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ABSTRACT

We put forth a modular approach for distilling hidden flow physics from discrete and sparse observations. To address functional expressiblity,
a key limitation of the black-box machine learning methods, we have exploited the use of symbolic regression as a principle for identifying
relations and operators that are related to the underlying processes. This approach combines evolutionary computation with feature engineer-
ing to provide a tool for discovering hidden parameterizations embedded in the trajectory of fluid flows in the Eulerian frame of reference. Our
approach in this study mainly involves gene expression programming (GEP) and sequential threshold ridge regression (STRidge) algorithms.
We demonstrate our results in three different applications: (i) equation discovery, (ii) truncation error analysis, and (iii) hidden physics dis-
covery, for which we include both predicting unknown source terms from a set of sparse observations and discovering subgrid scale closure
models. We illustrate that both GEP and STRidge algorithms are able to distill the Smagorinsky model from an array of tailored features in
solving the Kraichnan turbulence problem. Our results demonstrate the huge potential of these techniques in complex physics problems, and
reveal the importance of feature selection and feature engineering in model discovery approaches.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5136351

I. INTRODUCTION

Since the dawn of mathematical modeling of complex physi-
cal processes, scientists have been attempting to formulate predic-
tive models to infer current and future states. These first principle
models are generally conceptualized from conservation laws, sound
physical arguments, and empirical heuristics drawn from either con-
ducting experiments or hypotheses made by an insightful researcher.
However, there are many complex systems (some being climate sci-
ence, weather forecasting, and disease control modeling) with their
governing equations known partially, and their hidden physics wait
to be modeled. In the last decade, there have been rapid advances
in machine 1earning“2 and easy access to rich data, thanks to the
plummeting costs of sensors and high performance computers.

This paradigm shift in data driven techniques can be readily
exploited to distill new or improved physical models for nonlinear

dynamical systems. Extracting predictive models based on observing
complex patterns from vast multimodal data can be loosely termed
reverse engineering nature. This approach is not particularly new;
for example, Kepler used planets’ positional data to approximate
their elliptic orbits. The reverse engineering approach is most appro-
priate in the modern age as we can leverage computers to directly
infer physical laws from data collected from omnipresent sensors
that otherwise might not be comprehensible to humans. Symbolic
regression methods are a class of data driven algorithms that aim
to find a mathematical model that can describe and predict hidden
physics from observed input-response data. Some of the popular
machine learning techniques that are adapted for the task of sym-
bolic regression are neural networks,”* compressive sensing/sparse
optimization,”® and evolutionary algorithms.””

Symbolic regression (SR) approaches based on evolutionary

computation”’ are a class of frameworks that are capable of finding
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analytically tractable functions. Traditional deterministic regression
algorithms assume a mathematical form and only find parameters
that best fit the data. On the other hand, evolutionary SR approaches
aim to simultaneously find parameters and also learn the best-fit
functional form of the model from input-response data. Evolu-
tionary algorithms search for functional abstractions with a prese-
lected set of mathematical operators and operands while minimiz-
ing the error metrics. Furthermore, the optimal model is selected
from Pareto front analysis with respect to minimizing accuracy vs
model complexity. Genetic programming (GP)” is a popular choice
leveraged by most of the SR frameworks. GP is an extended and
improved version of a genetic algorithm (GA),'”'" which is inspired
by Darwin’s theory of natural evolution. Seminal work was done in
identifying hidden physical laws'”'” from the input-output response
using the GP approach. GP has been applied in the context of the SR
approach in digital signal processing,"* nonlinear system identifica-
tion,"” and aerodynamic parametric estimation.'® Furthermore, GP
as an SR tool was applied to identify complex closed-loop feedback
control laws for turbulent separated flows.'”*’ Hidden physical laws
of the evolution of a harmonic oscillator based on sensor measure-
ments and the real world prediction of solar power production at a
site were identified using GP as an SR approach.”’

Improved versions of GP focus on better representation of the
chromosome, which helps in the free evolution of the chromo-
some with constraints on the complexity of its growth, and faster
searches for the best chromosome. Some of these improved ver-
sions of GP are gene expression programming (GEP),’ parse matrix
evolution (PME),” and linear genetic programming (LGP).”” GEP
takes advantage of the linear coded chromosome approach from GA
and the parse tree evolution of GP to alleviate the disadvantages of
both GA and GP. GEP was applied to diverse applications as an
SR tool to recover nonlinear dynamical systems.”* *” Recently, GEP
was modified for tensor regression, termed as multi-GEP, and has
been applied to recover functional models approximating the non-
linear behavior of the stress tensor in the Reynolds-averaged Navier-
Stokes (RANS) equations.”® Furthermore, this novel algorithm was
extended to identify closure models in a combustion setting for large
eddy simulations (LES).” Similarly, a new damping function has
been discovered using the GEP algorithm for the hybrid RANS/LES
methodology.”’ Generally, evolutionary based SR approaches can
identify models with complex nonlinear compositions given enough
computational time.

Compressive sensing (CS)”° is predominately applied to signal
processing in seeking the sparsest solution (i.e., a solution with the
fewest number of features). Basis pursuit algorithms,” also identi-
fied as sparsity promoting optimization techniques,”” play a fun-
damental role in CS. Ordinary least squares (OLS) optimization
generally results in identifying models with large complexity, which
are prone to overfitting. In sparse optimization, the OLS objective
function is regularized by an additional constraint on the coeffi-
cient vector. This regularization helps in taming and shrinking large
coefficients and thereby promoting sparsity in feature selection and
avoiding overfitted solutions. The least absolute shrinkage and selec-
tion operator (LASSO)’>"" is one of the most popular regularized
least squares (LS) regression methods. In LASSO, an L; penalty is
added to the LS objective function to recover sparse solutions.” In
Bayesian terms, LASSO is a maximum a posteriori estimate (MAP)
of LS with Laplacian priors. LASSO performs feature selection and
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simultaneously shrinks large coefficients, which may manifest to
overfit the training data. Ridge regression™ is another regularized
variant where an L, penalty is added to the LS objective function.
Ridge regression is also defined as a MAP estimate of LS with a
Gaussian prior. The L, penalty helps in grouping multiple correlated
basis functions and increases robustness and convergence stability
for ill-conditioned systems. The elastic net approach’”** is a hybrid
of the LASSO and ridge approaches combining the strengths of both
algorithms.

Derived from these advances, a seminal work was done in
employing sparse regression to identify the physical laws of nonlin-
ear dynamical systems.”” This work leverages the structure of sparse
physical laws, i.e., only a few terms represent the dynamics. The
authors have constructed a large feature library of potential basis
functions that has the expressive power to define the dynamics and
then seek to find a sparse feature set from this overdetermined sys-
tem. To achieve this, a sequential threshold least squares (STLS)
algorithm™ has been introduced in such a way that a hard thresh-
old on OLS coefficients is performed recursively to obtain sparse
solutions. This algorithm was leveraged to form a framework called
sparse identification of nonlinear dynamics (SINDy) * to extract the
physical laws of nonlinear dynamical systems represented by ordi-
nary differential equations (ODEs). This work re-envisioned model
discovery from the perspective of sparse optimization and com-
pressive sensing. The SINDy framework recovered various bench-
mark dynamical systems such as the chaotic Lorenz system and
vortex shedding behind a cylinder. However, STLS regression finds
it challenging to discover physical laws that are represented by
spatiotemporal data or high-dimensional measurements and have
highly correlated features in the basis library. This limitation was
addressed using a regularized variant of STLS called the sequential
threshold ridge regression (STRidge) algorithm.”’ This algorithm
was intended to discover unknown governing equations that are
represented by partial differential equations (PDEs), hence forming
a framework termed as PDE-functional identification of nonlinear
dynamics (PDE-FIND)."’ PDE-FIND was applied to recover canon-
ical PDEs representing various nonlinear dynamics. This framework
also performs reasonably well under the addition of noise to data
and measurements. These sparse optimization frameworks generally
have a free parameter associated with the regularization term that is
tuned by the user to recover models ranging from highly complex to
parsimonious.

In a similar direction of discovering governing equations using
sparse regression techniques, L; regularized LS minimization was
used to recover various nonlinear PDEs*"** using both high fidelity
and distorted (noisy) data. Additionally, limited and distorted data
samples were used to recover chaotic and high-dimensional non-
linear dynamical systems.””** To automatically filter models with
respect to model complexity (number of terms in the model) vs
test accuracy, Bayes information criteria were used to rank the most
informative models.”” Furthermore, SINDy coupled with model
information criteria is used to infer canonical biological mod-
els*® and introduce a reduced order modeling (ROM) framework.”’
STRidge"’ was applied as a deterministic SR method to derive alge-
braic Reynolds-stress models for the RANS equations.”® Recently,
various sparse regression algorithms such as LASSO,” STRidge,"
sparse relaxed regularized regression,”” and the forward-backward
greedy algorithm™ were investigated to recover truncation error
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terms of various modified differential equations (MDEs) coming
from canonical PDEs.”’ The frameworks discussed above assume
that the structure of the model to be recovered is sparse in nature;
that is, only a small number of terms govern the dynamics of the
system. This assumption holds for many physical systems in science
and engineering.

Fast function extraction (FFX)*’ is another deterministic SR
approach based on pathwise regularized learning that is also called
the elastic net algorithm.”” The resulting models of FFX are selected
through nondominated filtering concerning accuracy and model
complexity, similar to evolutionary computations. FFX is influenced
by both GP and CS to better distill physical models from data. FFX
has been applied to recover hidden physical laws,”’ canonical gov-
erning equations,”’ and Reynolds stress models for the RANS equa-
tions.” Some other potential algorithms for deterministic SR are
elite bases regression (EBR)’” and prioritized grammar enumeration
(PGE).” EBR uses only elite features in the search space selected by
measuring correlation coefficients of features for the target model.
PGE is another deterministic approach that aims for the substantial
reduction of the search space where the genetic operators and ran-
dom numbers from GP are replaced with grammar production rules
and systematic choices.

An artificial neural network (ANN), also referred to as deep
learning if multiple hidden layers are used, is a machine learning
technique that transforms input features through nonlinear interac-
tions and maps to output target features.”’ ANNs attracted atten-
tion in recent times due to their exemplary performance in mod-
eling complex nonlinear interactions across a wide range of appli-
cations including image processing,” video classification,” and
autonomous driving.”” ANNs produce black-box models that are
not quite open to physical inference or interpretability. Recently,
physics-informed neural networks (PINNs)*’ were proposed in the
flavor of SR that is capable of identifying scalar parameters for
known physical models. PINNs use a loss function in symbolic
form to help ANNs adhere to the physical structure of the system.
Along similar directions, a Gaussian process regression (GPR) has
been also investigated for the discovery of coefficients by recast-
ing unknown coefficients as GPR kernel hyperparameters for vari-
ous time dependent PDEs.”"** As a nonlinear system identification
tool, the GPR approach provides a powerful framework to model
dynamical systems.”** State calibration with the four dimensional
variational data assimilation (4D VAR)" and deep learning tech-
niques such as long short-term memory (LSTM)** have been used
for model identification in ROM settings. Convolutional neural net-
works (CNNs) are constructed to produce hidden physical laws from
using the insight of establishing direct connections between filters
and finite difference approximations of differential operators.’” "
This approach has been demonstrated to discover underlying PDEs
from learning the filters by minimizing the loss functions.”””’

In this paper, we have exploited the use of SR in three dif-
ferent applications: equation discovery, truncation error analysis,
and hidden physics discovery. We demonstrate the use of the evo-
lutionary computation algorithm, GEP, and the sparse regression
algorithm, STRidge, in the context of the SR approach to dis-
cover various physical laws represented by linear and nonlinear
PDEs from observing input-response data. We begin by demon-
strating the identification of canonical linear and nonlinear PDEs
that are up to the fifth order in space. For identifying one particular

scitation.org/journal/phf

PDE, we demonstrate the natural feature extraction ability of GEP
and the limits in the expressive and predictive power of using a
feature library when dealing with STRidge in discovering physical
laws. We then demonstrate the discovery of highly nonlinear trunca-
tion error terms of the Burgers MDE using both GEP and STRidge.
We highlight that the analysis of truncation errors is very impor-
tant in the implicit large eddy simulation as a way to determine
inherent turbulence models. This analysis is usually very tedious
and elaborate, and our study provides a clear example of how SR
tools are suitable in such research. Following truncation error terms
identification, we apply GEP using sparse data to recover hidden
source terms represented by complex function compositions for
a one-dimensional (1D) advection-diffusion process and a two-
dimensional (2D) vortex-merger problem. Furthermore, both GEP
and STRidge are used to demonstrate the identification of the eddy
viscosity kernel along with its ad hoc modeling coefficient closing
LES equations simulating the 2D decaying turbulence problem. An
important result is the ability of the proposed methodology to distill
the Smagorinsky model from an array of tailored features in solving
the Kraichnan turbulence problem.

The rest of the paper is organized as follows: Section II gives
a brief description of the GEP and STRidge algorithms. In Sec. III,
GEP, and STRidge are tested on identifying different canonical
PDEs. Section IV deals with the identification of nonlinear trunca-
tion terms of the Burgers MDE using both STRidge and GEP. In
Sec. V we exploit GEP for identification of hidden source terms in
a 1D advection-diffusion process and a 2D vortex-merger problem.
We additionally demonstrate recovery of the eddy viscosity kernel
and its modeling coefficient by both GEP and STRidge for closing
the LES equations simulating the 2D decaying turbulence problem
in the same section. Finally, Sec. VI draws our conclusions and
highlights some ideas for future extensions of this work.

Il. METHODOLOGY

We recover various physical models from data using two sym-
bolic regression tools, namely, GEP, an evolutionary computing
algorithm, and STRidge, which is a deterministic algorithm that
draws its influences from compressive sensing and sparse optimiza-
tion. We take the example of the equation discovery problem that
is discussed in Sec. III to elaborate on the methodology of apply-
ing GEP and STRidge for recovering various physical models. We
restrict the PDEs to be recovered to quadratic nonlinear and up to
the fifth order in space. The general nonlinear PDE to be recovered
is in the form of

L U3e)s M

where subscripts denote the order of partial differentiation and o
is an arbitrary parameter. For example, consider the problem of
identifying the viscous Burgers equation

2 2
U = F(0, Uy U Uy Usgs Utk Uy - .

U + Ully = Viay, (2)

where u(x,t) € R™" is the velocity field and v is the kinematic vis-
cosity. In our study, m is the number of time snapshots and # is the
number of spatial locations. The solution field u(x, t) is generally
obtained by solving Eq. (2) analytically or numerically. The solution
field might also be obtained from sensor measurements that can be
arranged as shown follows:
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spatial locations
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For recovering PDEs, we need to construct a library of basis func-
tions called feature library that contains higher order derivatives of
the solution field u(x, t). Higher order spatial and temporal partial
derivative terms can be approximated using any numerical scheme
once the recording of the discrete data set given by Eq. (3) is avail-
able. In our current setup, we use the leapfrog scheme for approxi-
mating the temporal derivatives and central difference schemes for
spatial derivatives as follows:

u;nl _ ”f_l
U= ——F———">
2dt
u§+l _ 21/[5 + u571
Ut=—"—""°>7""»
de?
P
e ”f+1 U
x 2dx
P
Upx = L 2uj ’ ”5—1’ 4
dx?
o = 2 -2l ol
2dx3? ’
o = 2 — 4l 6l +—aul | )
dx4
“5:3 4“f+2 + 5”511 51‘5) 1t 4”‘f 2 “{3
Usx = 2dxs 5

where temporal and spatial steps are given by dt and dx, respectively.
Within the expressions presented in Eq. (4), the spatial location
is denoted using subscript index j, and the temporal instant using
superscript index p.

We note that other approaches such as automatic differentia-
tion or spectral differentiation for periodic domains can easily be
adopted within our study. Both GEP and STRidge take the input
library consisting of features (basis functions) that are built using
Egs. (2) and (3). This core library, used for the equation discovery
problem in Sec. 111, is shown as follows:

V(1) = [U]] }

~ . 5
®(U) = [U Uy Uzx Usx Ugy USx] ( )

The solution u(x, t) and its spatial and temporal derivatives are
arranged with size m - n x 1 in each column of Eq. (5). For example,
the features (basis functions) U and U,y are arranged as follows:

u(xo, o) uzx(x0, 0)
u(xo,t1) uzx(x0,11)

, U= , 6
u(xj, tp) Z tax (%), tp) ()
u(xn)tm) u2x(xn> tm)
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where subscript j denotes the spatial location and subscript p
denotes the time snapshot. The features (basis functions) in the core
library ®(U) are expanded to include interacting features limited to
quadratic nonlinearity and also a constant term. The final expanded
library is given as

O(U)=1U U’ U, UU, U] ... U3, 7)

where the size of the library is @(U) ¢ R™" and Np is the
number of features (basis functions, i.e., Ng = 28 for our setup).
For example, if we have 501 spatial points and 101 time snapshots
with 28 bases, then ®(U) [Eq. (7)] contains 501 x 101 rows and 28
columns.

Note that the core feature library ®(U) in Eq. (5) is given as
an input to GEP to recover PDEs and the algorithm extracts higher
degree nonlinear interactions of core features in O(U) automati-
cally. However, for sparse optimization techniques such as STRidge,
explicit input of all possible combinations of core features in Eq. (5)
is required. Therefore, ®(U) in Eq. (7) forms the input to the
STRidge algorithm for equation identification. This forms the fun-
damental difference in terms of feature building for both algorithms.
Subsection II A gives a brief introduction to GEP and its specific
hyperparameters that control the efficacy of the algorithm in iden-
tifying physical models from observing data. Furthermore, Subsec-
tion IT B describes how to form linear system representations in
terms of V(t) and ®(U) and briefly describes the STRidge optimiza-
tion approach to identifying sparse features and thereby building
parsimonious models using spatiotemporal data.

A. Gene expression programming

Gene expression programming (GEP)®”' is a genotype-
phenotype evolutionary optimization algorithm which takes advan-
tage of the simple chromosome representation of genetic algorithm
(GA)" and the free expansion of complex chromosomes of genetic
programming (GP).” As in most evolutionary algorithms, this tech-
nique also starts with generating initial random populations, itera-
tively selecting candidate solutions according to a fitness function,
and improving candidate solutions by modifying through genetic
variations using one or more genetic operators. The main differ-
ence between GP and GEP is how both techniques define the nature
of their individuals. In GP, the individuals are nonlinear entities of
different sizes and shapes represented as parse trees, and in GEP,
the individuals are encoded as linear strings of fixed length called
genomes and chromosomes, similar to GA representation of indi-
viduals, and later expressed as nonlinear entities of different size
and shape called phenotypes or expression trees (ET). GEP is used
for a very broad range of applications, but here it is introduced as
a symbolic regression tool to extract constraint-free solutions from
input-response data.

The arrangement of a typical gene/chromosome in GEP is
shown in Fig. 1. The GEP gene is composed of head and tail regions
as illustrated in Fig. 1. The head of a gene consists of both symbolic
terms from functions (elements from a function set F) and termi-
nals (elements from a terminal set T) whereas the tail consists of
only terminals. The function set F may contain arithmetic mathe-
matical operators (e.g., +, X, —, /), nonlinear functions (e.g., sin, cos,
tan, arctan, sqrt, and exp), or Boolean operators (e.g., NOT, NOR, OR,
and anp) and the terminal set contains the symbolic variables. The
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gene always starts with a randomly generated mathematical opera-
tor from the function set F. The head length is one of the important
hyperparameters of GEP, and it is determined using trial and error
as there is no definite method to assign it. Once the head length is
determined, the size of the tail is computed as a function of the head
length and the maximum arity of a mathematical operator in the
function set F.” It can be calculated by the following equation:

tail length = head length x (amax — 1) + 1, (8)

where dmqy is the maximum argument of a function in F. The single
gene can be extended to multigenic chromosomes where individual
genes are linked using a linking function (e.g., +, %, /, —). The general
rule of thumb is to have a larger head and higher number of genes
when dealing with complex problems.”

The structural organization of the GEP gene is arranged in
terms of open reading frames (ORFs) inspired from biology where
the coding sequence of a gene equivalent to an ORF begins with a
start codon, continues with an amino acid codon, and ends with a
termination codon. In contrast to a gene in biology, the start site
is always the first position of a gene in GEP, but the termination
point does not always coincide with the last position of a gene. These
regions of the gene are termed noncoding regions downstream of the
termination point. Only the ORF region is expressed in the ET and
can be clearly seen in Fig. 1.

Even though the noncoding regions in GEP genes do not par-
ticipate in the final solution, the power of GEP evolvability lies
in this region. The syntactically correct genes in GEP evolve after
modification through diverse genetic operators due to this region’s
chromosome. This is the paramount difference between GEP and
GP implementations, where in the latter, many syntactically invalid
individuals are produced and need to be discarded while evolving
the solutions and additional special constraints are imposed on the

FIG. 1. ET of a gene/chromosome with its structure in GEP.
Q represents the square root operator.

depth/complexity of the candidate solution to be evolved to avoid
bloating problem."”

Figure 2 displays the typical flowchart of the GEP algorithm.
The process is described briefly below:

1. The optimization procedure starts with a random generation
of chromosomes built upon combinations of functions and
terminals. The size of the random population is a hyperparam-
eter and the larger the population size, better the probability of
finding the best candidate solution.

2. After the population is generated, the chromosomes are
expressed as ETs, and then this population is converted to a
numerical expression. This expression is then evaluated using
a fitness function. In our setup, we employ the mean squared
error between the best predicted model f* and the true model
f as the fitness function given by

1Y
MSE = > (fi ~ o))" ©)
I=1

where f is the value predicted by the chromosome k for the
fitness case I (out of N samples cases) and f; is the true or
measurement value for the I™ fitness case.

3. The termination criteria are checked after all fitness evalua-
tions, to continue evolving or to save the best fitness chromo-
some as our final predicted model. In our current setup, we
terminate after a specified number of generations.

4. The evolvability/reproduction of the chromosome through
genetic operators, which is the core part of the GEP evolu-
tionary algorithm, executes if termination criteria are not met.
Before the genetic operations on the chromosome begin, the
best chromosome according to the fitness function is cloned to
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the next generations using a selection method. Popular selec-
tion methods include tournament selection with elitism and
roulette-wheel selection with elitism. In our current setup, we
use tournament selection with elitism.

5. The four genetic operators that introduce variation in popu-
lations are mutation, inversion, transposition, and recombina-
tion. The GEP transposition operator is applied to the elements
of the chromosome in three ways: insertion sequence (IS), root
insertion sequence (RIS), and gene insertion sequence, and
similarly, three kinds of recombination are applied, namely,
one point, two point, and gene recombination.

6. The process is continued until the termination criteria are met,
which is the number of generations in our current setup.

Numerical constants occur in most mathematical models, and
therefore, it is important to any symbolic regression tools to effec-
tively integrate floating point constants in their optimization search.
GP’ handles numerical constants by introducing random numer-
ical constants in a specified range to its parse trees. The random
constants are moved around the parse trees using the crossover
operator. GEP handles the creation of random numerical constants
(RNCs) by using an extra terminal “?” and a separate domain Dc
composed of symbols chosen to represent random numerical con-
stants.” This Dc specific domain starts from the end of the tail of the
gene.

For each gene, RNCs are generated during the creation of a
random initial population and kept in an array. To maintain the
genetic variations in the pool of RNCs, additional genetic opera-
tors are introduced to take effect on Dc specific regions. Hence,
in addition to the usual genetic operators such as mutation, inver-
sion, transposition, and recombination, the GEP-RNC algorithm

has Dc specific inversion, transposition, and random constant muta-
tion operators. Hence, with these modifications to the algorithm,
an appropriate diversity of random constants can be generated and
evolved through operations of genetic operators. The values for each
genetic operator selected for this study are listed in Table I. These
values are selected from various examples given by Ferreira’ com-
bined with the trial and error approach. Additionally, to simplify
our study, we use the same parameters for all the test cases even
though they may not be the best values for the test case under
investigation.

Once decent values of genetic operators that can explore the
search space are selected, the size of the head length, population, and
the number of genes form the most important hyperparameters for
GEP. Generally, larger head length and a greater number of genes
are selected for identifying complex expressions. Larger population
size helps in a diverse set of initial candidates, which may help GEP
in finding the best chromosome in a lower number of generations.
However, computational overhead increases with an increase in the
size of the population. Furthermore, the best chromosome can be
identified in fewer generations with the right selection of the link-
ing function between genes. The GEP algorithm inherently performs
poorly in predicting the numerical constants that are ubiquitous in
physical laws. Hence, the GEP-RNC algorithm is used where a range
of random constants are predefined to help GEP to find numerical
constants. This also becomes important in GEP for identifying the
underlying expression in fewer generations. Finally, we note that due
to the heuristic nature of evolutionary algorithms, any other combi-
nations of hyperparameters might work perfectly in identifying the
symbolic expressions. In this study, we use geppy,”” an open source
library for symbolic regression using GEP, which is built as an exten-
sion to the distributed evolutionary algorithms in Python (DEAP)
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TABLE |. GEP hyperparameters for various genetic operators selected for all the test
cases in this study.

Hyperparameters Value
Selection Tournament selection
Mutation rate 0.05
Inversion 0.1
IS transposition rate 0.1
RIS transposition rate 0.1
Gene transposition rate 0.1
One point recombination 0.3
Two point recombination 0.2
Gene recombination 0.1
Dc specific mutation rate 0.05
Dc specific inversion rate 0.1
Dc specific transposition rate 0.1
Random constant mutation rate 0.02

package.”” All codes used in this study are made available on Github
(https://github.com/sayin/SR).

B. Sequential threshold ridge regression

Compressive sensing/sparse optimization” * has been exploited
for sparse feature selection from a large library of potential candidate
features and recovering dynamical systems represented by ODEs
and PDEs””** in a highly efficient computational manner. In our
setup, we use this STRidge"’ algorithm to recover various hidden
physical models from observed data. In continuation with Sec. II
where we define feature library ®(U) and target/output data V(t),
this subsection briefly explains the formation of an overdetermined
linear system for STRidge optimization to identify various physical
models from data.

The Burgers PDE given in Eq. (2) or any other PDE under con-
sideration can be written in the form of linear system representation
in terms of ®(U) and V(t),

V() o)

gt

m.n X1

m.n X Ny
measurements

ARTICLE scitation.org/journal/phf

V(t) = 0(U) - B, (10)

where B = [B1, B2, . . ., B, ] is the coefficient vector of size R™, where
Ny is the number of features (basis functions) in library ®(U). Note
that ®(U) is an over-complete library (the number of measurements
is greater than the number of features) and has rich feature (col-
umn) space to represent the dynamics under consideration. Thus,
we form an overdetermined linear system in Eq. (10). The goal
of STRidge is to find a sparse coefficient vector B that only con-
sists of active features, which best represent the dynamics. The rest
of the features are hard thresholded to zero. For example, in the
Burgers equation given by Eq. (2), STRidge ideally has to find the
coefficient vector B that corresponds to the features uu, and usy,
and simultaneously, it should set all other feature coefficients to
zero.

The linear system defined in Eq. (10) can be solved for § using
the ordinary least squares (OLS) problem. However, OLS minimiza-
tion tries to form a functional relationship with all the features in
O(U) resulting in all nonzero values in the coefficient vector . Thus,
solving Eq. (10) using OLS infers a radically complex functional
form to represent the underlying PDE and generally results in over-
fitted models. Regularized least square minimization can be applied
to constrain the coefficients and avoid overfitting. Hence, regular-
ized LS optimization is preferred to identify the sparse features (basis
functions) along with their coefficient estimation. Typical estimation
of a sparse coefficient vector with P nonzero entries in f is shown in
Fig. 3. A general sparse regression objective function to approximate
the solution of the coefficient vector B is given by

B = argming|© - B V(V)[3 +A[B]o, (11)

where A is the regularizing weight and ||S||o corresponds to the
Lo penalty, which makes the problem np-hard. Hence, to arrive at
the convex optimization problem of Eq. (12), L; and L, penalties
are generally used to approximate the solution of the coefficient
vector 3.

The addition of the L, penalty to the LS objective function,
which corresponds to a maximum a posteriori estimate (MAP) of
a Laplacian prior and is termed the least absolute shrinkage and
selection operator (LASSO) in compressive sensing, is defined by

=

P

nonzero
l entries FIG. 3. Structure of compressive matrices with sparse

nonzero entries in coefficient vector . Red boxes in f vec-
— tor correspond to active feature coefficients and all other
Ny x1 coefficients being set to zero.
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ALGORITHM 1. STRidge(®, V(t), A, tol, iters).*°

Input: @, V(t), \, tol, iters

Output: 8~

B* = argming|® - B - V()| + A B2

large = {p : |B;| > tol}

B*[large] =0

B [large] = STRidge(®[:, large], V(t), A, tol, iters — 1)
return 8

B* = argming @ - B~ V(O + A B].. (12)

However, the performance of LASSO deteriorates when the feature
space is correlated.”’ The sequential threshold least squares (STLS)
algorithm was proposed to identify dynamical systems represented
by ODEs.” In STLS, a hard threshold is performed on least square
estimates of regression coefficients and hard thresholding is recur-
sively performed on remaining nonzero coefficients. However, the
efficacy of STLS reduces when dealing with the identification of sys-
tems containing multiple correlated columns in ®. Hence, L, regu-
larized least squares termed ridge regression,”® which corresponds
to the maximum a posteriori estimate using a Gaussian prior, is
proposed to handle the identification of PDEs. Ridge regression is
defined by

B =argming|@- B V(B)[3 +A[B]> = (7@ + A1) V(). (13)

TABLE II. Summary of canonical PDEs selected for recovery.

scitation.org/journal/phf

Ridge regression is substituted for ordinary least squares in
STLS and the resulting algorithm is termed sequential thresh-
old ridge regression (STRidge)."” The STRidge framework’ is
illustrated in Algorithm 1 for the sake of completeness. Note
that, if A = 0, STRidge becomes the STLS procedure. For more
details on updating tolerance (tol) to perform hard thresholding in
Algorithm 1, readers are encouraged to refer to the supplementary
document of Rudy et al.*

We use the framework provided by Rudy et al.* in our current
study. The hyperparameters in STRidge include the regularization
weight A and tolerance level tol, which are to be tuned to identify
appropriate physical models. In the present study, the sensitivity
of feature coefficients for various values of A and the final value of
X where the best model is identified is shown. The following sec-
tions deal with various numerical experiments to test the GEP and
STRidge frameworks.

Ill. EQUATION DISCOVERY

Partial differential equations (PDEs) play a prominent role in
all branches of science and engineering. They are generally derived
from conservation laws, sound physical arguments, and empiri-
cal heuristic from an insightful researcher. The recent explosion of
machine learning algorithms provides new ways to identify hidden
physical laws represented by PDEs using only data. In this sec-
tion, we demonstrate the identification of various linear and non-
linear canonical PDEs using the GEP and STRidge algorithms from
data alone. Analytical solutions of PDEs are used to form the data.

Discretization
Constant n (spatial)

PDE Exact solution parameters m (temporal)
Wave equation . B _ x€[0,1] (n=101),
Ui = —au, u(t, x) = sin(2n(x — at)) a=1.0 te 0, 1] (m=101)
Heat equation C e B _ x € [—m, ] (n=201),
e = iy u(t,x) = —sin(x) exp(—at) a=1.0 re 0, 1] (m=101)
Burgers equation u(t,x) = X 3 x€[0,1] (n=101),
(i) wr = —utiy + Viday (%) (t+1)(1+ (Vi+ 1) exp(i5 2-H)) v=001 te[0,1] (m=101)
Burgers equation f ) = 2vm exp(—nzvt) sin(7x) v=0.01, x€[0,1] (n=101),
(i) ur = —uuy + vupx u(tx) = a + exp(—m2vt) cos(mx) a=>5/4 t € [0, 100] (m =101)

Korteweg-de Vries equation

x € [—10, 10] (n = 501),

u(t,x) = 12(

Uy = —auty — Pusy

4 cosh(2x — 8t) + cosh(4x — 64t) + 3 a=6.0,
(3 cosh(x — 28¢) + cosh(3x — 36t))?

B=10 te[0,1] (m=201)

Kawahara equation (%) = 105 h ( ) 4 g z 18’ x € [—20, 20] (n = 401),
Ur = —Ully — QUsx — Py u(t,x) = 169 ¢ 213 x-a g 36/1’69 te[0,1] (m=101)
u(t,x) = x=L0,
Newell-Whitehead-Segel equation x 5t \? a=1.0, x € [—40, 40] (n = 401),
U = Klgy + ot — Pul (1+9XP(%—€)) p=1.0, t e [0,2] (m=201)
q=2

Sine-Gordon equation B 1 k= 1.0, x€[—2,2] (n=401),
Ut = Kilpx — o sin(u) ult, x) =4 tan""(sech(x)t) a=1.0 te[0,1] (m=101)
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TABLE Ill. GEP functional and terminal set used for equation discovery. “?" is a
random constant.

Parameter Value

+, —, X, /, sin, cos
Terminal set 0(U),?
Linking function +

Function set

FIG. 4. Analytical solution of the wave equation.

Table II summarizes various PDEs along with their analytical solu-
tions u(t, x) and domain discretization. Building a feature library and
corresponding response data to identify PDEs is discussed in detail
in Sec. I1.

We reiterate the methodology for PDE identification in Sec. I1.
The analytical solution u(t, x) is solved at discrete spatial and tempo-
ral locations resulting from the discretization of the space and time
domains as given in Table I1. The discrete analytical solution is used
as input data for calculating higher order spatial and temporal data
using the finite difference approximations listed in Eq. (4). Further-
more, the feature library is built using discrete solution u(t, x) and
higher order derivative, which is discussed in Sec. II. As GEP is a
natural feature extractor, core feature library ®(U) given in Eq. (5) is
enough to form input data, i.e., GEP terminal set. Table ITI shows the
function set and terminal set used for equation identification, and
Table I lists the hyperparameter values for various genetic operators.

scitation.org/journal/phf

However, the extended core feature library @(U), which contains a
higher degree of interactions of features, is used as input for STRidge
as the expressive power of STRidge depends on exhaustive combina-
tions of features in the input library. The temporal derivative of u(,
x) is target or response data V(t) given in Eq. (5) for both GEP and
STRidge.

A. Wave equation

Our first test case is the wave equation, which is a first
order linear PDE. The PDE and its analytical solution are listed
in Table II. We choose the constant wave speed a = 1.0 for
propagation of the solution u(t, x). Figure 4 shows the analyti-
cal solution u(t, x) of the wave equation. The GEP hyperparam-
eters used for identification of the wave equation are listed in
Table IV. We use a smaller head length and a single gene for sim-
ple cases like a linear wave PDE. We note that any other com-
binations of hyperparameters may identify the underlying PDE.
Figure 5 illustrates the identified PDE in the ET form. When the
ET form is simplified, we can show that the resulting equation is
the correct wave PDE, identified with its wave propagation speed
parameter a.

The regularization weight (A) in STRidge is swept across vari-
ous values, as shown in Fig. 6. The yellow line in Fig. 6 represents
the value of A at which the best identified PDE is selected. Note that
in this simple case, STRidge was able to find the wave equation for
almost all the values of X’s that are selected. Table V shows the wave
PDE recovered by both GEP and STRidge.

B. Heat equation

We use the heat equation, which is a second order linear PDE
to test both SR approaches. The PDE and its analytical solution are
listed in Table II. The physical parameter « = 1.0 may represent ther-
mal conductivity. Figure 7 displays the analytical solution u(t, x) of
the heat equation. Table IV lists the GEP hyperparameters used for
the identification of the heat equation. Figure 8 shows the identified
PDE in the form of an ET. When the ET form is simplified, we can
show that the resulting model is the heat equation identified with its
coefficient a.

The regularization weight (\) in STRidge is swept across vari-
ous values as shown in Fig. 9. The yellow line in Fig. 9 represents the
value of A selected at which STRidge finds the heat equation accu-
rately. Note that STRidge was able to find the heat equation for low

TABLE IV. GEP hyperparameters selected for identification of various PDEs.

Burgers Burgers

Hyperparameters Wave equation ~ Heat equation ~ equation (i)  equation (ii)
Head length 2 2 4 2
Number of genes 1 2 1 2
Population size 25 25 20 50
Generations 100 100 500 500
Length of RNC array 10 10 30 5
Random constant minimum —10 —1 —1 —1
Random constant maximum 10 1 1 1
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FIG. 7. Analytical solution of the heat equation.
FIG. 5. Wave equation in terms of ET identified by GEP.
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shows the heat equation recovered by both GEP and STRidge. S 0251, | i: |
STRidge was able to find a more accurate coefficient («) value than S 000t 1 1 " |
GEP. Furthermore, a small constant value is also identified along % |
with the heat equation by GEP. 8025 i
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TABLE V. Wave equation identified by GEP and STRidge. |
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TABLE VI. Heat equation identified by GEP and STRidge.

Recovered Test error
True uy = —1.00 uyy
GEP ur=—099 up, —5.33x10 1 5.55x 10 2*
STRidge ur = —1.00 upy 4.09%x107 %

C. Burgers equation (i)

The Burgers equation is a fundamental nonlinear PDE occur-
ring in various areas such as fluid mechanics, nonlinear acoustics,
gas dynamics, and traffic flow.””’® The interest in the Burgers equa-
tion arises due to the nonlinear term uu, and presents a challenge to
both GEP and STRidge in the identification of its PDE using data.
The form of the Burgers PDE and its analytical solution’” is listed
in Table II. The physical parameter v = 0.01 can be considered as
the kinematic viscosity in fluid flows. Figure 10 shows the analyti-
cal solution u(t, x) of the Burgers equation. Table IV shows the GEP
hyperparameters used for the identification of the Burgers equation.
Figure 11 shows the identified PDE in the form of the ET. When the
ET form is simplified, we can show that the resulting model is the
Burgers equation identified along with the coefficient of the nonlin-
ear term and the kinematic viscosity. GEP uses more generations for
identifying the Burgers PDE due to its nonlinear behavior along with
the identification of feature interaction term uu.

The regularization weight (A) in STRidge is swept across vari-
ous values as shown in Fig. 12. The yellow line in Fig. 12 represents
the value of X at which the best identified PDE is selected. Note that
the STRidge algorithm was able to find the Burgers equation at mul-
tiple values of regularization weights X. Table VII shows the Burgers
PDE recovered by both GEP and STRidge. There is an additional
constant coefficient term recovered by GEP. Furthermore, the recov-
ery of the nonlinear term using a limited set of input features shows
the usefulness of GEP.

D. Burgers equation (ii)

The Burgers PDE with a different analytical solution is used
to test the effectiveness of GEP and STRidge as the input data are

x 08 0.0

FIG. 10. Analytical solution of the Burgers equation (i).
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FIG. 11. Burgers equation (i) in terms of ET identified by GEP.

changed but represented by the same physical law. The analytical
solution of the Burgers equation (ii) is listed in Table II. The physical
parameter v = 0.01 is used to generate the data. Figure 13 shows the
alternate analytical solution u(t, x) of the Burgers equation. Table IV
shows the GEP hyperparameters used for the identification of the
Burgers equation (ii). Figure 14 shows the identified PDE in the
form of ET. When the ET form is simplified, we can show that the
resulting model is the Burgers equation identified along with the
coefficient of nonlinear term and kinematic viscosity. With an alter-
nate solution, GEP uses a larger head length, more genes, and a larger
population for identifying the same Burgers PDE.

The regularization weight (A) in STRidge is swept across vari-
ous values as shown in Fig. 15. The yellow line in Fig. 15 represents

1.00 |jm—————
0.75 1
0.50 A

0.25 4

B IR

Coefficients

—0.251

—0.50 1

—0.751

—1.00 4

FIG. 12. STRidge coefficients as a function of regularization parameter A for the
Burgers equation (i).
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TABLE VII. Burgers equation (i) identified by GEP and STRidge. 10d 1 g e
' [
IR Y _—
Recovered Test error - - RN Uax
Y
True U = —utly + 0.01 Uny 051 1
GEP U= —uthy +0.01 U — 123 x 10 ° 6.10x 10 % 0 ,"\\ !
STRidge ur = —uux + 0.01 usy 5.19x 1078 qC) 0.0 ! \,'
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FIG. 15. STRidge coefficients as a function of regularization parameter \ for the
Burgers equation (ii).

TABLE VIII. Burgers equation (i) identified by GEP and STRidge.

4 06 : 20
08 15 O Recovered Test error
FIG. 13. Analytical solution of the Burgers equation (ii). True ur = —1.00 uuy + 0.01 uay
GEP ur=—1.01 uty +0.01 tzy —333x107°  1.94x107°
STRidge  ur = —0.99 uuy + 0.01 uzy 1.85x10°°

the value of A at which the best identified PDE is selected. Note
that STRidge was able to find the Burgers equation at various val-
ues of regularization weight A. Table VIII shows the Burgers PDE
recovered by both GEP and STRidge. E. Korteweg-de Vries (KdV) equation

Korteweg and de Vries derived the KdV equation to model Rus-
sell’s phenomenon of solitons.”””” The KdV equation also appears
when modeling the behavior of magnetohydrodynamic waves in
warm plasmas, acoustic waves in an inharmonic crystal, and ion-
acoustic waves.”” Many different forms of the KdV equation are
available in the literature, but we use the form given in Table II.
Figure 16 shows the analytical solution u(t, x) of the KdV equation.”’
It can be seen that this analytical solution refers to two solutions

(x‘Nn

FIG. 14. Burgers equation (ii) in terms of ET identified by GEP. FIG. 16. Analytical solution of the KdV equation.
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TABLE IX. GEP hyperparameters selected for identification of various PDEs.

NWS Sine-Gordon

Hyperparameters KdV equation ~ Kawahara equation  equation equation
Head length 6 5 3
Number of genes 5 1 3 2
Population size 20 20 30 100
Generations 500 100 100 500
Length of RNC array 30 5 25 20
Random constant minimum 1 —1 —10 —10
Random constant maximum 10 1 10 10

colliding together, which forms a good test case for SR tech-
niques such as GEP and STRidge. Table IX shows the GEP
hyperparameters used for the identification of the KdV equa-
tion. Due to the higher order nonlinear dynamics represented

Coefficients

FIG. 18. STRidge coefficients as a function of regularization parameter A for the
KdV equation.

FIG. 17. KdV equation in terms of ET
identified by GEP.

by a higher order PDE, GEP requires a large head length
and genes compared to other test cases in equation discov-
ery. Figure 17 shows the identified PDE in the form of the
ET. When the ET form is simplified, we can observe that the
resulting model is the KdV equation identified along with its
coefficients.

The regularization weight (A\) in STRidge is swept across
various values as shown in Fig. 18. The yellow line in Fig. 18
represents the value of A at which the best identified PDE
is selected. Note that STRidge was able to find the KdV
equation at various values of the regularization weights (A).
Table X shows the KdV equation recovered by both GEP
and STRidge. The physical model identified by STRidge is
more accurate to the true PDE than the model identified
by GEP.

TABLE X. KdV equation identified by GEP and STRidge.

Recovered Test error
True ur = —6.00 uuy + 1.00 us3y
GEP U= —5.96 uty +0.99 13, — 5.84 x 10~ * 0.29
STRidge ur = —6.04 uuy + 1.02 uzy 0.02
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FIG. 19. Analytical solution of the Kawahara equation.

F. Kawahara equation

We consider the Kawahara equation, which is a fifth-order non-
linear PDE™ shown in Table II. This equation is sometimes also
referred to as a fifth-order KdV equation or singularly perturbed
KdV equation. The fifth-order KdV equation is one of the most well
known nonlinear evolution equation, which is used in the theory
of magnetoacoustic waves in a plasma,” capillary-gravity waves,”
and the theory of shallow water waves.”" This test case is intended to
test GEP and STRidge for identifying higher order derivatives from
observing data. We use an analytical solution,”” which is a traveling
wave solution given in Table II. This analytical solution also satis-
fies the linear wave equation and hence both GEP and STRidge may
recover a wave PDE (not shown here) as this is the sparsest model
represented by observed data (Fig. 19). For simplifying the analysis,
we remove the potential basis u, from the feature library']2 [®(U)]
for STRidge and additionally include uuy basis in core feature library
[6(U)] for GEP.

Table IX shows the GEP hyperparameters used for the iden-
tification of the Kawahara equation. Due to simplifying the feature

FIG. 20. Kawahara equation in terms of ET identified by GEP.

scitation.org/journal/phf

100 = = ) e e e e e

0.75 4

0.50 1 —-== Uly

0.25 4

Coefficients

—0.50 A

—0.75 A

—1.00 = == ]

T T
1072 1073 1074 1075 107 1077 1078 107° 10710

FIG. 21. STRidge coefficients as a function of regularization parameter X for the
Kawahara equation.

library, GEP requires smaller head length and single gene. Figure 20
shows the identified PDE in the form of ET. When the ET form is
simplified, we can show that the resulting model is the Kawahara
equation identified correctly along with its coefficients. For STRidge,
the regularization weight () is swept across various values as shown
in Fig. 21. The yellow line in Fig. 21 represents the value of X at which
the best identified PDE is selected. Note that STRidge was able to find
the Kawahara equation at various values of regularization weights
(M). Table XI shows the Kawahara equation identified by both GEP
and STRidge.

G. Newell-Whitehead-Segel equation

Newell-Whitehead-Segel (NWS) equation is a special case of
the Nagumo equation.”” Nagumo equation is a nonlinear reaction-
diffusion equation that models pulse transmission line simulating a
nerve axon,’’ population genetics,sS and circuit theory.89 The NWS
equation and its analytical solution are shown in Table II. We use
a traveling wave solution” that satisfies both wave and NWS equa-
tions (Fig. 22). We carry similar changes to the feature library that
was applied to discovering the Kawahara equation.

Table IX shows the GEP hyperparameters used for the identi-
fication of the NWS equation. However, in contrast to identifying
the Kawahara equation with smaller head length and single gene
from simplifying the feature library, for NWS case, GEP requires
larger head length and more genes for identifying PDE as shown in
Table IX. This is due to the identification of nonlinear interaction

TABLE XI. Kawahara equation identified by GEP and STRidge.

Recovered Test error
True ur = —1.0 uny — 1.00 uzx — 1.0 usy
GEP ur = —1.0 uty — 1.00 tzx — 1.0 sy 529x10 !
—827x108
STRidge u=—1.0 utty — 0.99 uzy — 1.0 usx 1.35x 1012
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FIG. 22. Analytical solution of the NWS equation.

feature u* that appears in the NWS equation. Figure 23 shows the
identified PDE in the form of ET. When the ET form is simplified,
we can show that the resulting model is the NWS equation identified
along with its coefficients. For STRidge, the regularization weight (A)
is swept across various values, as shown in Fig. 24. The yellow line
in Fig. 24 represents the value of A at which the best identified PDE
is selected. Note that STRidge was able to find the NWS equation
at various values of regularization weights (X). Table XII shows the
NWS equation identified by both GEP and STRidge.

H. Sine-Gordon equation

The Sine-Gordon equation is a nonlinear PDE that appears in
propagating fluxions in Josephson junctions,”" dislocation in crys-
tals,”” and nonlinear optics.”” The Sine-Gordon equation has a sine

scitation.org/journal/phf
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FIG. 24. STRidge coefficients as a function of regularization parameter A for the
NWS equation.

term that needs to be identified by GEP and STRidge by observ-
ing data (Fig. 25). This test case is straightforward for GEP as the
function set includes trigonometric operators that help to identify
the equation. However, the application of STRidge is suitable if the
feature library is limited to basic interactions and does not contain
a basis with trigonometric dependencies. STRidge may recover infi-
nite series approximations if higher degree basic feature interactions
are included in the feature library.”” Note that the output or target
data for the Sine-Gordon equation consists of a second order tem-
poral derivative of velocity field u(t, x). Hence, V(t) consists of u5;
measurements instead of u;.

FIG. 23. NWS equation in terms of ET
identified by GEP.
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TABLE XII. NWS equation identified by GEP and STRidge.
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TABLE XIlI. Sine-Gordon equation identified by GEP.

Recovered Test error Recovered Test error
True e = 1.00 uzx + 1.00 u — 1.00 4° True uzy = 1.00 1z, — 1.00 sin(u)
GEP U = 0.99 12 +0.99 u — 0.99 1> 3.02x10° " GEP w3 =099 uzx — 0.99sin(u) — 1.82x10°°  1.57x10 *
—827x10°
STRidge ur = 1.00 upyx + 0.99 1 — 0.99 1> 136 x 10~ 1
Table XIII shows the equation identified by GEP. This test case
demonstrates the usefulness of GEP in identifying models with com-
plex function composition and the limitations of the expressive and
predictive power of the feature library in STRidge.
20 IV. TRUNCATION ERROR ANALYSIS
23';) 25 This section deals with constructing a modified differential

20%
=
B}

FIG. 25. Analytical solution of the Sine-Gordon equation.

Table IX shows the GEP hyperparameters used for identify-
ing the Sine-Gordon equation. For our analysis, GEP was found
to be the best model when the larger population size was used.
Figure 26 shows the identified PDE in the form of ET. When the
ET form is simplified, we can show that the resulting model is the
Sine-Gordon equation identified along with its coefficients.
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FIG. 26. Sine-Gordon equation in terms of ET identified by GEP.

equation (MDE) for the Burgers equation. We aim at demonstrating
both GEP and STRidge techniques as SR tools in the identification
of truncation errors resulting from an MDE of the Burgers nonlinear
PDE. MDE:s provide valuable insights into discretization schemes
along with their temporal and spatial truncation errors. Initially,
MDE analysis was developed to connect the stability nonlinear dif-
ference equations with the form of the truncation errors.” In contin-
uation, the symbolic form of MDEs were developed and a key insight
was proposed that only the first few terms of the MDE dominate
the properties of the numerical discretization.” These developments
of MDE analysis lead to 1ncreas1ng accuracy by eliminating leading
order truncation error terms,”’ 1mprov1ng stability of schemes by
adding artificial viscosity terms,” preserving symmetrles, 7% and
ultimately sparse identification of truncation errors.”’ Therefore,
MDE analysis plays a prominent role in implicit large eddy simu-
lations (ILES)” as truncation errors are shown to have inherent tur-
bulence modeling capabilities.”’ Discretization schemes are tuned
in the ILES approach to model the subgrid scale tensor using trun-
cation errors. As the construction of MDEs becomes cumbersome
and intractable for complex flow configurations, data driven SR tools
such as GEP and STRidge can be exploited for the identification of
MDE:s by observing the data.

For demonstration purposes, we begin by constructing an MDE
of the Burgers equation,

Us + Ully = Vilay, (14)

and discretizing Eq. (14) using first order schemes (i.e., forward in
time and backward in space approximations for the spatial and tem-
poral derivatives, respectively) and a second order accurate central
difference approximation for the second order spatial derivatives.
The resulting discretized Burgers PDE is shown below,

P P P P
—u u._ +1—2u + U,

i J p j j -
a e T awe
where the temporal and spatial steps are given by dt and dx, respec-
tively. Within the expressions presented in Eq. (15), the spatial loca-
tion is denoted using subscript index j and the temporal snapshot
using superscript index p.

To derive the modified differential equation (MDE) of the
Burgers PDE, we substitute the Taylor approximations for each
term,

+1
uf
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TABLE XIV. GEP functional and terminal sets used for truncation error term recovery.
“?”is a random constant.

Parameter Value
Function set +, —, X
Terminal set 0(U),?
Linking function +

TABLE XV. GEP hyperparameters selected for identification of truncation error terms
of MDEs.

Burgers Burgers
Hyperparameters equation (i) equation (ii)
Head length 8 8
Number of genes 5 4
Population size 70 70
Generations 1000 1000
Length of RNC array 20 20
Random constant minimum 1.0x10°° 1.0x10°
Random constant maximum 0.01 0.01

P b p At At
uj = ; +dt(ut)j + T(Mzt)j + ?(uy)j +...

d? dx’
u}’.’ﬂ = uf +dx((ux))§7 + T(uz,c)ﬁ7 + ?(mx);’ +...¢- (16)

dx’? dx®
.y = o = dx(un)] + T(”Zx)f - ?(uu)f +e.

When we substitute these approximations into Eq. (15), we obtain
the Burgers MDE as follows:

(e + vy — vuz,c)j.7 = -R, (17)

where R represents the truncation error terms of the Burgers MDE
given as

_dt p  dx » vdx? » 2,4
R = 7(142[)]» + 7(1414,5)] - 7(1/[4)()]» + O(dt ,dx ) (