers

who have been analyzing hyperspectral images for several years

were asked to evaluate the proposed method and other ap-

proaches. In order to reduce the environment impacts, the study

was conducted in a laboratory on a 14-in Dell laptop computer

with a screen resolution of 1400 × 1050. The luminance in

the lab was constant during all the tests. Different visualization

results were displayed to the researchers. They were asked to

score the results using a five-level scoring system, in which

5 is the best and 1 is the worst. The answers were automatically

recorded and the averages were calculated. Everyone was given

the same amount of time, i.e., 20 min, to complete the entire

assessment. Two real data sets discussed before were also

used in this study: AVIRIS lunar lake and Hyperion data. The

multilayer visualization technique was compared with hard

classification (HARD), soft classification with color combina-

tion, double-layer scheme, OS, and DDS through the following

five tasks:

Task 1—Subtle Variation (SV): This task compared the ca-

pability of the DDS and non-uniformed DDS in displaying a

subtle variation of material spatial distribution. An endmember

abundance map generated by FCLSLU was displayed first.

Then, two displays were shown side-by-side: one visualized

the endmember distribution by DDS and the other visualized

by non-uniformed DDS. The question was: “Two visualization

techniques are used to visualize the endmember distribution

map. Which one do you think represents the variation better?

Please mark it.” All the observers thought non-uniformed DDS

was better than DDS in manifesting the subtle variation.

Task 2—Anomaly Pixel Detection (APD): This task verified

the capability of different techniques in helping observers find

and detect the number of anomalous pixels. The question was:

“In the following images, different visualization techniques

are used to visualize classification result, i.e., the gray-scale

abundance maps. Please indicate the number of anomalous

pixels you can find in the area enclosed by the box.” After

the viewer clicked the answer, the right solution was displayed.

Then, another another task was given: “Please score the visu-

alization techniques based on the difficulty in finding actual

anomalous pixels.” According to the answers, the multilayer

visualization technique could greatly facilitate anomalous pixel

identification, yielding more accurate results.

Task 3—Endmember Number Estimation (ENS): This task

tested the ability of visualization techniques in helping viewers

extract different classes in a region of interest. The first task

was: “Please indicate the number of different materials you can

find in the area enclosed by the box.” After the answer was

given, the right solution was provided. Then, the viewer was

given another task: “Please score the visualization techniques

based on the difficulty in determining the actual number of end-

members.” Although viewers could answer the first question

quickly using HARD, the answers were often wrong. Thus, all

of them gave HARD low scores. The average of the difficulty

TABLE I
EVALUATION OF VISUALIZATION TECHNIQUES

indicated that multilayer visualization could easily find the right

answer.

Task 4—Detailed Information Extraction (DIE): This task

validated the effectiveness of delivering detailed composition

information at the subpixel level, including the number of

endmembers and their percentages within the pixels. A cropped

region of interest was displayed to viewers. For the central

pixel in the region, the viewer was asked: “Please determine

the number of endmembers and the range of the maximum

abundance among all the endmember abundances.” After the

answers were provided, the solutions were shown. Then, an-

other task was given: “Please score the visualization techniques

based on the difficulty of extracting detailed information at the

subpixel level.” On average, viewers gave the double-layer and

multilayer visualization schemes higher scores than the others.

Task 5—Overall Appearance (OA): This task found the

viewers’ opinion in the overall performance of the visualization

techniques. The task was: “Based on the difficulty levels in

answering previous questions, please provide your preference

to the visualization techniques. A score of 5 means the most

preferred and 1 means the least preferred.” On average, the

double layer was considered as the most preferred and HARD

was the least preferred.

The evaluation demonstrated that researchers preferred non-

uniformed DDS because they can display more subtle variation

in the data. Table I listed the score of Tasks 2 to 5. The results

indicated that the proposed technique is in the first rank for the

task of APD and ENS. The DIE’ score of the proposed method

is slightly lower than the score of the double layer, but it is

significantly better than the scores of the other techniques.

However, the multilayer did not gain a very good score

on the task of OA. The feedback of the researchers indicated

that the gap among the sampling pixels impacts the attitude of

the viewers since the gap blurs the appearance of an image.

Based on the feedback of the researchers, the luminance of

layers will be improved by using some lighting strategies.

In addition, more user-friendly graphic user interface will be

designed to make the multilayer visualization more widely

evaluated in the future.

VII. CONCLUSION

This paper presents the use of a feature-driven multilayer

scheme to visualize hyperspectral image data. It is based on

the linear mixture analysis and takes advantage of the fully

constrained mixed-pixel classification. The proposed approach

automatically analyzes the spatial distribution and importance

of each type of endmembers and then chooses a proper tech-

nique to visualize it. It enhances the visibility of anomalous
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and low-probability materials. Moreover, it still maintains the

capability of visualizing the widely distributed endmembers

and the detailed composition at the subpixel level.

Unlike the traditional side-by-side grayscale displays or the

sequential-in-time displays, the proposed technique visualizes

all of the classification maps for endmembers in a single

textured image. It significantly improves the comprehension of

the spatial relationship among these collocated endmembers.

Compared to other existing hyperspectral visualization

techniques, which mostly visualize hyperspectral imagery as

one color image and cannot provide the precise composition

at the subpixel level, the embedded pie-chart layer in the

multilayer visualization technique provides the precise pixel

composition. This is particularly useful when a small region

is of great interest. For example, it is feasible to estimate the

size of small objects such as invasive species or military targets

based on material abundance within a pixel. The anomaly layer

highlights the anomalous pixels such as small targets, which

can greatly facilitate target detection. The DDS layer displays

the widely distributed endmembers such as background ma-

terials. The DDS non-uniform sampling can reflect the subtle

spatial variation in endmember distribution. The oriented silver

layer further emphasizes the distribution of important target

materials.

Furthermore, the interactive operation allows viewers to

select/deselect endmembers. This operation provides the ability

for viewers to investigate individual endmembers or to compare

two or more endmembers at the same time. This interaction is

lacking in existing visualization techniques. We believe such a

synergy can greatly enhance the presentation of the abundant

information in hyperspectral imagery at both macro and micro

scales and can help researchers efficiently analyze hyperspec-

tral images.

REFERENCES

[1] T. M. Lillesand, R. W. Kiefer, and J. W. Chipman, Remote Sensing and

Image Interpretation, 5th ed. Hoboken, NJ: Wiley, 2003
[2] P. K. Robertson and J. F. O’Callaghan, “The application of perceptual

color spaces to the display of remotely sensed imagery,” IEEE Trans.

Geosci. Remote Sens., vol. 26, no. 1, pp. 49–59, Jan. 1988.
[3] J. M. Durand and Y. H. Kerr, “An improved decorrelation method for the

efficient display of multispectral data,” IEEE Trans. Geosci. Remote Sens.,
vol. 27, no. 5, pp. 611–619, Sep. 1989.

[4] B. Demir, A. Çelebi, and S. Ertürk, “A low-complexity approach for
the color display of hyperspectral remote-sensing images using one-bit-
transformation-based band selection,” IEEE Trans. Geosci. Remote Sens.,
vol. 471, pp. 97–105, Jan. 2009.

[5] J. S. Tyo, A. Konsolakis, D. I. Diersen, and R. C. Olsen, “Principal
components-based display strategy for spectral imagery,” IEEE Trans.

Geosci. Remote Sens., vol. 41, no. 3, pp. 708–718, Mar. 2003.
[6] V. Tsagaris, V. Anastassopoulos, and G. A. Lampropoulos, “Fusion of

hyperspectral data using segmented PCT for color representation and clas-
sification,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 10, pp. 2365–
2375, Oct. 2005.

[7] A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A transformation
for ordering multispectral data in terms of image quality with implications
for noise removal,” IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1,
pp. 65–74, Jan. 1988.

[8] S. Cai, Q. Du, R. Moorhead, M. J. Mohammadi-Aragh, and D. Irby,
“Noise-adjusted principal component analysis for hyperspectral remotely
sensed imagery visualization,” in Proc. IEEE Vis. Conf. (Compendium),
2005, pp. 119–120.

[9] Q. Du, N. Raksuntorn, S. Cai, and R. J. Moorhead, “Color display for
hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6,
pp. 1858–1866, Jun. 2008.

[10] N. P. Jacobson and M. R. Gupta, “Design goals and solutions for display of
hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 11,
pp. 2684–2693, Nov. 2005.

[11] N. P. Jacobson, M. R. Gupta, and J. B. Cole, “Linear fusion of image sets
for display,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3277–
3288, Oct. 2007.

[12] M. Cui, A. Razdan, J. Hu, and P. Wonka, “Interactive hyperspectral image
visualization using convex optimization,” IEEE Trans. Geosci. Remote

Sens., vol. 47, no. 6, pp. 1673–1684, Jun. 2009.
[13] A. Marcal, “Automatic color indexing of hierarchically structured classi-

fied images,” in Proc. IEEE Geosci. Remote Sens. Symp., 2005, vol. 7,
pp. 4976–4979.

[14] D. C. Heinz and C.-I. Chang, “Fully constrained least squares linear spec-
tral mixture analysis method for material quantification in hyperspectral
imagery,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529–545,
Mar. 2001.

[15] D. M. Rogge, B. Rivard, J. Zhang, and J. Feng, “Iterative spectral un-
mixing for optimizing per-pixel endmember sets,” IEEE Trans. Geosci.

Remote Sens., vol. 44, no. 12, pp. 3725–3736, Dec. 2006.
[16] R. Wessels, M. Buchheit, and A. Espesset, “The development of a high

performance, high volume distributed hyperspectral processor and dis-
play system,” in Proc. IEEE Geosci. Remote Sens. Symp., 2002, vol. 4,
pp. 2519–2521.

[17] R. M. Kirby, H. Marmanis, and D. H. Laidlaw, “Visualizing multivalued
data from 2D incompressible flows using concepts from painting,” in
Proc. IEEE Vis. Conf., 1999, pp. 333–340.

[18] C. Forsell, S. Seipel, and M. Lind, “Simple 3D glyphs for spatial multi-
variate data,” in Proc. IEEE Symp. Inf. Vis., 2005, pp. 119–124.

[19] A. A. Bokinsky, “Multivariate data visualization with data-driven spots,”
Ph.D. dissertation, Univ. North Carolina, Chapel Hill, NC, 2003.

[20] R. Crawfis, “New techniques for the scientific visualization of three-
dimensional multi-variate and vector fields,” Ph.D. dissertation, Univ.
California Davis, Davis, CA, 1995.

[21] C. Weigle, W. Emigh, G. Liu, R. Taylor, J. Enns, and C. Healey, “Oriented
sliver textures: A technique for local value estimation of multiple scalar
fields,” in Proc. Graph. Interface, 2000, pp. 163–170.

[22] R. Taylor, “Visualizing multiple fields on the same surface,” IEEE

Comput. Graph. Appl., vol. 22, no. 3, pp. 6–10, May/Jun. 2002.
[23] R. J. Vickery, “New visualization techniques for multi-dimensional vari-

ables in complex physical domains,” Ph.D. dissertation, Mississippi State
Univ., Starkville, MS, 2003.

[24] C. G. Healey, “Effective visualization of large multidimensional datasets,”
Ph.D. dissertation, Univ. British Columbia, Vancouver, BC, Canada, 1996.

[25] C. G. Healey, S. Kocherlakota, V. Rao, R. Mehta, and R. S. Amant, “Vi-
sual perception and mixed-initiative interaction for assisted visualization
design,” IEEE Trans. Vis. Comput. Graphics, vol. 14, no. 2, pp. 396–411,
Mar./Apr. 2008.

[26] T. Urness, V. Interrante, E. Longmire, I. Marusic, S. O’Neill, and
T. W. Jones, “Strategies for the visualization of multiple 2d vector fields,”
IEEE Comput. Graph. Appl., vol. 26, no. 4, pp. 74–82, Jul./Aug. 2006.

[27] S. Cai, Q. Du, and R. J. Moorhead, “Hyperspectral imagery visualization
using double layers,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10,
pp. 3028–3036, Oct. 2007.

[28] J. B. Adams, M. O. Smith, and P. E. Johnson, “Spectral mixture mod-
elling: A new analysis of rock and soil types at the Viking Lander 1 site,”
J. Geophys. Res., vol. 91, pp. 8098–8112, 1985.

[29] C. M. Schweik and G. M. Green, “The use of spectral mixture analysis
to study human incentives, actions, and environmental outcomes,” Social

Sci. Comput. Rev., vol. 17, no. 1, pp. 40–63, 1999.
[30] F. A. Kruse, A. B. Lefkoff, J. W. Boardman, K. B. Heidebrecht,

A. T. Shapiro, J. P. Barloon, and A. F. H. Goetz, “The spectral image
processing system (SIPS)—Interactive visualization and analysis of imag-
ing spectrometer data,” Remote Sens. Environ., vol. 44, no. 2/3, pp. 145–
163, May/Jun. 1993.

[31] J. C. Harsanyi and C.-I. Chang, “Hyperspectral image classification and
dimensionality reduction: An orthogonal subspace projection approach,”
IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779–785, Jul. 1994.

[32] M. P. Eckert and A. P. Bradley, “Perceptual quality metrics applied to
still image compression,” Signal Process., vol. 70, no. 3, pp. 177–200,
Nov. 1998.

[33] A. Toet and M. P. Lucassen, “A new universal colour image fidelity
metric,” Displays, vol. 24, no. 4/5, pp. 197–207, Dec. 2003.

[34] V. Tsagaris and V. Anastassopoulos, “Assessing information content in
color image,” J. Electron. Imaging, vol. 14, no. 4, p. 043 007, 2005.

[35] A. S. Bair, D. H. House, and C. Ware, “Texturing of layered surfaces
for optimal viewing,” IEEE Trans. Vis. Comput. Graphics, vol. 12, no. 5,
pp. 1125–1132, Sep./Oct. 2006.



CAI et al.: FEATURE-DRIVEN MULTILAYER VISUALIZATION 3481

[36] D. Acevedo and D. Laidlaw, “Subjective quantification of perceptual in-
teractions among some 2D scientific visualization methods,” IEEE Trans.

Vis. Comput. Graphics, vol. 12, no. 5, pp. 1133–1140, Sep./Oct. 2006.
[37] M. O. Ward and K. J. Theroux, “Perceptual benchmarking for multivariate

data visualization,” in Proc. IEEE Vis. Conf., 1997, pp. 314–321.
[38] R. Kosara, C. G. Healey, W. Interrante, D. H. Laidlaw, and C. Ware “User

studies: Why, how, and when?” IEEE Comput. Graph. Appl., vol. 23,
no. 4pp. 20–25, Jul./Aug. 2003

[39] S. Cai, “Hyperspectral image visualization by using double and multiple
layers,” Ph.D. dissertation, Mississippi State Univ., MS, 2008.

Shangshu Cai (S’06–M’09) received the B.S. and
M.S. degrees in electrical engineering (Special Class
for the Gifted Young) from the University of Science
and Technology of China, Hefei, China, in 2000 and
2003, respectively, and the Ph.D. degree in electri-
cal engineering from Mississippi State University,
Mississippi State, in 2009.

He is currently a Postdoctoral Researcher with the
Center for Risk Studies and Safety, University of
California, Santa Barbara. His research interests in-
clude scientific visualization, high-dimensional data

visualization, hyperspectral image displaying, and image processing.

Qian Du (S’98–M’00–SM’05) received the Ph.D.
degree in electrical engineering from the University
of Maryland, Baltimore, in 2000.

From 2000 to 2004, she was with the Depart-
ment of Electrical Engineering and Computer Sci-
ence, Texas A&M University, Kingsville. In Fall
2004, she joined the Department of Electrical and
Computer Engineering, Mississippi State University,
Mississippi State, where she is currently an Asso-
ciate Professor. Her research interests include remote
sensing image analysis, pattern classification, data

compression, and neural networks.
Dr. Du currently serves as Co-Chair for the Data Fusion Technical Commit-

tee of the IEEE Geoscience and Remote Sensing Society. She also serves as a
Guest Editor for the special issue on Spectral Unmixing of Remotely Sensed
Data in the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

and Guest Editor for the special issue on High Performance Computing in
Earth Observation and Remote Sensing in the IEEE JOURNAL OF SELECTED

TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING.
She is a member of SPIE, ASPRS, and ASEE.

Robert J. Moorhead, II (S’81–M’85–SM’92) re-
ceived the B.S.E.E. degree from Geneva College,
Beaver Falls, PA, in 1980, and the M.S.E.E. and
Ph.D. degrees in electrical engineering from North
Carolina State University, Raleigh, in 1982 and 1985,
respectively.

He is currently a Professor with the Depart-
ment of Electrical and Computer Engineering and
the Director of the Geosystems Research Institute,
Mississippi State University, Mississippi State. He
was previously a Research Staff Member at the IBM

T. J. Watson Research Center, Yorktown Heights, NY. His current research
interests include computationally demanding visualization and analysis issues.
He has previously conducted research in computer communications and image/
video coding. He has published more than 100 papers.


