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ABSTRACT

We put forth a modular approach for distilling hidden flow physics from discrete and sparse observations. To address functional expressiblity,
a key limitation of the black-box machine learning methods, we have exploited the use of symbolic regression as a principle for identifying
relations and operators that are related to the underlying processes. This approach combines evolutionary computation with feature engineer-
ing to provide a tool for discovering hidden parameterizations embedded in the trajectory of fluid flows in the Eulerian frame of reference. Our
approach in this study mainly involves gene expression programming (GEP) and sequential threshold ridge regression (STRidge) algorithms.
We demonstrate our results in three different applications: (i) equation discovery, (ii) truncation error analysis, and (iii) hidden physics dis-
covery, for which we include both predicting unknown source terms from a set of sparse observations and discovering subgrid scale closure
models. We illustrate that both GEP and STRidge algorithms are able to distill the Smagorinsky model from an array of tailored features in
solving the Kraichnan turbulence problem. Our results demonstrate the huge potential of these techniques in complex physics problems, and
reveal the importance of feature selection and feature engineering in model discovery approaches.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5136351., s

I. INTRODUCTION

Since the dawn of mathematical modeling of complex physi-
cal processes, scientists have been attempting to formulate predic-
tive models to infer current and future states. These first principle
models are generally conceptualized from conservation laws, sound
physical arguments, and empirical heuristics drawn from either con-
ducting experiments or hypothesesmade by an insightful researcher.
However, there are many complex systems (some being climate sci-
ence, weather forecasting, and disease control modeling) with their
governing equations known partially, and their hidden physics wait
to be modeled. In the last decade, there have been rapid advances
in machine learning1,2 and easy access to rich data, thanks to the
plummeting costs of sensors and high performance computers.

This paradigm shift in data driven techniques can be readily
exploited to distill new or improved physical models for nonlinear

dynamical systems. Extracting predictive models based on observing
complex patterns from vast multimodal data can be loosely termed
reverse engineering nature. This approach is not particularly new;
for example, Kepler used planets’ positional data to approximate
their elliptic orbits. The reverse engineering approach is most appro-
priate in the modern age as we can leverage computers to directly
infer physical laws from data collected from omnipresent sensors
that otherwise might not be comprehensible to humans. Symbolic
regression methods are a class of data driven algorithms that aim
to find a mathematical model that can describe and predict hidden
physics from observed input-response data. Some of the popular
machine learning techniques that are adapted for the task of sym-
bolic regression are neural networks,3,4 compressive sensing/sparse
optimization,5,6 and evolutionary algorithms.7,8

Symbolic regression (SR) approaches based on evolutionary
computation7,9 are a class of frameworks that are capable of finding
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analytically tractable functions. Traditional deterministic regression
algorithms assume a mathematical form and only find parameters
that best fit the data. On the other hand, evolutionary SR approaches
aim to simultaneously find parameters and also learn the best-fit
functional form of the model from input-response data. Evolu-
tionary algorithms search for functional abstractions with a prese-
lected set of mathematical operators and operands while minimiz-
ing the error metrics. Furthermore, the optimal model is selected
from Pareto front analysis with respect to minimizing accuracy vs
model complexity. Genetic programming (GP)7 is a popular choice
leveraged by most of the SR frameworks. GP is an extended and
improved version of a genetic algorithm (GA),10,11 which is inspired
by Darwin’s theory of natural evolution. Seminal work was done in
identifying hidden physical laws12,13 from the input-output response
using the GP approach. GP has been applied in the context of the SR
approach in digital signal processing,14 nonlinear system identifica-
tion,15 and aerodynamic parametric estimation.16 Furthermore, GP
as an SR tool was applied to identify complex closed-loop feedback
control laws for turbulent separated flows.17–20 Hidden physical laws
of the evolution of a harmonic oscillator based on sensor measure-
ments and the real world prediction of solar power production at a
site were identified using GP as an SR approach.21

Improved versions of GP focus on better representation of the
chromosome, which helps in the free evolution of the chromo-
some with constraints on the complexity of its growth, and faster
searches for the best chromosome. Some of these improved ver-
sions of GP are gene expression programming (GEP),8 parse matrix
evolution (PME),22 and linear genetic programming (LGP).23 GEP
takes advantage of the linear coded chromosome approach from GA
and the parse tree evolution of GP to alleviate the disadvantages of
both GA and GP. GEP was applied to diverse applications as an
SR tool to recover nonlinear dynamical systems.24–27 Recently, GEP
was modified for tensor regression, termed as multi-GEP, and has
been applied to recover functional models approximating the non-
linear behavior of the stress tensor in the Reynolds-averaged Navier-
Stokes (RANS) equations.28 Furthermore, this novel algorithm was
extended to identify closure models in a combustion setting for large
eddy simulations (LES).29 Similarly, a new damping function has
been discovered using the GEP algorithm for the hybrid RANS/LES
methodology.30 Generally, evolutionary based SR approaches can
identify models with complex nonlinear compositions given enough
computational time.

Compressive sensing (CS)5,6 is predominately applied to signal
processing in seeking the sparsest solution (i.e., a solution with the
fewest number of features). Basis pursuit algorithms,31 also identi-
fied as sparsity promoting optimization techniques,32,33 play a fun-
damental role in CS. Ordinary least squares (OLS) optimization
generally results in identifying models with large complexity, which
are prone to overfitting. In sparse optimization, the OLS objective
function is regularized by an additional constraint on the coeffi-
cient vector. This regularization helps in taming and shrinking large
coefficients and thereby promoting sparsity in feature selection and
avoiding overfitted solutions. The least absolute shrinkage and selec-
tion operator (LASSO)32,34 is one of the most popular regularized
least squares (LS) regression methods. In LASSO, an L1 penalty is
added to the LS objective function to recover sparse solutions.35 In
Bayesian terms, LASSO is a maximum a posteriori estimate (MAP)
of LS with Laplacian priors. LASSO performs feature selection and

simultaneously shrinks large coefficients, which may manifest to
overfit the training data. Ridge regression36 is another regularized
variant where an L2 penalty is added to the LS objective function.
Ridge regression is also defined as a MAP estimate of LS with a
Gaussian prior. The L2 penalty helps in groupingmultiple correlated
basis functions and increases robustness and convergence stability
for ill-conditioned systems. The elastic net approach37,38 is a hybrid
of the LASSO and ridge approaches combining the strengths of both
algorithms.

Derived from these advances, a seminal work was done in
employing sparse regression to identify the physical laws of nonlin-
ear dynamical systems.39 This work leverages the structure of sparse
physical laws, i.e., only a few terms represent the dynamics. The
authors have constructed a large feature library of potential basis
functions that has the expressive power to define the dynamics and
then seek to find a sparse feature set from this overdetermined sys-
tem. To achieve this, a sequential threshold least squares (STLS)
algorithm39 has been introduced in such a way that a hard thresh-
old on OLS coefficients is performed recursively to obtain sparse
solutions. This algorithm was leveraged to form a framework called
sparse identification of nonlinear dynamics (SINDy)39 to extract the
physical laws of nonlinear dynamical systems represented by ordi-
nary differential equations (ODEs). This work re-envisioned model
discovery from the perspective of sparse optimization and com-
pressive sensing. The SINDy framework recovered various bench-
mark dynamical systems such as the chaotic Lorenz system and
vortex shedding behind a cylinder. However, STLS regression finds
it challenging to discover physical laws that are represented by
spatiotemporal data or high-dimensional measurements and have
highly correlated features in the basis library. This limitation was
addressed using a regularized variant of STLS called the sequential
threshold ridge regression (STRidge) algorithm.40 This algorithm
was intended to discover unknown governing equations that are
represented by partial differential equations (PDEs), hence forming
a framework termed as PDE-functional identification of nonlinear
dynamics (PDE-FIND).40 PDE-FIND was applied to recover canon-
ical PDEs representing various nonlinear dynamics. This framework
also performs reasonably well under the addition of noise to data
andmeasurements. These sparse optimization frameworks generally
have a free parameter associated with the regularization term that is
tuned by the user to recover models ranging from highly complex to
parsimonious.

In a similar direction of discovering governing equations using
sparse regression techniques, L1 regularized LS minimization was
used to recover various nonlinear PDEs41,42 using both high fidelity
and distorted (noisy) data. Additionally, limited and distorted data
samples were used to recover chaotic and high-dimensional non-
linear dynamical systems.43,44 To automatically filter models with
respect to model complexity (number of terms in the model) vs
test accuracy, Bayes information criteria were used to rank the most
informative models.45 Furthermore, SINDy coupled with model
information criteria is used to infer canonical biological mod-
els46 and introduce a reduced order modeling (ROM) framework.47

STRidge40 was applied as a deterministic SR method to derive alge-
braic Reynolds-stress models for the RANS equations.48 Recently,
various sparse regression algorithms such as LASSO,32 STRidge,40

sparse relaxed regularized regression,49 and the forward-backward
greedy algorithm50 were investigated to recover truncation error
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terms of various modified differential equations (MDEs) coming
from canonical PDEs.51 The frameworks discussed above assume
that the structure of the model to be recovered is sparse in nature;
that is, only a small number of terms govern the dynamics of the
system. This assumption holds for many physical systems in science
and engineering.

Fast function extraction (FFX)52 is another deterministic SR
approach based on pathwise regularized learning that is also called
the elastic net algorithm.37 The resulting models of FFX are selected
through nondominated filtering concerning accuracy and model
complexity, similar to evolutionary computations. FFX is influenced
by both GP and CS to better distill physical models from data. FFX
has been applied to recover hidden physical laws,21 canonical gov-
erning equations,53 and Reynolds stress models for the RANS equa-
tions.54 Some other potential algorithms for deterministic SR are
elite bases regression (EBR)55 and prioritized grammar enumeration
(PGE).56 EBR uses only elite features in the search space selected by
measuring correlation coefficients of features for the target model.
PGE is another deterministic approach that aims for the substantial
reduction of the search space where the genetic operators and ran-
dom numbers from GP are replaced with grammar production rules
and systematic choices.

An artificial neural network (ANN), also referred to as deep
learning if multiple hidden layers are used, is a machine learning
technique that transforms input features through nonlinear interac-
tions and maps to output target features.3,4 ANNs attracted atten-
tion in recent times due to their exemplary performance in mod-
eling complex nonlinear interactions across a wide range of appli-
cations including image processing,57 video classification,58 and
autonomous driving.59 ANNs produce black-box models that are
not quite open to physical inference or interpretability. Recently,
physics-informed neural networks (PINNs)60 were proposed in the
flavor of SR that is capable of identifying scalar parameters for
known physical models. PINNs use a loss function in symbolic
form to help ANNs adhere to the physical structure of the system.
Along similar directions, a Gaussian process regression (GPR) has
been also investigated for the discovery of coefficients by recast-
ing unknown coefficients as GPR kernel hyperparameters for vari-
ous time dependent PDEs.61,62 As a nonlinear system identification
tool, the GPR approach provides a powerful framework to model
dynamical systems.63,64 State calibration with the four dimensional
variational data assimilation (4D VAR)65 and deep learning tech-
niques such as long short-term memory (LSTM)66 have been used
for model identification in ROM settings. Convolutional neural net-
works (CNNs) are constructed to produce hidden physical laws from
using the insight of establishing direct connections between filters
and finite difference approximations of differential operators.67,68

This approach has been demonstrated to discover underlying PDEs
from learning the filters by minimizing the loss functions.69,70

In this paper, we have exploited the use of SR in three dif-
ferent applications: equation discovery, truncation error analysis,
and hidden physics discovery. We demonstrate the use of the evo-
lutionary computation algorithm, GEP, and the sparse regression
algorithm, STRidge, in the context of the SR approach to dis-
cover various physical laws represented by linear and nonlinear
PDEs from observing input-response data. We begin by demon-
strating the identification of canonical linear and nonlinear PDEs
that are up to the fifth order in space. For identifying one particular

PDE, we demonstrate the natural feature extraction ability of GEP
and the limits in the expressive and predictive power of using a
feature library when dealing with STRidge in discovering physical
laws.We then demonstrate the discovery of highly nonlinear trunca-
tion error terms of the Burgers MDE using both GEP and STRidge.
We highlight that the analysis of truncation errors is very impor-
tant in the implicit large eddy simulation as a way to determine
inherent turbulence models. This analysis is usually very tedious
and elaborate, and our study provides a clear example of how SR
tools are suitable in such research. Following truncation error terms
identification, we apply GEP using sparse data to recover hidden
source terms represented by complex function compositions for
a one-dimensional (1D) advection-diffusion process and a two-
dimensional (2D) vortex-merger problem. Furthermore, both GEP
and STRidge are used to demonstrate the identification of the eddy
viscosity kernel along with its ad hoc modeling coefficient closing
LES equations simulating the 2D decaying turbulence problem. An
important result is the ability of the proposed methodology to distill
the Smagorinsky model from an array of tailored features in solving
the Kraichnan turbulence problem.

The rest of the paper is organized as follows: Section II gives
a brief description of the GEP and STRidge algorithms. In Sec. III,
GEP, and STRidge are tested on identifying different canonical
PDEs. Section IV deals with the identification of nonlinear trunca-
tion terms of the Burgers MDE using both STRidge and GEP. In
Sec. V we exploit GEP for identification of hidden source terms in
a 1D advection-diffusion process and a 2D vortex-merger problem.
We additionally demonstrate recovery of the eddy viscosity kernel
and its modeling coefficient by both GEP and STRidge for closing
the LES equations simulating the 2D decaying turbulence problem
in the same section. Finally, Sec. VI draws our conclusions and
highlights some ideas for future extensions of this work.

II. METHODOLOGY

We recover various physical models from data using two sym-
bolic regression tools, namely, GEP, an evolutionary computing
algorithm, and STRidge, which is a deterministic algorithm that
draws its influences from compressive sensing and sparse optimiza-
tion. We take the example of the equation discovery problem that
is discussed in Sec. III to elaborate on the methodology of apply-
ing GEP and STRidge for recovering various physical models. We
restrict the PDEs to be recovered to quadratic nonlinear and up to
the fifth order in space. The general nonlinear PDE to be recovered
is in the form of

ut =F(σ,u,u2,ux,u2x,uux,u2x, . . . ,u25x), (1)

where subscripts denote the order of partial differentiation and σ
is an arbitrary parameter. For example, consider the problem of
identifying the viscous Burgers equation

ut + uux = νu2x, (2)

where u(x, t) ∈ Rm×n is the velocity field and ν is the kinematic vis-
cosity. In our study, m is the number of time snapshots and n is the
number of spatial locations. The solution field u(x, t) is generally
obtained by solving Eq. (2) analytically or numerically. The solution
field might also be obtained from sensor measurements that can be
arranged as shown follows:
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u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

spatial locations³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
u1(t1) u2(t1) . . . un(t1)
u1(t2) u2(t2) . . . un(t2)
⋮ ⋮ ⋱ ⋮

u1(tm) u2(tm) . . . un(tm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
time snapshots. (3)

For recovering PDEs, we need to construct a library of basis func-
tions called feature library that contains higher order derivatives of
the solution field u(x, t). Higher order spatial and temporal partial
derivative terms can be approximated using any numerical scheme
once the recording of the discrete data set given by Eq. (3) is avail-
able. In our current setup, we use the leapfrog scheme for approxi-
mating the temporal derivatives and central difference schemes for
spatial derivatives as follows:

ut =
u
p+1
j − u

p−1
j

2dt
,

u2t =
u
p+1
j − 2u

p
j + u

p−1
j

dt2
,

ux =
u
p
j+1 − u

p
j−1

2dx
,

u2x =
u
p
j+1 − 2u

p
j + u

p
j−1

dx2
,

u3x =
u
p
j+2 − 2u

p
j+1 + 2u

p
j−1 − u

p
j−2

2dx3
,

u4x =
u
p
j+2 − 4u

p
j+1 + 6u

p
j + −4u

p
j−1 − u

p
j−2

dx4
,

u5x =
u
p
j+3 − 4u

p
j+2 + 5u

p
j+1 − 5u

p
j−1 + 4u

p
j−2 − u

p
j−3

2dx5
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

where temporal and spatial steps are given by dt and dx, respectively.
Within the expressions presented in Eq. (4), the spatial location
is denoted using subscript index j, and the temporal instant using
superscript index p.

We note that other approaches such as automatic differentia-
tion or spectral differentiation for periodic domains can easily be
adopted within our study. Both GEP and STRidge take the input
library consisting of features (basis functions) that are built using
Eqs. (2) and (3). This core library, used for the equation discovery
problem in Sec. III, is shown as follows:

V(t) = [Ut]
Θ̃(U) = [U Ux U2x U3x U4x U5x]

⎫⎪⎪⎬⎪⎪⎭. (5)

The solution u(x, t) and its spatial and temporal derivatives are
arranged with size m ⋅ n × 1 in each column of Eq. (5). For example,
the features (basis functions) U and U2x are arranged as follows:

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(x0, t0)
u(x0, t1)
u(xj, tp)
u(xn, tm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, U2x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2x(x0, t0)
u2x(x0, t1)
u2x(xj, tp)
u2x(xn, tm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

where subscript j denotes the spatial location and subscript p
denotes the time snapshot. The features (basis functions) in the core
library Θ̃(U) are expanded to include interacting features limited to
quadratic nonlinearity and also a constant term. The final expanded
library is given as

Θ(U) = [1 U U2 Ux UUx U2
x . . . U2

5x], (7)

where the size of the library is Θ(U) ∈ R
m⋅n×Nβ and Nβ is the

number of features (basis functions, i.e., Nβ = 28 for our setup).
For example, if we have 501 spatial points and 101 time snapshots
with 28 bases, then Θ(U) [Eq. (7)] contains 501 × 101 rows and 28
columns.

Note that the core feature library Θ̃(U) in Eq. (5) is given as
an input to GEP to recover PDEs and the algorithm extracts higher
degree nonlinear interactions of core features in Θ̃(U) automati-
cally. However, for sparse optimization techniques such as STRidge,
explicit input of all possible combinations of core features in Eq. (5)
is required. Therefore, Θ(U) in Eq. (7) forms the input to the
STRidge algorithm for equation identification. This forms the fun-
damental difference in terms of feature building for both algorithms.
Subsection II A gives a brief introduction to GEP and its specific
hyperparameters that control the efficacy of the algorithm in iden-
tifying physical models from observing data. Furthermore, Subsec-
tion II B describes how to form linear system representations in
terms of V(t) and Θ(U) and briefly describes the STRidge optimiza-
tion approach to identifying sparse features and thereby building
parsimonious models using spatiotemporal data.

A. Gene expression programming

Gene expression programming (GEP)8,71 is a genotype-
phenotype evolutionary optimization algorithm which takes advan-
tage of the simple chromosome representation of genetic algorithm
(GA)10 and the free expansion of complex chromosomes of genetic
programming (GP).7 As in most evolutionary algorithms, this tech-
nique also starts with generating initial random populations, itera-
tively selecting candidate solutions according to a fitness function,
and improving candidate solutions by modifying through genetic
variations using one or more genetic operators. The main differ-
ence between GP and GEP is how both techniques define the nature
of their individuals. In GP, the individuals are nonlinear entities of
different sizes and shapes represented as parse trees, and in GEP,
the individuals are encoded as linear strings of fixed length called
genomes and chromosomes, similar to GA representation of indi-
viduals, and later expressed as nonlinear entities of different size
and shape called phenotypes or expression trees (ET). GEP is used
for a very broad range of applications, but here it is introduced as
a symbolic regression tool to extract constraint-free solutions from
input-response data.

The arrangement of a typical gene/chromosome in GEP is
shown in Fig. 1. The GEP gene is composed of head and tail regions
as illustrated in Fig. 1. The head of a gene consists of both symbolic
terms from functions (elements from a function set F) and termi-
nals (elements from a terminal set T) whereas the tail consists of
only terminals. The function set F may contain arithmetic mathe-
matical operators (e.g., +, ×, −, /), nonlinear functions (e.g., sin, cos,
tan, arctan, sqrt, and exp), or Boolean operators (e.g., NOT, NOR, OR,
and AND) and the terminal set contains the symbolic variables. The
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FIG. 1. ET of a gene/chromosome with its structure in GEP.
Q represents the square root operator.

gene always starts with a randomly generated mathematical opera-
tor from the function set F. The head length is one of the important
hyperparameters of GEP, and it is determined using trial and error
as there is no definite method to assign it. Once the head length is
determined, the size of the tail is computed as a function of the head
length and the maximum arity of a mathematical operator in the
function set F.9 It can be calculated by the following equation:

tail length = head length × (amax − 1) + 1, (8)

where amax is the maximum argument of a function in F. The single
gene can be extended to multigenic chromosomes where individual
genes are linked using a linking function (e.g., +, ×, /, −). The general
rule of thumb is to have a larger head and higher number of genes
when dealing with complex problems.9

The structural organization of the GEP gene is arranged in
terms of open reading frames (ORFs) inspired from biology where
the coding sequence of a gene equivalent to an ORF begins with a
start codon, continues with an amino acid codon, and ends with a
termination codon. In contrast to a gene in biology, the start site
is always the first position of a gene in GEP, but the termination
point does not always coincide with the last position of a gene. These
regions of the gene are termed noncoding regions downstream of the
termination point. Only the ORF region is expressed in the ET and
can be clearly seen in Fig. 1.

Even though the noncoding regions in GEP genes do not par-
ticipate in the final solution, the power of GEP evolvability lies
in this region. The syntactically correct genes in GEP evolve after
modification through diverse genetic operators due to this region’s
chromosome. This is the paramount difference between GEP and
GP implementations, where in the latter, many syntactically invalid
individuals are produced and need to be discarded while evolving
the solutions and additional special constraints are imposed on the

depth/complexity of the candidate solution to be evolved to avoid
bloating problem.19

Figure 2 displays the typical flowchart of the GEP algorithm.
The process is described briefly below:

1. The optimization procedure starts with a random generation
of chromosomes built upon combinations of functions and
terminals. The size of the random population is a hyperparam-
eter and the larger the population size, better the probability of
finding the best candidate solution.

2. After the population is generated, the chromosomes are
expressed as ETs, and then this population is converted to a
numerical expression. This expression is then evaluated using
a fitness function. In our setup, we employ the mean squared
error between the best predicted model f ∗ and the true model
f as the fitness function given by

MSE =
1

N

N

∑
l=1

(f ∗(lk) − f(l))2, (9)

where f ∗lk is the value predicted by the chromosome k for the
fitness case l (out of N samples cases) and fl is the true or

measurement value for the lth fitness case.
3. The termination criteria are checked after all fitness evalua-

tions, to continue evolving or to save the best fitness chromo-
some as our final predicted model. In our current setup, we
terminate after a specified number of generations.

4. The evolvability/reproduction of the chromosome through
genetic operators, which is the core part of the GEP evolu-
tionary algorithm, executes if termination criteria are not met.
Before the genetic operations on the chromosome begin, the
best chromosome according to the fitness function is cloned to
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FIG. 2. Flowchart of the gene expression
programming.

the next generations using a selection method. Popular selec-
tion methods include tournament selection with elitism and
roulette-wheel selection with elitism. In our current setup, we
use tournament selection with elitism.

5. The four genetic operators that introduce variation in popu-
lations are mutation, inversion, transposition, and recombina-
tion. The GEP transposition operator is applied to the elements
of the chromosome in three ways: insertion sequence (IS), root
insertion sequence (RIS), and gene insertion sequence, and
similarly, three kinds of recombination are applied, namely,
one point, two point, and gene recombination.

6. The process is continued until the termination criteria are met,
which is the number of generations in our current setup.

Numerical constants occur in most mathematical models, and
therefore, it is important to any symbolic regression tools to effec-
tively integrate floating point constants in their optimization search.
GP7 handles numerical constants by introducing random numer-
ical constants in a specified range to its parse trees. The random
constants are moved around the parse trees using the crossover
operator. GEP handles the creation of random numerical constants
(RNCs) by using an extra terminal “?” and a separate domain Dc
composed of symbols chosen to represent random numerical con-
stants.9 This Dc specific domain starts from the end of the tail of the
gene.

For each gene, RNCs are generated during the creation of a
random initial population and kept in an array. To maintain the
genetic variations in the pool of RNCs, additional genetic opera-
tors are introduced to take effect on Dc specific regions. Hence,
in addition to the usual genetic operators such as mutation, inver-
sion, transposition, and recombination, the GEP-RNC algorithm

has Dc specific inversion, transposition, and random constant muta-
tion operators. Hence, with these modifications to the algorithm,
an appropriate diversity of random constants can be generated and
evolved through operations of genetic operators. The values for each
genetic operator selected for this study are listed in Table I. These
values are selected from various examples given by Ferreira9 com-
bined with the trial and error approach. Additionally, to simplify
our study, we use the same parameters for all the test cases even
though they may not be the best values for the test case under
investigation.

Once decent values of genetic operators that can explore the
search space are selected, the size of the head length, population, and
the number of genes form the most important hyperparameters for
GEP. Generally, larger head length and a greater number of genes
are selected for identifying complex expressions. Larger population
size helps in a diverse set of initial candidates, which may help GEP
in finding the best chromosome in a lower number of generations.
However, computational overhead increases with an increase in the
size of the population. Furthermore, the best chromosome can be
identified in fewer generations with the right selection of the link-
ing function between genes. The GEP algorithm inherently performs
poorly in predicting the numerical constants that are ubiquitous in
physical laws. Hence, the GEP-RNC algorithm is used where a range
of random constants are predefined to help GEP to find numerical
constants. This also becomes important in GEP for identifying the
underlying expression in fewer generations. Finally, we note that due
to the heuristic nature of evolutionary algorithms, any other combi-
nations of hyperparameters might work perfectly in identifying the
symbolic expressions. In this study, we use geppy,72 an open source
library for symbolic regression using GEP, which is built as an exten-
sion to the distributed evolutionary algorithms in Python (DEAP)
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TABLE I. GEP hyperparameters for various genetic operators selected for all the test
cases in this study.

Hyperparameters Value

Selection Tournament selection

Mutation rate 0.05
Inversion 0.1
IS transposition rate 0.1
RIS transposition rate 0.1
Gene transposition rate 0.1
One point recombination 0.3
Two point recombination 0.2
Gene recombination 0.1
Dc specific mutation rate 0.05
Dc specific inversion rate 0.1
Dc specific transposition rate 0.1
Random constant mutation rate 0.02

package.73 All codes used in this study are made available on Github
(https://github.com/sayin/SR).

B. Sequential threshold ridge regression

Compressive sensing/sparse optimization5,74 has been exploited
for sparse feature selection from a large library of potential candidate
features and recovering dynamical systems represented by ODEs
and PDEs39,40,45 in a highly efficient computational manner. In our
setup, we use this STRidge40 algorithm to recover various hidden
physical models from observed data. In continuation with Sec. II
where we define feature library Θ(U) and target/output data V(t),
this subsection briefly explains the formation of an overdetermined
linear system for STRidge optimization to identify various physical
models from data.

The Burgers PDE given in Eq. (2) or any other PDE under con-
sideration can be written in the form of linear system representation
in terms ofΘ(U) and V(t),

V(t) = Θ(U) ⋅ β, (10)

where β = [β1,β2, . . . ,βNβ ] is the coefficient vector of sizeR
Nβ , where

Nβ is the number of features (basis functions) in library Θ(U). Note
thatΘ(U) is an over-complete library (the number of measurements
is greater than the number of features) and has rich feature (col-
umn) space to represent the dynamics under consideration. Thus,
we form an overdetermined linear system in Eq. (10). The goal
of STRidge is to find a sparse coefficient vector β that only con-
sists of active features, which best represent the dynamics. The rest
of the features are hard thresholded to zero. For example, in the
Burgers equation given by Eq. (2), STRidge ideally has to find the
coefficient vector β that corresponds to the features uux and u2x,
and simultaneously, it should set all other feature coefficients to
zero.

The linear system defined in Eq. (10) can be solved for β using
the ordinary least squares (OLS) problem. However, OLS minimiza-
tion tries to form a functional relationship with all the features in
Θ(U) resulting in all nonzero values in the coefficient vector β. Thus,
solving Eq. (10) using OLS infers a radically complex functional
form to represent the underlying PDE and generally results in over-
fitted models. Regularized least square minimization can be applied
to constrain the coefficients and avoid overfitting. Hence, regular-
ized LS optimization is preferred to identify the sparse features (basis
functions) along with their coefficient estimation. Typical estimation
of a sparse coefficient vector with P nonzero entries in β is shown in
Fig. 3. A general sparse regression objective function to approximate
the solution of the coefficient vector β is given by

β
∗

= argminβ∥Θ ⋅ β −V(t)∥22 + λ∥β∥0, (11)

where λ is the regularizing weight and ∥β∥0 corresponds to the
L0 penalty, which makes the problem np-hard. Hence, to arrive at
the convex optimization problem of Eq. (12), L1 and L2 penalties
are generally used to approximate the solution of the coefficient
vector β.

The addition of the L1 penalty to the LS objective function,
which corresponds to a maximum a posteriori estimate (MAP) of
a Laplacian prior and is termed the least absolute shrinkage and
selection operator (LASSO) in compressive sensing, is defined by

FIG. 3. Structure of compressive matrices with sparse
nonzero entries in coefficient vector β. Red boxes in β vec-
tor correspond to active feature coefficients and all other
coefficients being set to zero.
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ALGORITHM 1. STRidge(Θ, V(t), λ, tol, iters).40

Input: Θ, V(t), λ, tol, iters
Output: β∗

β∗ = argminβ∥Θ ⋅ β −V(t)∥22 + λ∥β∥22
large = {p : ∣β∗p ∣ ≥ tol}
β∗[ large] = 0
β∗[large] = STRidge(Θ[:, large], V(t), λ, tol, iters − 1)
return β∗

β
∗

= argminβ∥Θ ⋅ β −V(t)∥22 + λ∥β∥1. (12)

However, the performance of LASSO deteriorates when the feature
space is correlated.40 The sequential threshold least squares (STLS)
algorithm was proposed to identify dynamical systems represented
by ODEs.39 In STLS, a hard threshold is performed on least square
estimates of regression coefficients and hard thresholding is recur-
sively performed on remaining nonzero coefficients. However, the
efficacy of STLS reduces when dealing with the identification of sys-
tems containing multiple correlated columns in Θ. Hence, L2 regu-
larized least squares termed ridge regression,36 which corresponds
to the maximum a posteriori estimate using a Gaussian prior, is
proposed to handle the identification of PDEs. Ridge regression is
defined by

β
∗

= argminβ∥Θ ⋅ β −V(t)∥22 + λ∥β∥2 = (ΘT
Θ + λ

T
I)ΘT

V(t). (13)

Ridge regression is substituted for ordinary least squares in
STLS and the resulting algorithm is termed sequential thresh-
old ridge regression (STRidge).40 The STRidge framework40 is
illustrated in Algorithm 1 for the sake of completeness. Note
that, if λ = 0, STRidge becomes the STLS procedure. For more
details on updating tolerance (tol) to perform hard thresholding in
Algorithm 1, readers are encouraged to refer to the supplementary
document of Rudy et al.40

We use the framework provided by Rudy et al.40 in our current
study. The hyperparameters in STRidge include the regularization
weight λ and tolerance level tol, which are to be tuned to identify
appropriate physical models. In the present study, the sensitivity
of feature coefficients for various values of λ and the final value of
λ where the best model is identified is shown. The following sec-
tions deal with various numerical experiments to test the GEP and
STRidge frameworks.

III. EQUATION DISCOVERY

Partial differential equations (PDEs) play a prominent role in
all branches of science and engineering. They are generally derived
from conservation laws, sound physical arguments, and empiri-
cal heuristic from an insightful researcher. The recent explosion of
machine learning algorithms provides new ways to identify hidden
physical laws represented by PDEs using only data. In this sec-
tion, we demonstrate the identification of various linear and non-
linear canonical PDEs using the GEP and STRidge algorithms from
data alone. Analytical solutions of PDEs are used to form the data.

TABLE II. Summary of canonical PDEs selected for recovery.

Discretization
Constant n (spatial)

PDE Exact solution parameters m (temporal)

Wave equation
u(t, x) = sin(2π(x − at)) a = 1.0

x ∈ [0, 1] (n = 101),
ut = −aux t ∈ [0, 1] (m = 101)
Heat equation

u(t, x) = −sin(x) exp(−αt) α = 1.0
x ∈ [−π, π] (n = 201),

ut = −αu2x t ∈ [0, 1] (m = 101)

Burgers equation u(t, x) = x(t + 1)(1 + (√t + 1) exp( 1
16ν

4x2−t−1
t+1
)) ν = 0.01

x ∈ [0, 1] (n = 101),
(i) ut = −uux + νu2x t ∈ [0, 1] (m = 101)

Burgers equation
u(t, x) = 2νπ exp(−π2νt) sin(πx)

a + exp(−π2νt) cos(πx) ν = 0.01, x ∈ [0, 1] (n = 101),
(ii) ut = −uux + νu2x a = 5/4 t ∈ [0, 100] (m = 101)

Korteweg-de Vries equation
u(t, x) = 12(4 cosh(2x − 8t) + cosh(4x − 64t) + 3(3 cosh(x − 28t) + cosh(3x − 36t))2 ) α = 6.0, x ∈ [−10, 10] (n = 501),

ut = −αuux − βu3x β = 1.0 t ∈ [0, 1] (m = 201)

Kawahara equation
u(t, x) = 105

169
sech( 1

2
√
13
(x − at))4 α = 1.0,

x ∈ [−20, 20] (n = 401),
ut = −uux − αu3x − βu5x

β = 1.0,
t ∈ [0, 1] (m = 101)

a = 36/169

Newell-Whitehead-Segel equation
u(t, x) = 1

(1 + exp( x√
6
−
5t

6
))2

κ = 1.0,
x ∈ [−40, 40] (n = 401),

ut = κu2x + αu − βuq
α = 1.0,

t ∈ [0, 2] (m = 201)β = 1.0,
q = 2

Sine-Gordon equation
u(t, x) = 4 tan−1(sech(x)t)

κ = 1.0, x ∈ [−2, 2] (n = 401),
u2t = κu2x − α sin(u) α = 1.0 t ∈ [0, 1] (m = 101)
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TABLE III. GEP functional and terminal set used for equation discovery. “?” is a
random constant.

Parameter Value

Function set +, −, ×, /, sin, cos

Terminal set Θ̃(U), ?
Linking function +

FIG. 4. Analytical solution of the wave equation.

Table II summarizes various PDEs along with their analytical solu-
tions u(t, x) and domain discretization. Building a feature library and
corresponding response data to identify PDEs is discussed in detail
in Sec. II.

We reiterate the methodology for PDE identification in Sec. II.
The analytical solution u(t, x) is solved at discrete spatial and tempo-
ral locations resulting from the discretization of the space and time
domains as given in Table II. The discrete analytical solution is used
as input data for calculating higher order spatial and temporal data
using the finite difference approximations listed in Eq. (4). Further-
more, the feature library is built using discrete solution u(t, x) and
higher order derivative, which is discussed in Sec. II. As GEP is a
natural feature extractor, core feature library Θ̃(U) given in Eq. (5) is
enough to form input data, i.e., GEP terminal set. Table III shows the
function set and terminal set used for equation identification, and
Table I lists the hyperparameter values for various genetic operators.

However, the extended core feature library Θ(U), which contains a
higher degree of interactions of features, is used as input for STRidge
as the expressive power of STRidge depends on exhaustive combina-
tions of features in the input library. The temporal derivative of u(t,
x) is target or response data V(t) given in Eq. (5) for both GEP and
STRidge.

A. Wave equation

Our first test case is the wave equation, which is a first
order linear PDE. The PDE and its analytical solution are listed
in Table II. We choose the constant wave speed a = 1.0 for
propagation of the solution u(t, x). Figure 4 shows the analyti-
cal solution u(t, x) of the wave equation. The GEP hyperparam-
eters used for identification of the wave equation are listed in
Table IV. We use a smaller head length and a single gene for sim-
ple cases like a linear wave PDE. We note that any other com-
binations of hyperparameters may identify the underlying PDE.
Figure 5 illustrates the identified PDE in the ET form. When the
ET form is simplified, we can show that the resulting equation is
the correct wave PDE, identified with its wave propagation speed
parameter a.

The regularization weight (λ) in STRidge is swept across vari-
ous values, as shown in Fig. 6. The yellow line in Fig. 6 represents
the value of λ at which the best identified PDE is selected. Note that
in this simple case, STRidge was able to find the wave equation for
almost all the values of λ’s that are selected. Table V shows the wave
PDE recovered by both GEP and STRidge.

B. Heat equation

We use the heat equation, which is a second order linear PDE
to test both SR approaches. The PDE and its analytical solution are
listed in Table II. The physical parameter α = 1.0 may represent ther-
mal conductivity. Figure 7 displays the analytical solution u(t, x) of
the heat equation. Table IV lists the GEP hyperparameters used for
the identification of the heat equation. Figure 8 shows the identified
PDE in the form of an ET. When the ET form is simplified, we can
show that the resulting model is the heat equation identified with its
coefficient α.

The regularization weight (λ) in STRidge is swept across vari-
ous values as shown in Fig. 9. The yellow line in Fig. 9 represents the
value of λ selected at which STRidge finds the heat equation accu-
rately. Note that STRidge was able to find the heat equation for low

TABLE IV. GEP hyperparameters selected for identification of various PDEs.

Burgers Burgers
Hyperparameters Wave equation Heat equation equation (i) equation (ii)

Head length 2 2 4 2
Number of genes 1 2 1 2
Population size 25 25 20 50
Generations 100 100 500 500
Length of RNC array 10 10 30 5
Random constant minimum −10 −1 −1 −1
Random constant maximum 10 1 1 1
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FIG. 5. Wave equation in terms of ET identified by GEP.

FIG. 6. STRidge coefficients as a function of regularization parameter λ for the
wave equation.

values of the regularization weight λ as shown in Fig. 9. Table VI
shows the heat equation recovered by both GEP and STRidge.
STRidge was able to find a more accurate coefficient (α) value than
GEP. Furthermore, a small constant value is also identified along
with the heat equation by GEP.

TABLE V. Wave equation identified by GEP and STRidge.

Recovered Test error

True ut = −1.00 ux
GEP ut = −1.00 ux 1.72× 10−28

STRidge ut = −1.00 ux 9.01× 10−29

FIG. 7. Analytical solution of the heat equation.

FIG. 8. Heat equation in terms of ET identified by GEP.

FIG. 9. STRidge coefficients as a function of regularization parameter λ for the
heat equation.
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TABLE VI. Heat equation identified by GEP and STRidge.

Recovered Test error

True ut = −1.00 u2x
GEP ut = −0.99 u2x − 5.33 × 10−15 5.55× 10−24

STRidge ut = −1.00 u2x 4.09× 10−30

C. Burgers equation (i)

The Burgers equation is a fundamental nonlinear PDE occur-
ring in various areas such as fluid mechanics, nonlinear acoustics,
gas dynamics, and traffic flow.75,76 The interest in the Burgers equa-
tion arises due to the nonlinear term uux and presents a challenge to
both GEP and STRidge in the identification of its PDE using data.
The form of the Burgers PDE and its analytical solution77 is listed
in Table II. The physical parameter ν = 0.01 can be considered as
the kinematic viscosity in fluid flows. Figure 10 shows the analyti-
cal solution u(t, x) of the Burgers equation. Table IV shows the GEP
hyperparameters used for the identification of the Burgers equation.
Figure 11 shows the identified PDE in the form of the ET. When the
ET form is simplified, we can show that the resulting model is the
Burgers equation identified along with the coefficient of the nonlin-
ear term and the kinematic viscosity. GEP uses more generations for
identifying the Burgers PDE due to its nonlinear behavior along with
the identification of feature interaction term uux.

The regularization weight (λ) in STRidge is swept across vari-
ous values as shown in Fig. 12. The yellow line in Fig. 12 represents
the value of λ at which the best identified PDE is selected. Note that
the STRidge algorithm was able to find the Burgers equation at mul-
tiple values of regularization weights λ. Table VII shows the Burgers
PDE recovered by both GEP and STRidge. There is an additional
constant coefficient term recovered by GEP. Furthermore, the recov-
ery of the nonlinear term using a limited set of input features shows
the usefulness of GEP.

D. Burgers equation (ii)

The Burgers PDE with a different analytical solution is used
to test the effectiveness of GEP and STRidge as the input data are

FIG. 10. Analytical solution of the Burgers equation (i).

FIG. 11. Burgers equation (i) in terms of ET identified by GEP.

changed but represented by the same physical law. The analytical
solution of the Burgers equation (ii) is listed in Table II. The physical
parameter ν = 0.01 is used to generate the data. Figure 13 shows the
alternate analytical solution u(t, x) of the Burgers equation. Table IV
shows the GEP hyperparameters used for the identification of the
Burgers equation (ii). Figure 14 shows the identified PDE in the
form of ET. When the ET form is simplified, we can show that the
resulting model is the Burgers equation identified along with the
coefficient of nonlinear term and kinematic viscosity. With an alter-
nate solution, GEP uses a larger head length,more genes, and a larger
population for identifying the same Burgers PDE.

The regularization weight (λ) in STRidge is swept across vari-
ous values as shown in Fig. 15. The yellow line in Fig. 15 represents

FIG. 12. STRidge coefficients as a function of regularization parameter λ for the
Burgers equation (i).
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TABLE VII. Burgers equation (i) identified by GEP and STRidge.

Recovered Test error

True ut = −uux + 0.01 u2x
GEP ut = −uux + 0.01 u2x − 1.23 × 10−5 6.10× 10−8

STRidge ut = −uux + 0.01 u2x 5.19× 10−8

FIG. 13. Analytical solution of the Burgers equation (ii).

the value of λ at which the best identified PDE is selected. Note
that STRidge was able to find the Burgers equation at various val-
ues of regularization weight λ. Table VIII shows the Burgers PDE
recovered by both GEP and STRidge.

FIG. 14. Burgers equation (ii) in terms of ET identified by GEP.

FIG. 15. STRidge coefficients as a function of regularization parameter λ for the
Burgers equation (ii).

TABLE VIII. Burgers equation (ii) identified by GEP and STRidge.

Recovered Test error

True ut = −1.00 uux + 0.01 u2x
GEP ut = −1.01 uux + 0.01 u2x − 3.33 × 10−6 1.94× 10−9

STRidge ut = −0.99 uux + 0.01 u2x 1.85× 10−8

E. Korteweg-de Vries (KdV) equation

Korteweg and de Vries derived the KdV equation tomodel Rus-
sell’s phenomenon of solitons.78,79 The KdV equation also appears
when modeling the behavior of magnetohydrodynamic waves in
warm plasmas, acoustic waves in an inharmonic crystal, and ion-
acoustic waves.80 Many different forms of the KdV equation are
available in the literature, but we use the form given in Table II.
Figure 16 shows the analytical solution u(t, x) of the KdV equation.81

It can be seen that this analytical solution refers to two solutions

FIG. 16. Analytical solution of the KdV equation.
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TABLE IX. GEP hyperparameters selected for identification of various PDEs.

NWS Sine-Gordon
Hyperparameters KdV equation Kawahara equation equation equation

Head length 6 2 5 3
Number of genes 5 1 3 2
Population size 20 20 30 100
Generations 500 100 100 500
Length of RNC array 30 5 25 20
Random constant minimum 1 −1 −10 −10
Random constant maximum 10 1 10 10

FIG. 17. KdV equation in terms of ET
identified by GEP.

colliding together, which forms a good test case for SR tech-
niques such as GEP and STRidge. Table IX shows the GEP
hyperparameters used for the identification of the KdV equa-
tion. Due to the higher order nonlinear dynamics represented

FIG. 18. STRidge coefficients as a function of regularization parameter λ for the
KdV equation.

by a higher order PDE, GEP requires a large head length
and genes compared to other test cases in equation discov-
ery. Figure 17 shows the identified PDE in the form of the
ET. When the ET form is simplified, we can observe that the
resulting model is the KdV equation identified along with its
coefficients.

The regularization weight (λ) in STRidge is swept across
various values as shown in Fig. 18. The yellow line in Fig. 18
represents the value of λ at which the best identified PDE
is selected. Note that STRidge was able to find the KdV
equation at various values of the regularization weights (λ).
Table X shows the KdV equation recovered by both GEP
and STRidge. The physical model identified by STRidge is
more accurate to the true PDE than the model identified
by GEP.

TABLE X. KdV equation identified by GEP and STRidge.

Recovered Test error

True ut = −6.00 uux + 1.00 u3x
GEP ut = −5.96 uux + 0.99 u3x − 5.84 × 10−4 0.29
STRidge ut = −6.04 uux + 1.02 u3x 0.02
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FIG. 19. Analytical solution of the Kawahara equation.

F. Kawahara equation

We consider the Kawahara equation, which is a fifth-order non-
linear PDE82 shown in Table II. This equation is sometimes also
referred to as a fifth-order KdV equation or singularly perturbed
KdV equation. The fifth-order KdV equation is one of the most well
known nonlinear evolution equation, which is used in the theory
of magnetoacoustic waves in a plasma,82 capillary-gravity waves,83

and the theory of shallow water waves.84 This test case is intended to
test GEP and STRidge for identifying higher order derivatives from
observing data. We use an analytical solution,85 which is a traveling
wave solution given in Table II. This analytical solution also satis-
fies the linear wave equation and hence both GEP and STRidge may
recover a wave PDE (not shown here) as this is the sparsest model
represented by observed data (Fig. 19). For simplifying the analysis,
we remove the potential basis ux from the feature library42 [Θ(U)]
for STRidge and additionally include uux basis in core feature library
[Θ̃(U)] for GEP.

Table IX shows the GEP hyperparameters used for the iden-
tification of the Kawahara equation. Due to simplifying the feature

FIG. 20. Kawahara equation in terms of ET identified by GEP.

FIG. 21. STRidge coefficients as a function of regularization parameter λ for the
Kawahara equation.

library, GEP requires smaller head length and single gene. Figure 20
shows the identified PDE in the form of ET. When the ET form is
simplified, we can show that the resulting model is the Kawahara
equation identified correctly along with its coefficients. For STRidge,
the regularization weight (λ) is swept across various values as shown
in Fig. 21. The yellow line in Fig. 21 represents the value of λ at which
the best identified PDE is selected. Note that STRidge was able to find
the Kawahara equation at various values of regularization weights
(λ). Table XI shows the Kawahara equation identified by both GEP
and STRidge.

G. Newell-Whitehead-Segel equation

Newell-Whitehead-Segel (NWS) equation is a special case of
the Nagumo equation.86 Nagumo equation is a nonlinear reaction-
diffusion equation that models pulse transmission line simulating a
nerve axon,87 population genetics,88 and circuit theory.89 The NWS
equation and its analytical solution are shown in Table II. We use
a traveling wave solution90 that satisfies both wave and NWS equa-
tions (Fig. 22). We carry similar changes to the feature library that
was applied to discovering the Kawahara equation.

Table IX shows the GEP hyperparameters used for the identi-
fication of the NWS equation. However, in contrast to identifying
the Kawahara equation with smaller head length and single gene
from simplifying the feature library, for NWS case, GEP requires
larger head length and more genes for identifying PDE as shown in
Table IX. This is due to the identification of nonlinear interaction

TABLE XI. Kawahara equation identified by GEP and STRidge.

Recovered Test error

True ut = −1.0 uux − 1.00 u3x − 1.0 u5x
GEP ut = −1.0 uux − 1.00 u3x − 1.0 u5x 5.29× 10−11

− 8.27 × 10−8

STRidge ut = −1.0 uux − 0.99 u3x − 1.0 u5x 1.35× 10−12
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FIG. 22. Analytical solution of the NWS equation.

feature u2 that appears in the NWS equation. Figure 23 shows the
identified PDE in the form of ET. When the ET form is simplified,
we can show that the resulting model is the NWS equation identified
along with its coefficients. For STRidge, the regularization weight (λ)
is swept across various values, as shown in Fig. 24. The yellow line
in Fig. 24 represents the value of λ at which the best identified PDE
is selected. Note that STRidge was able to find the NWS equation
at various values of regularization weights (λ). Table XII shows the
NWS equation identified by both GEP and STRidge.

H. Sine-Gordon equation

The Sine-Gordon equation is a nonlinear PDE that appears in
propagating fluxions in Josephson junctions,91 dislocation in crys-
tals,92 and nonlinear optics.76 The Sine-Gordon equation has a sine

FIG. 24. STRidge coefficients as a function of regularization parameter λ for the
NWS equation.

term that needs to be identified by GEP and STRidge by observ-
ing data (Fig. 25). This test case is straightforward for GEP as the
function set includes trigonometric operators that help to identify
the equation. However, the application of STRidge is suitable if the
feature library is limited to basic interactions and does not contain
a basis with trigonometric dependencies. STRidge may recover infi-
nite series approximations if higher degree basic feature interactions
are included in the feature library.39 Note that the output or target
data for the Sine-Gordon equation consists of a second order tem-
poral derivative of velocity field u(t, x). Hence, V(t) consists of u2t
measurements instead of ut .

FIG. 23. NWS equation in terms of ET
identified by GEP.
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TABLE XII. NWS equation identified by GEP and STRidge.

Recovered Test error

True ut = 1.00 u2x + 1.00 u − 1.00 u2

GEP ut = 0.99 u2x + 0.99 u − 0.99 u2 3.02× 10−11

− 8.27 × 10−8

STRidge ut = 1.00 u2x + 0.99 u − 0.99 u2 1.36× 10−11

FIG. 25. Analytical solution of the Sine-Gordon equation.

Table IX shows the GEP hyperparameters used for identify-
ing the Sine-Gordon equation. For our analysis, GEP was found
to be the best model when the larger population size was used.
Figure 26 shows the identified PDE in the form of ET. When the
ET form is simplified, we can show that the resulting model is the
Sine-Gordon equation identified along with its coefficients.

FIG. 26. Sine-Gordon equation in terms of ET identified by GEP.

TABLE XIII. Sine-Gordon equation identified by GEP.

Recovered Test error

True u2t = 1.00 u2x − 1.00 sin(u)

GEP u2t = 0.99 u2x − 0.99 sin(u) − 1.82 × 10−5 1.57× 10−4

Table XIII shows the equation identified by GEP. This test case
demonstrates the usefulness of GEP in identifying models with com-
plex function composition and the limitations of the expressive and
predictive power of the feature library in STRidge.

IV. TRUNCATION ERROR ANALYSIS

This section deals with constructing a modified differential
equation (MDE) for the Burgers equation. We aim at demonstrating
both GEP and STRidge techniques as SR tools in the identification
of truncation errors resulting from anMDE of the Burgers nonlinear
PDE. MDEs provide valuable insights into discretization schemes
along with their temporal and spatial truncation errors. Initially,
MDE analysis was developed to connect the stability nonlinear dif-
ference equations with the form of the truncation errors.93 In contin-
uation, the symbolic form ofMDEs were developed and a key insight
was proposed that only the first few terms of the MDE dominate
the properties of the numerical discretization.94 These developments
of MDE analysis lead to increasing accuracy by eliminating leading
order truncation error terms,95 improving stability of schemes by
adding artificial viscosity terms,96 preserving symmetries,97,98 and
ultimately sparse identification of truncation errors.51 Therefore,
MDE analysis plays a prominent role in implicit large eddy simu-
lations (ILES)99 as truncation errors are shown to have inherent tur-
bulence modeling capabilities.100 Discretization schemes are tuned
in the ILES approach to model the subgrid scale tensor using trun-
cation errors. As the construction of MDEs becomes cumbersome
and intractable for complex flow configurations, data driven SR tools
such as GEP and STRidge can be exploited for the identification of
MDEs by observing the data.

For demonstration purposes, we begin by constructing anMDE
of the Burgers equation,

ut + uux = νu2x, (14)

and discretizing Eq. (14) using first order schemes (i.e., forward in
time and backward in space approximations for the spatial and tem-
poral derivatives, respectively) and a second order accurate central
difference approximation for the second order spatial derivatives.
The resulting discretized Burgers PDE is shown below,

u
p+1
j − u

p
j

dt
+ u

p
j

u
p
j − u

p
j−1

dx
= ν

u
p
j+1 − 2u

p
j + u

p
j−1

dx2
, (15)

where the temporal and spatial steps are given by dt and dx, respec-
tively. Within the expressions presented in Eq. (15), the spatial loca-
tion is denoted using subscript index j and the temporal snapshot
using superscript index p.

To derive the modified differential equation (MDE) of the
Burgers PDE, we substitute the Taylor approximations for each
term,
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TABLE XIV. GEP functional and terminal sets used for truncation error term recovery.
“?” is a random constant.

Parameter Value

Function set +, −, ×

Terminal set Θ̃(U), ?
Linking function +

TABLE XV. GEP hyperparameters selected for identification of truncation error terms
of MDEs.

Burgers Burgers
Hyperparameters equation (i) equation (ii)

Head length 8 8
Number of genes 5 4
Population size 70 70
Generations 1000 1000
Length of RNC array 20 20

Random constant minimum 1.0 × 10−6 1.0 × 10−5

Random constant maximum 0.01 0.01

u
p+1
j = u

p
j + dt(ut)pj + dt2

2
(u2t)pj + dt3

6
(u3t)pj + . . .

u
p
j+1 = u

p
j + dx((ux))pj + dx2

2
(u2x)pj + dx3

6
(u3x)pj + . . .

u
p
j−1 = u

p
j − dx(ux)pj + dx2

2
(u2x)pj − dx3

6
(u3x)pj + . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (16)

When we substitute these approximations into Eq. (15), we obtain
the Burgers MDE as follows:

(ut + uux − νu2x)pj = −R, (17)

where R represents the truncation error terms of the Burgers MDE
given as

R =
dt

2
(u2t)pj + dx

2
(uux)pj − νdx212

(u4x)pj +O(dt2,dx4). (18)

FIG. 28. STRidge coefficients as a function of regularization parameter λ for
truncation error of the Burgers MDE (i).

Furthermore, the temporal derivative in Eq. (18) is substituted with
the spatial derivatives resulting in

R = dtuu
2
x − dtνuxu2x − dtνuu3x −

dx

2
uu2x

+
dt

2
u
2
u2x −

νdx2

12
u4x +O(dt2,dx4). (19)

The truncation error or residual of the discretized equation
considering u(t, x) as exact solution to the Burgers PDE is equal to
the difference between the numerical scheme [Eq. (15)] and differ-
ential equation [Eq. (14)].101 This results in discretized equation with
the residual as shown as

u
p+1
j − u

p
j + u

p
j dt

u
p
j − u

p
j−1

dx
− νdt

u
p
j+1 − 2u

p
j + u

p
j−1

dx2
= Rdt. (20)

We follow the same methodology for constructing the output data
and feature library as discussed in Sec. II for the equation discovery.
However, the output or target dataV(t) are stored with the left hand
side of Eq. (20) denoted from now as Uer. The resulting output and

FIG. 27. Truncation error of the Burgers MDE using analytical solution of the Burgers equation (i) in terms of ET identified by GEP.
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TABLE XVI. Identified truncation error terms along with coefficients for the Burgers MDE (i) by GEP and STRidge.

True GEP Relative error (%) STRidge Relative error (%)

uu2x 2.5× 10−5 2.26× 10−5 9.6 2.48× 10−5 0.8

uxu2x −5.0× 10−7
−5.09× 10−7 1.8 −5.02× 10−7 0.4

uu3x −2.5× 10−7
−3.42× 10−7 36.8 −2.29× 10−7 8.4

u2u2x 1.25× 10−5 1.13× 10−5 9.6 1.22× 10−5 2.4

u4x 1.25× 10−9 1.38× 10−9 10.4 1.16× 10−9 7.2

uu2x −1.25× 10−5
−1.33× 10−5 6.4 −1.24× 10−5 0.8

FIG. 29. Truncation error term of the Burgers MDE using analytical solution of the Burgers equation (ii) in terms of ET identified by GEP.

core feature library are shown as follows:

V(t) = [Uer]
Θ̃(U) = [U Ux U2x U3x U4x]

⎫⎪⎪⎬⎪⎪⎭. (21)

The computation of the output data V(t) in Eq. (21) can be
obtained using the analytical solution of the Burgers PDE. Further-
more, the derivatives in the core feature library Θ̃(U) are calculated
using the finite difference approximations given by Eq. (4). We use
both analytical solutions listed in Table II for the Burgers equa-
tion (i) and the Burgers equation (ii) to test GEP and STRidge for
recovering truncation error terms.

We use the same extended feature library Θ̃(U) as input to
STRidge given in Eq. (7), but without the fifth order derivative. How-
ever, we add an additional third degree interaction of features to
Θ̃(U) to recover the truncation error terms containing third degree
nonlinearities. The extra nonlinear features that are added to Θ̃(U)
are given as follows:

[U2Ux U2U2x U2U3x U2U4x UU2
x UUxU2x UUxU3x UUxU4x].

In contrast, GEP uses the core feature Θ̃(U) as input as it identi-
fies the higher order nonlinear feature interactions automatically.
This test case shows the natural feature extraction capability of GEP
and the need to modify the feature library to increase the expressive
power of STRidge.

The functional and terminal sets used for the identification of
the truncation error are listed in Table XIV. First, we test the recov-
ery of truncation errors using the analytical solution of the Burgers
equation (i) with the same spatial and temporal domain listed in

FIG. 30. STRidge coefficients as a function of regularization parameter λ for
truncation error of the Burgers MDE (ii).
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TABLE XVII. Identified truncation error terms along with coefficients for the Burgers MDE (ii) by GEP and STRidge.

True GEP Relative error (%) STRidge Relative error (%)

uu2x 1.0× 10−2 8.19× 10−3 18.1 9.92× 10−3 0.8

uxu2x −2.0× 10−4
−2.64× 10−4 32.0 −1.99× 10−4 0.5

uu3x −1.0× 10−4
−1.55× 10−4 55.0 −9.91× 10−5 0.9

u2u2x 5.0× 10−3 4.21× 10−3 15.8 5.08× 10−3 1.6

u4x 5.0× 10−7 5.65× 10−7 13.0 4.94× 10−7 1.2

uu2x −2.5× 10−4
−2.75× 10−4 10 −2.54× 10−4 1.6

Table II. However, we set spatial discretization to dx = 0.005 and
temporal discretization to dt = 0.005 for storing the analytical solu-
tion u(t, x). This test case needs a large population size, bigger head
length, more genes, and more iterations as given in Table XV, as
the truncation error terms consist of nonlinear combinations of fea-
tures and the coefficients of error terms that are generally difficult
for GEP to identify. Figure 27 shows the ET form of the identi-
fied truncation error terms. The regularization weight λ for STRidge
is swept across a range of values, as shown in Fig. 28. The verti-
cal yellow line in Fig. 28 is the value of λ where STRidge identifies
the best truncation error model. Table XVI shows the recovered
error terms by GEP and STRidge along with their coefficients. Both
GEP and STRidge perform well in identifying the nonlinear spatial
error terms with STRidge predicting the error coefficient better than
GEP.

In the second case, we test the recovery of truncation errors
using an analytical solution of the Burgers equation (ii) with the
same the spatial and the temporal domain listed in Table II. We
select spatial discretization dx = 0.005 and the temporal discretiza-
tion dt = 0.1 for propagating the analytical solution u(t, x). This test
case also follows the previous case where a large population size,
bigger head length, more genes, and more iterations are needed, as
shown in Table XV. Figure 29 shows the ET form of the identified
truncation error terms. The regularization weight λ for STRidge is
swept across a range of values as shown in Fig. 30. In this test case,
the coefficients change rapidly with respect to λ, and the best model
is recovered only at the value of λ shown by the vertical yellow line
in Fig. 30. Table XVII shows the recovered error terms by GEP and
STRidge along with their coefficients. Similar to the previous test
case, STRidge predicts the truncation error coefficients better than
GEP.

V. HIDDEN PHYSICS DISCOVERY

In this section, we demonstrate the identification of hidden
physical laws from sparse data mimicking sensor measurements
using GEP and STRidge. Furthermore, we demonstrate the useful-
ness of GEP as a natural feature extractor that is capable of iden-
tifying complex functional compositions. However, STRidge in its
current form is limited by its expressive power, which depends
on its input feature library. Many governing equations of com-
plex systems in the modern world are only partially known or
in some cases still awaiting first principle equations. For exam-
ple, atmospheric radiation models or chemical reaction models
might not be fully known in governing equations of environmental

systems.102,103 These unknown models are generally manifested in
the right hand side of the known governing equations (i.e., dynam-
ical core) behaving as a source or forcing term. The recent explo-
sion of rapid data gathering using smart sensors104 has enabled
researchers to collect data that represent the true physics of com-
plex systems but their governing equations are only known par-
tially. To this end, SR approaches might be able to recover these
unknown physical models when exposed to data representing full
physics.

To demonstrate the proof of concept for identification of
unknown physics, we formulate a 1D advection-diffusion PDE and
a 2D vortex-merger problem. These problems include a source term
that represents the hidden physical law. We generate synthetic data
that contains true physics and substitute this data set into the known
governing equations. This results in an unknown physical model left
as a residual that must be recovered by GEP when exposed to a tar-
get or output containing the known part of the underlying processes.
Furthermore, both GEP and STRidge are tested to recover eddy vis-
cosity kernels for the 2D Kraichnan turbulence problem. These eddy
viscosity kernels are manifested as source terms in the LES equations
that model unresolved small scales. Additionally, the value of the ad
hoc free modeling parameter that controls the dissipation in eddy
viscosity models is also recovered using GEP and STRidge.

A. 1D advection-diffusion PDE

In the first test case, we consider a 1D nonhomogeneous
advection-diffusion PDE, which appears in many areas such as fluid
dynamics,105 heat transfer,106 and mass transfer.107 The nonhomo-
geneous PDE takes the form

ut + cux = αu2x + S(t, x), (22)

where c =
1

3π
, α =

1

4
and S(t, x) is the source term.

We use an analytical solution u(t, x) for solving Eq. (22). The
exact solution for this nonhomogeneous PDE is as follows:

u(t, x) = exp(π2t
4
) sin(πx), (23)

where the spatial domain x ∈ [0, 1] and the temporal domain t ∈ [0,
1]. We discretize the space and time domains with n = 501 and m
= 1001, respectively. Figure 31 shows the corresponding analytical
solution u(t, x).
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FIG. 31. Solution to the 1D advection-diffusion PDE with source term.

The source term S(t, x), which satisfies Eq. (22) for the analytical
solution provided by Eq. (23), is given as

S(t, x) = π2
2

exp(π2t
4
) sin(πx) + 1

3
exp(π2t

4
) cos(πx). (24)

Our goal is to recover this hidden source term once the solu-
tion u(t, x) is available either by solving the analytical equation given
by Eq. (23) or by sensor measurements in real world applications.
Furthermore, we select 64 random sparse spatial locations to mimic
experimental data collection. After the solution u(t, x) is stored at
selected sparse spatial locations, we follow the same procedure for
constructing output data and feature building as discussed in Sec. II.
The corresponding output data V and feature library for recovering
source term using GEP are given as

V = [Ut + cUx − αU2x]
Θ̃ = [x t]

⎫⎪⎪⎬⎪⎪⎭. (25)

The derivatives in the output data V are calculated using Eq. (4).
Hence, to calculate spatial derivatives, we also store additional sten-
cil data u(t, x) around the randomly selected sparse locations (u)pj
i.e., (u)pj+1, (u)pj−1. Table XVIII gives the functional and termi-

nal sets used by GEP to recover the source term S(t, x) given in
Eq. (24).

Table XIX lists the hyperparameters used by GEP for recov-
ering source term of the 1D advection-diffusion equation. As the
hidden physical law given in Eq. (24) consists of complex functional
compositions, GEP requires a larger head length, and more gener-
ations are required by GEP for identification. The ET form of the
source term S(t, x) found by GEP is shown in Fig. 32. The identified
source term after simplifying the ET form found by GEP is listed in
Table XX. GEP was able to identify the source term S(t, x) given in
Eq. (24) from sparse data.

B. 2D vortex-merger problem

In this section, we demonstrate the recovery of a hidden phys-
ical law from the data generated by solving the vortex-merger

TABLE XVIII. GEP functional and terminal sets used for source term identification.
“?” is a random constant.

Parameter Value

Function set +, −, ×, /, exp, sin, cos

Terminal set Θ̃, ?
Linking function +

TABLE XIX. GEP hyperparameters selected for identifying source terms for the 1D
advection-diffusion and the 2D vortex-merger problem.

1D 2D
advection-diffusion vortex-merger

Hyperparameters equation problem

Head length 6 5
Number of genes 2 3
Population size 50 50
Generations 1000 500
Length of RNC array 5 8

Random constant minimum
π

4
−π

Random constant maximum π π

problem with source terms. The initial two vortices merge to form
a single vortex when they are located within a certain critical dis-
tance from each other. This two-dimensional process is one of the
fundamental processes of fluid motion and it plays a key role in
a variety of simulations, such as decaying two-dimensional turbu-
lence108,109 and mixing layers.110 This phenomenon also occurs in
other fields such as astrophysics, meteorology, and geophysics.111

The vortex-merger problem is simulated using the 2D incompress-
ible Navier-Stokes equations in the domain with periodic boundary
conditions.

We specifically solve the system of PDEs in the vorticity-
streamfunction formulation. This system of PDEs contains the
vorticity transport equation derived by taking the curl of the 2D
incompressible Navier-Stokes equations and the Poisson equation
representing the kinematic relationship between the streamfunc-
tion (ψ) and vorticity (ω). The resulting vorticity-streamfunction
formulation with a source term is given as

ωt + J(ω,ψ) = 1

Re
∇

2
ω + S(t, x, y)

∇
2
ψ = −ω

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (26)

where the Reynolds number is set to Re = 2000. In Eq. (26), S(t, x, y)
is the source term and J(ω, ψ) is the Jacobian term given as ψyωx

− ψxωy. We use the Cartesian domain (x, y) ∈ [0, 2π] × [0, 2π] with
a spatial resolution of 128 × 128. The initial vorticity field consisting
of a corotating vortex pair is generated using the superposition of
two Gaussian-distributed vortices given by

ω(0, x, y) = Γ1exp(−ρ[(x − x1)2 + (y − y1)2])
+ Γ2exp(−ρ[(x − x2)2 + (y − y2)2]), (27)
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FIG. 32. Hidden source term of the 1D advection-diffusion
PDE in terms of ET identified by GEP.

where the circulation Γ1 = Γ2 = 1, the interacting constant ρ = π, and
the initial vortex centers are located near each other with coordinates(x1, y1) = ( 3π4 ,π) and (x2, y2) = ( 5π4 ,π). We choose the source term
S(t, x) as

S(t, x, y) = Γ0 sin(x) cos(y) exp(−4π2
Re

t), (28)

where the magnitude of the source term is set to Γ0 = 0.01.
The vorticity field ω and streamfunction field ψ are obtained

by solving Eq. (26) numerically. We use a third-order Runge-
Kutta scheme for the time integration, and a second order Arakawa
scheme112 for the discretization of the Jacobian term J(ω, ψ). As we
have a periodic domain, we use a fast Fourier transform (FFT) for
solving the Poisson equation in Eq. (26) to obtain the streamfunction
at every time step. Numerical details for solving the vortex-merger
problem can be found in San et al.110,113 We integrate the solution
from time t = 0 to t = 20 with a temporal step dt = 0.01.

Figure 33 shows the merging process of two vortices at the ini-
tial and final times. The red markers in Fig. 33 are 64 randomly
selected sparse locations to collect both streamfunction ψ and vor-
ticity ω data. Once the streamfunction and vorticity data at sparse
locations are available, we can construct the target data V and fea-
ture library Θ̃ as discussed in Sec. II. The resulting input-response
data are given as

V = [ωt + J(ω,ψ) −
1

Re
∇

2ω]
Θ̃ = [x y t]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (29)

The derivatives in the output data V(t) are calculated using
finite difference approximations similar to Eq. (4). As streamfunc-
tion (ψ)pi,j and vorticity (ω)pi,j data are selected only at sparse spatial

locations, we also store the surrounding stencil, i.e., (ψ)pi+1,j, (ψ)pi−1,j,(ψ)pi,j+1, (ψ)pi,j−1, and (ω)pi+1,j, (ω)pi−1,j, (ω)pi,j+1, (ω)pi,j−1 in order to

calculate the derivatives. The index i represents spatial location in
the x direction, and j represents spatial location in the y direction.

In this test case, we demonstrate the identification of hidden
physics, which is the source term S(t, x, y) given by Eq. (28) from
the data obtained at sparse spatial locations using GEP. Table XIX
lists the hyperparameters used by GEP to recover the hidden phys-
ical law. We use the same function and terminal sets as shown in
Table XVIII, but × is used as a linking function. Figure 34 shows the
ET form of hidden physical law (source term) obtained by GEP. Sim-
plification of the ET form shows the identified source term, which is
close to true source term, as shown in Table XXI.

The 1D advection-diffusion and 2D vortex-merger prob-
lem demonstrate the usefulness of GEP in recovering hidden
physics, i.e., a source term composed of complex functions using

TABLE XX. Hidden source term (S) of the 1D advection-diffusion PDE identified by GEP.

Recovered Test error

True S = 4.93 exp(2.47 t) sin(3.14 x) + 0.33 exp(2.47 t) cos(3.14 x)

GEP S = 4.93 exp(2.46 t) sin(3.14 x) + 0.33 exp(2.46 t) cos(3.14 x) − 3.12 × 10−5 3.34× 10−7
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FIG. 33. The 2D vortex-merger problem with source term at time t = 0.0 and t = 20.0. The red markers shows 64 random sensor locations used to collect vorticity (ω) and
streamfunction (ψ) data for recovering source term S(t, x, y).

randomly selected sparse data. The expressive power of the feature
library limits the applications of STRidge for identifying complex
composition models. However, STRidge might be able to identify
the infinite series approximations of these nonlinear functions.39 In
the next test case, we use both STRdige and GEP to identify eddy

FIG. 34. Hidden source term of the 2D vortex-merger problem in terms of ET
identified by GEP.

viscosity kernels along with their free modeling coefficient that
controls the dissipation of these kernels.

C. 2D Kraichnan turbulence

The concept of two-dimensional turbulence helps in under-
standing many complex physical phenomena such as geophysical
and astrophysical flows.114,115 The equations of two-dimensional
turbulence can model idealized flow configurations restricted to
two-dimensions such as flows in rapidly rotating systems and
in thin films over rigid bodies. The physical mechanism asso-
ciated with the two-dimensional turbulence is explained by the
Kraichnan-Batchelor-Leith (KBL) theory.116–118 Generally, large
eddy simulation (LES) is performed for both two and three dimen-
sional flows to avoid the fine resolution and thereby computa-
tional requirements of direct numerical simulation (DNS) com-
putations.119,120 In LES, the flow variables are decomposed into
resolved low wavenumber (or large scale) and unresolved high
wavenumber (or small scale). This is achieved by the application

TABLE XXI. Hidden source term (S) of the 2D vortex-merger problem identified by
GEP.

Recovered Test error

True S = 0.0100 sin(x) cos(y) exp(−0.078 t)

GEP S = 0.0099 sin(x) cos(y) exp(−0.078 t) 1.35× 10−8

− 1.47 × 10−6
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of a low pass spatial filter to the flow variables. By arresting high
wavenumber content (small scales), we can reduce the high resolu-
tion requirement of DNS, and hence faster simulations and reduced
storage requirements. However, the procedure of introducing a low
pass filtering results in an unclosed term for the LES governing equa-
tions representing the finer scale effects in the form of a source
term.

Thus, the quality of LES depends on the modeling approach
used to close the spatially filtered governing equations to capture the
effects of the unresolved finer scales.121 This model, also called the
subgrid scale model, is a critical part of LES computations. A func-
tional or eddy viscosity approach is one of the popular approaches to
model this closure term. These approaches propose an artificial vis-
cosity to mimic the dissipative effect of the fine scales. Some of the
popular functional models are the Smagorinsky,122 Leith,123 Balwin-
Lomax,124 and Cebeci-Smith models.125 All these models require the
specification of a model constant that controls the quantity of dissi-
pation in the simulation, and its value is often set based on the nature
of the particular flow being simulated. In this section, we demon-
strate the identification of an eddy viscosity kernel (model) along
with its ad hoc model constant from observing the source term of
the LES equation using both GEP and STRidge as robust SR tools.
To this end, we use the vorticity-streamfunction formulation for
two-dimensional fluid flows given in Eq. (26). We derive the LES
equations for the two dimensional Kraichnan turbulence by apply-
ing a low pass spatial filter to the vorticity-streamfunction PDE given
in Eq. (26). The resulting filtered equation is given as

ωt + J(ψ,ω) = 1

Re
∇

2
ω, (30)

where Re is the Reynolds number of the flow and J(ω, ψ) is the Jaco-
bian term given as ψyωx − ψxωy. Furthermore, Eq. (30) is rearranged
as

TABLE XXII. GEP functional and terminal sets used for identifying eddy viscosity
kernel. “?” is a random constant.

Parameter Value

Function set +, −, ×, /

Terminal set Θ̃, ?
Linking function +

TABLE XXIII. GEP hyperparameters selected for identification of the eddy viscosity
kernel for the Kraichnan turbulence.

Hyperparameters Kraichnan turbulence

Head length 2
Number of genes 2
Population size 20
Generations 500
Length of RNC array 3
Random constant minimum −1
Random constant maximum 1

TABLE XXIV. LES source term (Π) for two-dimensional Kraichnan turbulence
problem identified by GEP and STRidge.

Recovered

GEP Π = 0.000 128 ∣S∣ w2x + 0.000 128 ∣S∣ w2y − 0.362
STRidge Π = 0.000 132 ∣S∣ w2x + 0.000 129 ∣S∣ w2y

ωt + J(ψ,ω) = 1

Re
∇

2
ω +Π, (31)

where the LES source term Π is given as

Π = J(ψ,ω) − J(ψ,ω). (32)

The source term Π in Eq. (32) represents the influence of the

subgrid scales on the larger resolved scales. The term J(ψ,ω) is not

FIG. 35. Samgorisnsky kernel in terms of ET identified for the two-dimensional
Kraichnan turbulence problem by GEP.

FIG. 36. STRidge coefficients as a function of regularization parameter λ for the
two-dimensional Kraichnan turbulence problem.
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available, which necessitates the use of a closure modeling approach.
In functional or eddy viscosity models, the source term of LES
equations is represented as

Π = νe∇
2
ω, (33)

where the eddy viscosity νe is given by, but not limited to, the
Smagorinsky, Leith, Baldwin-Lomax, and Cebeci-Smith kernels. The
choice of these eddy viscosity kernels essentially implies the choice
of a certain function of local field variables such as the strain rate or
gradient of vorticity as a control parameter for the magnitude of νe.

In Smagorisnky model, the eddy viscosity kernel is given by

νe = (csδ)2∣S∣, (34)

where cs is a free modeling constant that controls the magnitude of
the dissipation and δ is a characteristic grid length scale given by the
square root of the product of the cell sizes in each direction. The ∣S∣

is based on the second invariant of the filtered field deformation, and
given by

∣S∣ =√4ψ2
xy + (ψ2x − ψ2y)2. (35)

The Leith model proposes that the eddy viscosity kernel is a
function of vorticity and is given as

νe = (csδ)3∣∇ω∣, (36)

where ∣∇ω∣ controls the dissipative characteristic of eddy viscosity
as against resolved strain rate used in the Smagorinsky model. The
magnitude of the gradient of vorticity is defined as

∣∇ω∣ =√ω2
x + ω

2
y . (37)

The Baldwin-Lomax approach is an alternative approach that
models the eddy viscosity kernel as

FIG. 37. Contour plots for the two-dimensional Kraichnan turbulence problem at t = 4. SR refers to the identified model of the Smagorinsky kernel with cs = 0.12. UDNS and
FDNS refer to the no-model and filtered DNS simulations, respectively.

Phys. Fluids 32, 015113 (2020); doi: 10.1063/1.5136351 32, 015113-24

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

νe = (csδ)2∣ω∣, (38)

where ∣ω∣ is the absolute value of the vorticity considered as a mea-
sure of the local energy content of the flow at a grid point and also a
measure of the dissipation required at that location.

The Cebeci-Smith model was devised for the Reynolds Aver-
aged Navier-Stokes (RANS) applications. The model is modified for
the LES setting, and is given as

νe = (csδ)2∣Ω∣, (39)

where ∣Ω∣ is given as

∣Ω∣ =√ψ2
2x + ψ

2
2y. (40)

High fidelity DNS simulations are performed for Eq. (30). We
use a square domain of length 2π with periodic boundary conditions
in both directions. We simulate homogeneous isotropic decaying
turbulence, which may be specified by an initial energy spectrum
that decays through time. High fidelity DNS simulations are carried
out for Re = 4000 with 1024 × 1024 resolution from time t = 0 to t =
4.0 with time step 0.001. The filtered flow quantities and LES source
term Π in Eq. (32) are obtained from coarsening the DNS quanti-
ties to obtain quantities with a 64 × 64 resolution. Further details
of the solver and coarsening can be found in San and Staples.109

Once the LES source term Π in Eq. (32) and filtered flow quantities
are obtained, we build the feature library and output data similar to
the discussion in Sec. II. The resulting input-response data are given
as

V = [Π]
Θ̃ = [ω2x ω2y ∣S∣ ∣∇ω∣ ∣ω∣ ∣Ω∣]

⎫⎪⎪⎬⎪⎪⎭. (41)

GEP uses the output and feature library given in Eq. (41) to
automatically extract the best eddy viscosity kernel for decaying
turbulence problems along with the model’s ad hoc coefficient.

The extended feature library is constructed to include nonlin-
ear interactions up to the quadratic degree to expand the expressive
power for the STRidge algorithm. The resulting extended feature
library is given as

Θ = [1 ω2x ω
2
2x ω2y ω2xω2y ω

2
2y . . . ∣Ω∣2]. (42)

The function and terminal sets used for identification of the
eddy viscosity kernel by GEP are listed in Table XXII. Furthermore,
the hyperparameters of GEP are listed in Table XXIII. Both GEP
and STRidge identify the Smagorinsky kernel with approximately
the same coefficients as shown in Table XXIV. The ET form of the
Smagorinsky kernel found by GEP is shown in Fig. 35. The regu-
larization weight λ is varied to recover multiple models of different
complexity as shown in Fig. 36. The yellow line in Fig. 36 corre-
sponds to the value of λ where STRidge identifies the Smagorin-
sky kernel. We can take the average coefficient from both SR tools
and derive the value of the free modeling constant identified by SR
approaches. The average model of both approaches is given by

Π = 0.000 129 (∣S∣ w2x + ∣S∣ w2y). (43)

By comparing with Eqs. (33) and (34) and using the spatial cell
size δ = 2π

64
, the value of the free modeling constant is retrieved as

cs = 0.12.

FIG. 38. Energy spectra for the two-dimensional Kraichnan turbulence problem at
t = 4. SR refers to the identified model of the Smagorinsky kernel with cs = 0.12.
UDNS and FDNS refer to the no-model and filtered DNS simulations, respectively.

The SR identified Smagorinsky kernel with cs = 0.12 is plugged
into the LES source term Π in Eq. (31) and a forward LES simula-
tion is run for the 2D decaying turbulence problem. Figure 37 shows
the vorticity fields at time t = 4.0 for the DNS, under-resolved no-
model simulation (UDNS), filtered DNS (FDNS), and LES with the
SR-retrieved Smagorinsky kernel. Energy spectra at time t = 4.0 are
shown in Fig. 38. We can observe that SR approaches satisfactorily
identify the value of the modeling constant cs, which controls rea-
sonably well the amount of dissipation needed to account for the
unresolved small scales. We also highlight that several deep learn-
ing frameworks such as ANNs have been exploited for subgrid scale
modeling for 2D Kraichnan turbulence.126–128 The importance of
feature selection can be seen in these works where different invariant
kernels, like those listed in the feature library given in Eq. (41), are
used as inputs to improve the ANN’s predictive performance. The
authors compared a posteriori results with different free modeling
coefficients of the Smagorinsky and Leith models. Furthermore, it is
evident from the energy spectrum comparisons in their studies that
the appropriate addition of dissipation with the right tuning of the
free modeling coefficient can lead to better predictions of the energy
spectrum. To this end, SR approaches automatically distill tradi-
tional models along with the right values for the ad hoc free mod-
eling coefficients. Although the present study establishes a modular
regression approach for discovering the relevant free parameters in
LES models, we highlight that it can be extended easily to a dynamic
closure modeling framework reconstructed automatically by sparse
data on the fly based on the flow evolution, a topic we would like to
address in future studies.

VI. CONCLUSION

Data driven symbolic regression tools can be extremely use-
ful for researchers for inferring complex models from sensor data
when the underlying physics is partially or completely unknown.
Sparse optimization techniques are envisioned as an SR tool that
is capable of recovering hidden physical laws in a highly efficient
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computational manner. Popular sparse optimization techniques
such as LASSO, ridge, and elastic-net are also known as feature selec-
tion methods in machine learning. These techniques are regularized
variants of least squares regression adapted to reduce overfitting and
promote sparsity. The model prediction ability of sparse regression
methods is primarily dependent on the expressive power of its fea-
ture library, which contains exhaustive combinations of nonlinear
basis functions that might represent the unknown physical law. This
limits the identification of physical models that are represented by
complex functional compositions. GEP is an evolutionary optimiza-
tion algorithm widely adapted for the SR approach. This genotype-
phenotype algorithm takes advantage of the simple chromosome
representations of GA and the free expansion of complex chromo-
somes of GP. GEP is a natural feature extractor that may not need a
priori information of nonlinear bases other than the basic features as
a terminal set. Generally, with enough computational time, GEPmay
recover unknown physical models that are represented by complex
functional compositions by observing the input-response data.

In this paper, we demonstrate that the sparse regression tech-
nique STRidge and the evolutionary optimization algorithmGEP are
effective SR tools for identifying hidden physical laws from observed
data. We first identify various canonical PDEs using both STRidge
and GEP. We demonstrate that STRidge is limited by its feature
library for identifying the Sine-Gordon PDE. Following equation
discovery, we demonstrate the power of both algorithms in iden-
tifying the leading truncation error terms for the Burgers MDE.
While both algorithms find the truncation terms, coefficients found
by STRidge were more accurate than coefficients found by GEP. We
note that, when the feature library is capable of expressing the under-
lying physical model, the application of STRidge is suitable due to its
fewer hyperparameters and lower computational overhead. Next, we
illustrate the recovery of hidden physics that is supplied as the source
or forcing term of a PDE.We use randomly selected sparse measure-
ments that mimic real world data collection. STRdige is not applied
in this setting as the feature library was limited to represent the
unknown physical model that consists of complex functional com-
positions. GEP was able to identify the source term for both the 1D
advection-diffusion PDE and the 2D vortex-merger problem using
sparse measurements. Finally, both STRdige and GEP were applied
to discover the eddy viscosity kernel along with its ad hoc modeling
coefficient as a subgrid scale model for the LES equations simulat-
ing the 2D Kraichnan turbulence problem. This particular example
demonstrates the capability of inverse modeling or parametric esti-
mation for turbulence closure models using SR approaches. Future
studies will focus on identifying LES closure models that augment
the known closure models by accounting for the various nonlinear
physical process. Furthermore, various SR tools are being investi-
gated for the identification of nonlinear truncation error terms of
MDEs for implicit LES approaches that can be exploited for mod-
eling turbulent flows without the need for explicit subgrid scale
models.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific
Computing Research under Award No. DE-SC0019290. O.S. grate-
fully acknowledges their support.

This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their employ-
ees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or ser-
vice by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not neces-
sarily state or reflect those of the United States Government or any
agency thereof.

REFERENCES

1M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects,” Science 349, 255–260 (2015).
2V. Marx, “Biology: The big challenges of big data,” Nature 498, 255–260 (2013).
3F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain,” Psychol. Rev. 65, 386 (1958).
4Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436 (2015).
5E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted l1
minimization,” J. Fourier Anal. Appl. 14, 877–905 (2008).
6E. J. Candes andM. B. Wakin, “An introduction to compressive sampling,” IEEE
Signal Process. Mag. 25, 21–30 (2008).
7J. R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection (MIT Press, Cambridge, MA, USA, 1992), Vol. 1.
8C. Ferreira, “Gene expression programming: A new adaptive algorithm for
solving problems,” preprint arXiv:cs/0102027 (2001).
9C. Ferreira, Gene Expression Programming: Mathematical Modeling by an Artifi-
cial Intelligence (Springer, 2006), Vol. 21.
10M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1998).
11J. H. Holland, Adaptation in Natural and Artificial Systems, 1975 (University of
Michigan Press, Ann Arbor, MI, 1992).
12M. Schmidt andH. Lipson, “Distilling free-form natural laws from experimental
data,” Science 324, 81–85 (2009).
13J. Bongard andH. Lipson, “Automated reverse engineering of nonlinear dynam-
ical systems,” Proc. Natl. Acad. Sci. U. S. A. 104, 9943–9948 (2007).
14Y. Yang, C. Wang, and C. Soh, “Force identification of dynamic systems using
genetic programming,” Int. J. Numer. Methods Eng. 63, 1288–1312 (2005).
15L. Ferariu and A. Patelli, “Elite based multiobjective genetic programming for
nonlinear system identification,” in International Conference on Adaptive and
Natural Computing Algorithms (Springer, 2009), pp. 233–242.
16C. Luo, Z. Hu, S.-L. Zhang, and Z. Jiang, “Adaptive space transformation: An
invariant based method for predicting aerodynamic coefficients of hypersonic
vehicles,” Eng. Appl. Artif. Intell. 46, 93–103 (2015).
17S. L. Brunton and B. R. Noack, “Closed-loop turbulence control: Progress and
challenges,” Appl. Mech. Rev. 67, 050801 (2015).
18N. Gautier, J.-L. Aider, T. Duriez, B. Noack, M. Segond, and M. Abel, “Closed-
loop separation control using machine learning,” J. Fluid Mech. 770, 442–457
(2015).
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