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problems arise 

often in sentiment 

classi�cation. Here, 

the feature ensemble 

plus sample selection 

(SS-FE) approach 

offers better results 

by taking into 

account labeling 

adaptation and 

instance adaptation 

together.

are scarce and the labeled reviews in the 

movie domain are abundant. Therefore, we 

need to adapt a classi�er trained by labeled 

reviews in the movie domain to the book 

domain. According to the analysis carried out 

by Jing Jiang and ChengXiang Zhai,1 there 

are two distinct needs in domain adaptation: 

labeling adaptation and instance adaptation. 

We interpret these two needs as follows:

•	 labeling adaptation models the changes 

of labeling function because one feature 

that’s positive in the source domain might 

express the opposite meaning in the target 

domain; and

•	 instance adaptation models the change of 

instance probability, such as the change of 

vocabulary or word frequency from one 

domain to another.

To take full account of these two attributes, 

we propose a comprehensive method, called 

feature ensemble plus sample selection 

(SS-FE), for domain adaptation in sentiment 

classi�cation. This approach could yield 

signi�cant improvements compared to  

indi vidual feature ensemble (FE) or sample  

selection (SS) methods, because it compre-

hensively considers both labeling adaptation 

and instance adaptation. We discuss others’ 

T
he problem of domain adaptation has attracted more and more atten-

tion in the �elds of both machine learning and natural language pro-

cessing (NLP). Domain adaptation arises often in sentiment classi�cation. For 

example, we might want a book review classi�er, but the book-labeled reviews 
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efforts in domain adaptation in the 

related sidebar.

Method Overview

In formulating our SS-FE method, we 

�rst propose a labeling adaptation 

method based on feature ensemble 

(FE). This idea is based on the obser-

vation that, features with different 

type of part-of-speech (POS) tags 

have a distinct change in distribution 

in domain adaptation. We term the 

heavily changing features domain-

speci�c, and the slightly changing 

features domain-independent. The  

domain-independent features gen-

erally perform consistently when the  

domain changes. For example, some 

adjectives and adverbs, such as “great”  

and “like,” always have a strong 

correlation with the positive class 

label, regardless of domain. However, 

the domain-speci�c features indicate 

different sentiment in different do-

mains.2 The adjective “small,” for 

example, is usually appraised as 

negative for a hotel review (“small 

room”) but positive for a post of�ce 

(“small queue”), or the concept “go 

read the book” most likely indicates 

positive sentiment for a book review 

but negative for a movie review.

In FE, we �rst train individual 

classi�ers with different feature sets  

divided by their POS tags. The �nal  

model is a weighted ensemble of indi-

vidual classi�ers, in which the weights 

are turned based on a small amount 

of labeled data in the target domain, 

with the goal of increasing the weight 

of domain-free features and reducing 

the weight of domain-speci�c features 

in domain adaptation.

Second, we developed a sample se-

lection method based on principal 

component analysis (PCA-SS) as an 

aid to FE, because FE models only  

labeling adaptation and neglects in-

stance adaptation. To address this 

problem, we combine PCA-SS and  

FE, and refer to the joint approach 

as SS-FE. In SS-FE, we �rst employ 

PCA-SS to select a subset of source 

domain samples that are close to the 

target domain, and then use the se-

lected samples for labeling adapta-

tion. A singular value decomposition 

(SVD) algorithm is conducted on the 

target domain dataset to extract the 

latent concepts representing the tar-

get domain. Samples in the source 

domain are then projected onto the 

latent space. Those samples that are 

far away from the normal area are 

discarded, and the remaining sam-

ples with a close distance are used as 

training data in domain adaptation.

We empirically show that both FE 

and PCA-SS are effective for cross-

domain sentiment classi�cation, and 

that SS-FE performs better than either 

approach because it comprehensively 

considers both labeling and instance 

adaptation.

Feature Ensemble

POS tags are supposed to be signif-

icant indicators of sentiment. Previous 

work revealed a high correlation 

between the presence of adjectives and 

document sentiment; certain verbs 

and nouns are also strong indicators 

of sentiment.3 For cross-domain sen-

timent classi�cation, we observe that  

features with different types of POS 

tags might have different levels of  

distributional change in domain ad-

ap tation. For example, nouns change  

the most because domains are mostly 

denoted by nouns, while adjectives and  

adverbs are fairly consistent across 

domains. The cross-domain Kullback- 

Leibler (K-L) distance regarding dif-

ferent POS tags (reported in the 

“Discussion” section) confirms our 

observation. 

Based on this observation, we divide  

features into four groups: adjectives 

and adverbs (J), verbs (V), nouns (N), 

and the others (O). Base classi�ers 

will be trained on all four feature 

subsets. Thus, a feature vector x is 

made up of four parts: x = [xJ, xV, 

xN, xO], and we use gk(xk) to denote 

the labeling function of each base-

classi�er. In the case of linear classi-

�er, g w k J V N Ok k k
T

k( ) , { , , , }x x= ∈ .

After base classi�cation, we use the 

Stacking algorithm for meta-learning, 

where we construct the meta-learning 

feature vector x = [ , , , ]g g g gJ V N O  on  

a small amount of labeled data from 

the target domain (the validation set),  

and the weights of each base clas-

si�er qk are optimized by mini mi-

zing the perceptron loss function so 

that each component’s �nal weights  

are tuned to adapt to the target 

domain. We represent the weighted 

ensemble as

f gk k k
k

( ) ( )x x=∑θ
. (1)

In the meta-learning process, we 

assign larger weights to the domain-

independent parts, such as adjectives 

and adverbs, and lower weights to the 

domain-speci�c parts, such as nouns. 

Figure 1 shows the FE algorithm’s 

pseudocode.

Sample Selection

The FE approach adapts the labeling 

function ps(y|x) → pt(y|x) (in our 

approach, g → f ). However, the 

labeling adaptation is based on the 

condition that the instance probability 

ps(x) and pt(x) are the same. If there’s 

a big gap between them, the effect of 

labeling adaptation will be reduced. To 

address this issue, we propose PCA-SS 

as an aid to FE. PCA-SS �rst selects a 

subset of the source domain labeled 

data whose instance distribution is 

close to the target domain, and then 

uses these selected samples as training 

data in labeling adaptation.

For PCA-based sample selection, 

let Xt denote the document-by-feature 

matrix of the target domain dataset; 
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R
esearchers have taken a variety of approaches to im-

prove domain adaptation. For example, Jiong Jiang 

and ChengXiang Zhai1 proposed to address domain 

adaptation from two perspectives: labeling adaptation and 

instance adaptation. Sinno Jialin Pan and Qiang Yang2 pre-

sented a comprehensive survey of transfer learning, which 

categorizes transfer learning approaches in a similar man-

ner: feature-based transfer, instance-based transfer, and 

model-parameter-based transfer.

Existing works for domain adaptation in sentiment 

classification mostly use labeling adaptation. These 

methods aim to learn a new feature representation 

(or a new labeling function) for the target domain, 

using source domain-labeled data, with the help of 

some labeled (or unlabeled) target domain data.3–11 

Among them, the structural correspondence learning 

(SCL) algorithm3 is the most representative. Hal Daumé 

introduced a simple method for domain adaptation 

based on feature space augmentation.4 Sinno Jialin Pan 

and his colleagues5 proposed two domain adaptation 

approaches via transfer component analysis (TCA) and 

spectral feature alignment (SFA),6 respectively. Lixin 

Duan and his colleagues7 proposed augmented feature 

representations for heterogeneous domain adaptation. 

Simultaneously, two of the authors of this article (Rui 

Xia and Chengqing Zong)8 and Rajhans Samdani and 

Wen-Tau Yih9 proposed feature reweighting based on 

an ensemble of feature sets, although they divide the 

feature sets in different ways. Xavier Glorot and his 

colleagues10 proposed a deep learning approach, while 

Shou-Shan Li and Zong11 proposed to use the ensemble 

technique to address multiple domain adaptation for 

sentiment classification.

Instance adaptation learns the importance of labeled 

data in the source domain by instance reweighting. 

These reweighed instances are then used for learning 

in the target domain. This problem is also known as 

sample selection bias in machine learning scenarios. 

Masashi Sugiyama and his colleagues12 proposed the 

Kullback-Leibler importance estimation procedure 

(KLIEP) algorithm to address the density ratio estimation 

problem. However, it’s only appropriate for the case of 

continuous distribution. To the best of our knowledge, 

research on instance adaptation in natural language 

processing (NLP) is pretty scarce. Recently, Amittai Axelrod 

and his colleagues13 proposed a method called pseudo 

in-domain data selection for selecting source domain 

training samples based on language model. Erik Cambria 

his colleagues, instead, employed PCA14 and linear 

discriminant analysis (LDA)15 to build SenticNet (http://

sentic.net), an affective commonsense knowledge base for 

open-domain sentiment analysis.

In contrast to these methods, which focus mainly on 

one type of adaptation, we propose a comprehensive 

model that simultaneously takes labeling adaptation and 

instance adaptation into consideration. We first employ 

principal component analysis sample selection (PCA-SS) 

to select a subset of source domain samples, and then use 

the selected samples as training data in feature ensemble 

(FE)-based labeling adaptation. It’s an extended version 

of our previous work,8 in which we conducted only FE-

based transfer. Indeed, PCA has been widely used for 

dimension reduction and concept representation in 

feature-based domain adaptation. For example, SCL, 

TCA, and SFA all employed singular value decomposition 

(SVD) for building new feature representation. To our 

knowledge, this is the first time that PCA has been used 

for sample selection in domain adaptation.
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we then get the target domain’s latent 

concepts by solving the following 

SVD problem:

Xt = USVT,

where U and V are unitary unit 

orthogonal matrices and S contains 

the positive real singular values of 

decreasing magnitude s1 ≥ s2 ≥ … ≥  

sM. The latent concepts are the ortho-

gonal column vectors in the matrix V,  

and the variance of the data pro-

jected  along the ith column of V is 

equal to σ
i

2.

To optimally capture the data’s 

variations, only those latent concepts 

corresponding to the k < M largest 

singular values are typically retained. 

By selecting the columns of P = V[;, 

0  : k] ∈ RM×k, which correspond to 

the latent concepts associated with the 

�rst k singular values as the projection 

matrix, we obtain the document- 

by-concept matrix ˆ .X X P
t t
=

Once the principal component 

model is established, the projection 

of an arbitrary sample onto the 

concept space is given by ˆ .x Px
T T=  

Note that Hotelling’s T2 statistic 

re�ects the trend and magnitude 

deviation degree of each sample 

in a PCA model. In the settings of 

domain adaptation, it measures the 

extent to which a sample deviates 

from the concept space. Therefore, 

as the criterion for sample selection, 

we use T2 statistic, also known as 

the “concept distance” measure:

D(x) = T2(x) = zTz = xPΛk
-1PTxT,

where z x=

−

Λ
k

T T
P

1

2 , and Λk is the 

diagonal matrix corresponding to the 

top k singular values.

By this de�nition, we can obtain a 

concept distance for each sample x
s

n( ) 

in the source domain:

D P P
s

n

s

n

k

T

s

n
T

( ) .( ) ( ) ( )
x x x=

−
Λ

1

Correspondingly, we get a set of the 

concept distances for each sample x
t

n( )

in the target domain:

D P P
t

n

s

n

k

T

t

n
T

( ) .( ) ( ) ( )
x x x=

−
Λ

1

Finally, we de�ne the sample selection 

threshold as:

D D

t

n

t

t

n
=

∈

max { ( )}.
( )

( )

x

x

D
 (2)

Samples in the source domain x
s

n( ) with 

D D
s

n( )( )
x >  are discarded, and those 

with lower concept distance than 

the threshold are selected as training 

samples in domain adaptation.

Experiments

Now that we’ve detailed our method’s 

inner workings, we present our exper-

i ments and results

Dataset and Experimental Setup

We use the popular Multi-Domain 

Sentiment Dataset4 for experiments. 

It consists of product reviews col-

lected from four different domains of 

Amazon.com—book (B), DVD (D),  

electronics (E), and kitchen (K). Each 

domain contains 1,000 positive and 

1,000 negative reviews. The term 

“source → target” is used to denote 

different cross-domain tasks. For 

example, “D → B” represents the task 

that’s trained in the DVD domain 

but tested in the book domain. Each 

domain acts as the source domain 

and target domain, respectively, and 

this generates 12 total tasks.

In each of the tasks, labeled in-

stances in the source domain are used 

for training base-classi�ers. Labeled 

instances in the target domain are 

evenly split into 10 folds, where one 

fold is used as a validation set for 

meta-learning, and the other nine 

folds are used as a test set. All of the 

following experimental results are 

reported in terms of an average of the 

10 folds’ cross validation.

Experimental Results of PCA-SS

Here, we present the experimental 

results of sample selection. The PCA 

model is established by the feature-

by-document data matrix of the 

target validation set. The number of  

principal components is chosen with 

the percentage of variance contri-

bution larger than 99.5 percent. All 

samples in the source and target 

domain are projected onto the con-

cept space. We sort all source domain 

samples in an ascending order, 

Figure 1. Pseudocode of the feature ensemble (FE) algorithm.

Input:  
Source domain training set Ds = {(x(1), y (1)), . . . , (x(Ns), y (Ns))}, where the feature

Target domain test set  Ds = {(x(1), y (1)), . . . , (x(M ), y (M ))}.

Target domain validation set Dt = {(x(1), y (1)), . . . , (x(Nt ), y (Nt ))}, where N t is

(5–10)% the size of N s ;

Process: 

for each component k ∈ {J, V, N, O }:     % base-classification

predict each sample in the validation set using Hk

predict each sample in the test set using Hk

end; 

Output: 

predict samples in the test set using f (x) = ∑k θk gk (xk ).

vector x(n) = [x(n), x(n), x(n), x(n)];
J V N O

T

where x(i ) = [g (n), g (n), g (n), g (n)];
J V N O

~

train a meta-learning classifier f = θT 
x;     % meta-learning ~

build meta-learning training samples on the validation set D = {x(1), x(2), . . . , x(Nt)},
~ ~ ~ ~

train a base-classifier Hk : gk =   k xkω
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according to their concept distance, 

and present the clas si�cation accu-

racy trained with a decreasing 

number of selected features in Figure 

2. We chose Naïve Bayes (NB) as the 

base classi�cation algorithm, as it 

reportedly performs the best among 

three classi�ers (NB, MaxEnt, and 

SVMs) in the multi-domain dataset.5 

For com par ison, we also report the 

performance of the same number of 

random selected samples. We observe 

the experi mental results from the 

following three perspectives.

Random selection. We �rst observe the  

result of randomly selected samples. 

In all tasks, performance is grad ually 

decreased by reducing the number of 

selected samples. This is in accordance 

with our standard understanding that 

decreasing train ing samples hurts 

machine-learning performance.

PCA-based sample selection. With re-

spect to PCA-SS, the conclusion is 

different. In most of the tasks, the per-

formance increases when the number 

of selected samples decreases at the �rst 

stage. As the selected number is reduced 

to a certain extent, the curve reaches the 

peak value. After that, the performance 

gradually decreases. This phenomenon 

leads to the conclusion that using a se-

lected subset of samples as training data 

improves classi�cation performance 

over training on all samples. This con-

clusion holds well in the tasks of D → 

B, B → D, B → E, D → E, B → K, D → 

K, and E → K. It’s also worth noticing 

that sample selection isn’t so effective in 

some tasks (such as E → B, K → D, and 

K → E). We’ll discuss why later.

Figure 2. The performance of principal component analysis-based sample selection (PCA-SS).
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Concept distance threshold. Finally, 

we verify the validity of the concept 

distance measure for selecting sam-

ples. The size of selected samples 

provided by distance threshold is de-

noted by a red vertical line in each 

sub�gure, and the golden size is de-

noted by a black vertical line. As we 

can see, although there’s a bias be-

tween the number of samples given 

by the threshold and the golden 

size, the concept distance threshold 

still provides a reasonable value (at 

least a reasonable area) that’s close 

to the golden one in classi�cation 

performance.

Experimental Results of SS-FE

In this section, we present the results 

of SS-FE. Four base NB classi�ers 

are trained on the four feature sets, 

where features with a term frequency 

of four or more are selected and the 

BOOL weight is adopted. Table 1 

reports the classi�cation accuracy 

of each component classi�er (Base-J, 

Base-V, Base-N, and Base-O), and 

the baseline system using all features 

(Baseline), only FE, only PCA-SS, and 

SS-FE. We compared the following 

three aspects.

FE versus Baseline. We �rst compare base 

clas si�ers and Baseline. It’s inter esting  

that Base-J yields a comparative per-

formance to Baseline. In some tasks, J 

is even better. With an ef�cient ensemble 

of all base classi�ers, FE performs 

consistently better than each base 

classi�er and the Baseline system.

PCA-SS versus Baseline. When com-

paring PCA-SS and Baseline, we re-

con�rm the conclusion from Figure 2  

that, with a selected subset of training 

samples, the PCA-SS could improve 

signi�cantly.

SS-FE, FE, and PCA-SS. To make the 

SS-FE comparison clearer, we plot 

the results of Baseline, FE, PCA-SS, 

and SS-FE in Figure 3. As the �gure 

shows, SS-FE is consistently better 

than Baseline, FE, and PCA-SS, 

except for one task—K → B—where 

SS-FE is slightly weaker than FE. 

We summarize the results as follows: 

�rst, in the tasks, such as D → B and 

K → D, where FE is more effective 

but the PCA-SS is less effective 

(denoted as FE SS ), the SS-FE im-

provements are generally gained by 

labeling adaptation. Second, in the 

tasks where the effects of PCA-SS are 

more signi�cant than FE (FE SS ),  

such as E → D and E → K, the SS-FE 

improvements are mainly from in-

stance adaptation. Third, in the 

tasks where FE and PCA-SS are both 

effective, such as D → E and B → K, 

the improvements �nally gained by 

SS-FE are remarkable.

Discussion

Based on the experimental results, 

now let’s conduct some in-depth 

discussion.

Why Does POS-Based Feature 

Ensemble Work?

The experimental results showed the 

effectiveness of POS-based FE for 

labeling adaptation. In this section, 

we further discuss why we obtained 

the observed results. Table 2 shows 

the average K-L distance of each 

domain pair regarding different POS 

tags. Generally, the K-L distances of 

different types of POS tags can be 

ranked as: N >> V > J > O. O changes 

the least, because words such as 

Table 1. Cross-domain classification accuracy.*

Tasks Base-J Base-V Base-N Base-O Baseline FE PCA-SS SS-FE

D → B 0.7589 0.6682 0.6307 0.6432 0.7685 0.7987 0.7759 0.8038

E → B 0.6907 0.6015 0.6038 0.5938 0.7156 0.7163 0.7162 0.7286

K → B 0.7034 0.5997 0.5943 0.5974 0.7265 0.7334 0.7285 0.7294

B → D 0.7665 0.6871 0.6597 0.6348 0.7854 0.7874 0.7889 0.7910

E → D 0.7228 0.5877 0.6142 0.5743 0.7350 0.7296 0.7373 0.7460

K → D 0.7179 0.5994 0.6142 0.5766 0.7469 0.7563 0.7458 0.7570

B → E 0.7319 0.6186 0.5649 0.5755 0.6915 0.7223 0.7199 0.7424

D → E 0.7431 0.6168 0.6005 0.5624 0.7040 0.7496 0.7477 0.7707

K → E 0.8051 0.7185 0.6961 0.6076 0.8235 0.8226 0.8243 0.8293

B → K 0.7568 0.6328 0.5936 0.5916 0.7265 0.7412 0.7507 0.7807

D → K 0.7334 0.6228 0.5987 0.6025 0.7299 0.7644 0.7630 0.7782

E → K 0.8083 0.7285 0.7037 0.6237 0.8330 0.8324 0.8412 0.8487

* Features are divided into four groups: adjectives and adverbs (J), verbs (V), nouns (N), and the others (O). FE = feature ensemble, and PCA-SS = principal component analysis sample selection.

Table 2. Average Kullback-Leibler (K-L) 

distance of different part-of-speech 

(POS) tags.

POS K-L distance

J 0.3058

V 0.3123

N 1.0483

O 0.0831
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prepositions and pronouns are mostly 

domain-free. The K-L distance of N is 

the largest and is signi�cantly larger 

than the other POS tags, indicating 

that the change of N is the biggest 

across domains. The K-L distance 

of J is signi�cantly smaller than that 

of N. V gives the comparable K-L 

distance. This suggests that features 

in J and V are partially domain-free. 

It also coincides with our intuition 

that words such as “great” and “like” 

always express positive meaning, 

even when domain changes.

We then observe the weights 
of  different parts of POS tags 
trained by FE. The ensemble 
weights trained by FE with respect 
to POS tags J, V, N, and O are 
wJ  = 0.47, wV = 0.19, wN = 0.16, 

and wO = 0.18. The weight of J is 

the largest, while the weight of N is 

comparatively small.

We further test the sensitivity of 

parameter tuning. For the sake of 

simplicity, we �x the weights of V and 

O to be 0.19 and 0.16, respectively. 

We use wJ to denote the weight of 

J; the weight of N is thus 0.65 - wJ. 

We tune the value of wJ from 0 to 

0.65, and report the accuracy of FE 

in Figure 4. We can conclude that 

the performance is quite sensitive 

to the weights assigned to J and N. 

When wJ is close to 0, the weight of 

N is comparatively larger, and the 

ensemble performance drops sharply. 

The best result was obtained when wJ 

locates at the area close to 0.5, which 

is close to the results trained by FE. 

This proves that FE is effective at 

tuning parameters.

Figure 4. Parameter sensitivity test of FE.
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Figure 3. Cross-domain classi�cation accuracy of baseline, FE, PCA-SS, and SS-FE.
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Why Feature Ensemble Plus 

Sample Selection?

Here, we use the maximum likelihood 

estimation framework to explain why  

SS-FE could gain a consistent improve-

ment over the single use of PCA-SS 

or FE. Let p(x, y|q) denote the joint 

probability of instance x and class 

label y. Our aim in domain adaptation 

is to �nd the best parameter q* that 

maximizes the expected likelihood 

in the target domain. Because only 

the source domain-labeled data are 

available, we instead maximize the 

empirical likelihood of the data in the 

source domain:

θ

θ

θ

χ γ

* argmax

( , )log ( , )

=

∈ ∈∑∫ x y tp y p y dx x x

=

∈ ∈∑∫

argmax

( )log (
( )

θ

χ γx
p

y t
t p y p
x

x x,, )

argmax

(
( )

y d

p yx
p

y s
s

θ

θ

χ γ

x

x

≈

∈ ∈∑∫
  xx x x)log ( , ) ,p y dθ

 

 (3)

where ps( )x  and p ys( )x  denote the 

empirical distribution of the source 

domain.

In Equation 3, both labeling adap-

tation and instance adaptation are 

needed. In this work, labeling adap-

tation is conducted in a feature re-

weighting manner by the FE. Instance 

adaptation is embodied in the man-

ner of sample selection, where the em-

pirical likelihood is obtained based 

on the selected subset of samples. 

To validate this analysis, we present 

the K-L distance of different domain 

pairs in Table 3. We �nd that the 

K-L distances of B-D and E-K are 

relatively low, which suggests that 

these domains are similar in distri-

bution. This corresponds well with our 

experimental results: �rst, in tasks such 

as D → B and K → D, the improvement 

of SS-FE is generally gained by labeling 

adaptation. This is quite reasonable, 

because their K-L distance is relatively 

low and the need for instance 

adaptation isn’t urgent. Second, for 

the domain pairs whose distributional 

change is larger, such as E → D and 

E → K, the improvement of SS-FE 

is mainly due to instance adaptation 

rather than labeling adaptation.

We developed SS-FE to meet 

two distinct needs in domain 

adaptation: labeling adaptation and 

instance adaptation.  Experimental 

results showed the effectiveness 

of SS-FE in both labeling adapta-

tion and instance adaptation. One 

shortcoming of our approach is that 

 training samples are selected in a 

“hard” way, which is sometimes too 

arbitrary. A “soft” manner, which 

assigns a sampling weight to each 

of the training samples, seems to be 

more promising.6

In the future, we plan to consider a 

“soft” manner in instance adaptation. 

We also plan to integrate instance 

adaptation with some unsupervised 

labeling adaptation methods, such  

as structural correspondence learning 

(SCL) and spectral feature alignment 

(SFA), to test our model’s effectiveness 

over a broad range.
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Table 3. K-L distance of unigram 

distribution regarding different tasks.

Task K-L distance

B-D 0.1874

B-E 0.1874

B-K 0.4721

D-E 0.4429

D-K 0.4753

E-K 0.2843
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