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In this study, a brain-computer interface (BCI) framework for hybrid functional

near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) for locked-in

syndrome (LIS) patients is investigated. Brain tasks, channel selection methods, and

feature extraction and classification algorithms available in the literature are reviewed.

First, we categorize various types of patients with cognitive and motor impairments

to assess the suitability of BCI for each of them. The prefrontal cortex is identified as

a suitable brain region for imaging. Second, the brain activity that contributes to the

generation of hemodynamic signals is reviewed. Mental arithmetic and word formation

tasks are found to be suitable for use with LIS patients. Third, since a specific targeted

brain region is needed for BCI, methods for determining the region of interest are

reviewed. The combination of a bundled-optode configuration and threshold-integrated

vector phase analysis turns out to be a promising solution. Fourth, the usable fNIRS

features and EEG features are reviewed. For hybrid BCI, a combination of the signal peak

and mean fNIRS signals and the highest band powers of EEG signals is promising. For

classification, linear discriminant analysis has been most widely used. However, further

research on vector phase analysis as a classifier for multiple commands is desirable.

Overall, proper brain region identification and proper selection of features will improve

classification accuracy. In conclusion, five future research issues are identified, and a

new BCI scheme, including brain therapy for LIS patients and using the framework of

hybrid fNIRS-EEG BCI, is provided.

Keywords: brain-computer interface, electroencephalography, functional near-infrared spectroscopy, locked-in

syndrome patient, feature extraction, classification

INTRODUCTION

The primary function of a brain-computer interface (BCI) is to provide a means of communication
for patients with the real world. A large proportion of the patients targeted for BCI applications
are those who cannot control their muscle movements voluntarily, particularly the patients defined
as “locked-in.” However, most current BCI research involves movement controlling devices with
brain signals from healthy subjects. Patients with movement disorders may not be able to generate
commands as effectively as healthy subjects, hence they may not be able to control these devices
with high accuracy (McFarland and Wolpaw, 2010, 2011; Pan et al., 2014; Visani et al., 2015).
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Locked-in patients can use only cognitive functions, such as
mental counting, listening, and imagination. In this paper, a
new framework for hybrid feature extraction and classification
for patients in the locked-in state is proposed by which they
may be able to achieve smooth control of external devices such
as a robotic arm or wheelchair in a real-world environment
(Muller-Putz et al., 2015; Naseer and Hong, 2015a).

To find a solution for this problem, we first need to understand
the components of a BCI (Banville and Falk, 2016; Ramadan and
Vasilakos, 2017) that can be modified to achieve better solutions.
The brain signals for a BCI are usually acquired either directly
from the electrical activity of the brain or from the secondary
route known as hemodynamics. Electroencephalography (EEG)
signals reflect electrical activity originating as a result of neuronal
firing when a task or activity is performed (Olejniczak, 2006).
This activity is measured as differences in voltage between
different locations on the surface of the head. The differences
are caused by postsynaptic potentials in the cell membranes
of cortical neurons. On the other hand, hemodynamic activity
appears in the form of blood flow changes that result from
neuronal firing, which can be measured by functional near-
infrared spectroscopy (fNIRS) (Matthews et al., 2008; Min et al.,
2010). Blood flow increases in an area of activated neurons at
a greater rate than in areas of inactive neurons. The increased
blood flow results in a surplus of oxyhemoglobin in the veins
of the active area and a distinguishable change in the local ratio
of oxyhemoglobin to deoxyhemoglobin. In the current literature,
EEG and fNIRS are the only twomodalities used for non-invasive
BCI for locked-in patients (Hong and Khan, 2017).

As a modality for BCI, EEG is the most common method
of recording neuronal signals, due to its portability. The signals
most frequently used for BCI derive from motor imagery (MI),
steady-state visual evoked potentials (SSVEP), and the P300
evoked potential (Trejo et al., 2006; Turnip et al., 2011; Turnip
and Hong, 2012; Wang et al., 2012, 2016; Gruzelier, 2014; Ahn
and Jun, 2015). These three signals have been used for controlling
wheelchairs (Wang et al., 2014; Ramli et al., 2015; Zhang et al.,
2016) and quadcopters (Kim et al., 2014). In addition to EEG,
fNIRS is another widely used modality for BCI. Recent studies
have shown the portability of fNIRS, thus making it a viable
option (Santosa et al., 2013; Bhutta et al., 2014; Boas et al., 2014;
Hong et al., 2015). Even though no study has yet shown the ability
to control a wheelchair using fNIRS alone, several projects have
used fNIRS to generate multiple commands (Power et al., 2012a;
Naseer and Hong, 2013; Naseer et al., 2014). In some studies,
EEG and fNIRS have been combined to improve classification
accuracy (Fazli et al., 2012; Safaie et al., 2013; Tomita et al., 2014;
Buccino et al., 2016). For locked-in patients, several projects have
used hybrid systems of this type to decode brain activity for
control and brain imaging (Blokland et al., 2014; Dutta et al.,
2015; Das et al., 2016). However, there is still a large gap between
the currently achievable performance and the accuracy needed
for a practically usable interface for locked-in patients. Taking
into account both non-invasiveness and portability, currently
fNIRS and EEG form the best available combination ofmodalities
for BCI. Methods of command generation methods using these
modalities are the focus of this review.

The first issue to consider is selection methods for monitoring
the best brain regions of interest. Most BCI studies use the
international 10–20 (or 10–10) system for placement of EEG
electrodes (Homan et al., 1987; Jurcak et al., 2007). Because EEG
responses such as the P300 are highly variable across brain areas,
channel selection algorithms are applied to determine a region of
interest (ROI) (Feess et al., 2013; Alotaiby et al., 2015). In fNIRS,
channel averaging is used because the hemodynamic responses
are not distinctive among channels (Bhutta et al., 2015; Naseer
and Hong, 2015b; Liu and Hong, 2017). These methods may be
effective for able-bodied persons, but not necessarily for locked-
in patients, since their brain activity patterns may not be correctly
identified. Smith and Delargy (2005) found that the cerebral
cortex of a locked-in patient might not show clear evidence
of activation. Therefore, it is desirable to improve brain region
selection methods.

Next, selection of the best type of brain activity to use for
generating control commands can be an issue. A healthy person
can perform a wide variety of tasks easily. Thus, an able-bodied
person usually has a better understanding of the experimental
paradigm and the activities that are to be performed. Many
EEG-based wheelchair control examples are available in the
literature, but of 35 recent studies on wheelchair control using
EEG (Fernández-Rodríguez et al., 2016), no study investigated
a locked-in patient. As most of these studies employed SSVEP-
and P300-based schemes, the participants could adapt themselves
to the scheme quickly (Hwang et al., 2012, 2013; Li et al.,
2013a; Fan et al., 2015). However, for a locked-in patient, it is
difficult to concentrate on a screen to receive stimuli and generate
commands. Therefore, a second aspect to consider is the type
of BCI: active, reactive, or passive. The majority of BCIs have
been designed using reactive tasks (Zander and Kothe, 2011).
In these cases, the stimuli are given in the form of an audio,
video or pain cue (Hu et al., 2012; Zhang et al., 2013, 2014;
Hong and Nguyen, 2014; Santosa et al., 2014). These result
in high accuracies when used with normal, healthy subjects.
Again, however, it can be difficult for a patient to concentrate
on such stimuli. An active-type BCI may be more effective
for these patients. For example, a Yes/No decoding scheme
has been successfully implemented for patients using a non-
invasive active BCI (Chaudhary et al., 2017). Another point to
consider is the number of distinct commands the patients can
perform.

The third issue is how to convert the detected brain signals
into machine commands. Identifiable features contained in brain
signals need to be defined, extracted, and classified to translate
the analog brain signals into digital commands (Ortiz-Rosario
and Adeli, 2013). Because different types of brain activity patterns
can be decoded from locked-in patients, the feature selection and
classification criteria developed for healthy peoplemay need to be
reevaluated. It is not clear yet whether the same feature sets used
for healthy persons will work for patients (Naseer et al., 2016a).
However, if proper features are selected, conventional classifiers
(e.g., Bayesian, linear discriminant analysis) may complete the
job. Moreover, to achieve fault-tolerance, it would be better to use
both neuronal and hemodynamic features simultaneously (Hong
and Khan, 2017).
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Figure 1 depicts a typical BCI scheme, including signal
acquisition, filtering, feature extraction, classification, and
interfacing to external devices. After classification, a control
interface completes the system. An average classification accuracy
of at least 70% is essential for practical use. Most experiments
conducted in a laboratory environment using able-bodied
subjects could achieve accuracies higher than this. However, the
accuracy drops drastically in the case of patients. If the necessary
accuracy is not achieved in the early stages, physical stimulation
of the brain may be useful. To improve the results for patients
(e.g., stroke patients), additional measures using repetitive
transcranial magnetic stimulation (rTMS) or transcranial direct
current stimulation (tDCS) to improve brain functions may
be needed (Dutta, 2015; Dutta et al., 2015). In general,
the classification accuracy and the number of distinguishable
commands can be improved by i) combining signals from a non-
brain signal acquisition modality (e.g., a camera) with those from
a brain signal acquisition modality, ii) developing a predictive
model for early detection of a brain signal from a slow modality
(e.g., fNIRS) in combination with a fast modality (e.g., EEG),
and iii) identifyingmultiple cognitive activities simultaneously by
integrating neuronal and hemodynamic signals.

In this review, we discuss the feasibility of hemodynamic and
hybrid methods that can provide better results for achieving a
high accuracy for BCI. In section What Patients Should BCI
Focus?, the types of locked-in patients are categorized to clarify
the brain regions that can most usefully be targeted in locked-
in patients. In section Brain Activity Selection, channel selection
schemes for brain region identification that can be used for
these patients are reviewed. In section Methods to Determine
the Region of Interest, the types of brain activities that can
be used by locked-in patients for control are discussed. In
section Feature Extraction and Classification Criteria, features
that may provide more compatibility for command generation
are examined. Moreover, classification techniques are examined.
Section Device Interfaces discusses external device interface
techniques. Finally, in section What Future Direction to Adopt?,
our own scheme for BCI (for, e.g., multiple choice selection
or wheelchair control) is proposed, and the challenges involved
in implementation of the scheme are discussed. In this review,
the primary foci are fNIRS-based BCI and hybrid fNIRS-EEG-
based BCI, because several reviews of EEG-based BCI, including
brain region selection and feature extraction, are available in the
literature. However, EEG-based schemes are briefly explained
where necessary.

WHAT PATIENTS SHOULD BCI FOCUS?

Patients can be categorized based on their conscious state,
attentional state, executive functions, intellectual ability,
perception, and visual and verbal memories. However, the
two aspects most commonly used to categorize patients are
motor state and cognitive state (Guger et al, 2017). In general,
BCI is well suited for patients who have limited motor activity
but good cognitive skills. BCI may not be as effective for
those in impaired cognitive states, as they may not be able to

understand or perform the mental tasks used for controlling
a device. Table 1 shows a classification of patients based on
motor and cognitive states. By examining the table, we can
see that BCI is probably suitable for patients with locked-in
syndrome (LIS) and completely LIS (CLIS). Studies have
shown that patients with LIS sometimes progress to the CLIS
state. BCI research should target these patients. According to
Nicolas-Alonso and Gomez-Gil (2012), a high grade of disability
among LIS patients forces them to use BCI rather than relying
on conventional interfaces. In any case, the first step is to
determine the type of patients for whom a BCI is essentially
needed.

The study of Kennedy and Adams (2003) categorized patients
into six types. Four out of the six types showed detectable brain
activity: Type (i) patients are capable of movement; type (ii)
patients are incapable of movement but show some detectable
motor activity due to partial muscle movements; type (iii)
are locked-in patients with no muscular activity signals but
with detectable eye-movement; and type (iv) are completely
locked-in patients. The remaining two types are not suitable
for non-invasive BCI. The fifth type is patients in whom
implanted electrodes can detect brain signals (even though EEG
electrodes cannot), and the sixth type includes those whose brain
activity is non-detectable. Since our focus is on BCI using non-
invasive methods, we will discuss only the first four types of
patients.

Patients Capable of Movements
These patients are probably not suitable for BCI, because at
least some of their motor functions are still intact. The brain
states of these patients are working properly (Kawase et al.,
2017). For those who cannot move their lower limbs, they can
generate commands by conventional methods (e.g., pressing a
button/switch) using their fingers to control a wheelchair.

Patients With Minor Muscular Movements
These patients may not have visible motor movements.
However, some muscular movements (e.g., minor shoulder
flexion/extension) are detectable. In these patients, the motor
cortex is working properly, and the minor muscular movements
are caused by signals sent from the brain to the muscles (de
Oliveira et al., 2017). Most commonly, such movements are
detectable by electromyography (EMG), which can be used for
control purposes. Thus, with an appropriate interface, these
patients are capable of controlling devices with partial muscular
movements. In this case, generation of a sufficient number of
commands to handle the required number of degrees of freedom
is essential (e.g., for control of a wheelchair). Hybridization (e.g.,
EEG or EMG in addition to EMG) can be used to increase the
number of commands available.

Patients With Minor Eye Movements
These patients may not be able to control most of their motor
functions, but can perform very minor but detectable eye
movements. In this case, the motor cortex is partially working
(Käthner et al., 2015). The level of eye movement is an important
factor. If the eye movement is significant, electrooculography
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FIGURE 1 | Typical brain-computer interface scheme for control applications with brain function recovery.

TABLE 1 | Categories of patients based on motor and cognitive states (Guger

et al, 2017).

Cognitive state

No cognition Minor

cognition

Major cognition Normal

Motor

state

No

response

Comma

patient

Completely locked-in

syndrome patient

(CLIS)

Minor

motor

response

Unresponsive

wakeful state

(UWS)

Minimal

conscious

disorder

(MCD)

Locked-in syndrome

patient (LIS)

Major

motor

response

Motor impairment

patient (MI)

Normal Cognitive impairment patient (CI)

BCI can be pursued for patients in the shaded area.

(EOG) can be used to generate commands based on eye-
movements. However, it may be difficult for these patients
to concentrate on eye movements over long periods of time.
Moreover, control of a wheelchair using eye movements may not
be an effective strategy, because it interferes with the ability of the
subject to watch the environment. For these patients, the use of a
hybrid scheme will be a better option. If multiple commands are
needed, EOG can be combined with EEG to increase the number
of commands. Furthermore, SSVEP- and P300-based stimuli can
be used to generate multiple commands and to control external
devices. It would be desirable to generate commands using
reactive visual stimuli, and using EOG for improved control.

Fully-Locked in Patients
These patients cannot perform any type of motor activity. Any
patient below this condition is in the vegetative state (VS). In

these case, the motor cortex in the brain is not working, but these
patients can perform cognitive functions (Kübler et al., 2001,
2005). A BCI is the most effective solution for such patients.
The prefrontal cortex may be the best option for generating
commands. It may be difficult for these patients to control a
wheelchair, but “Yes/No” decoding based on a choice selection
can be performed. Moreover, to achieve better results, a hybrid
EEG-fNIRS interface may be best, as it gives the richest signals.

Figure 2 shows a categorization of patients based on the types
of movements and the types of mental tasks that may be useful
to generate commands for control applications. Based on the
discussion above, it is emphasized again that a BCI is suitable for
patients who have lost motor functions.

BRAIN ACTIVITY SELECTION

The brain signals suitable for use with LIS patients have been
discussed in several papers (Nicolas-Alonso and Gomez-Gil,
2012; Moghimi et al., 2013). However, only general mental and
motor tasks were discussed, and the focus was on neuronal
signals (EEG-based). As discussed in section What Patients
Should BCI Focus?, signals generated from the prefrontal cortex
may be the best choice for LIS patients. For partially locked-
in patients, motor cortex activity can be considered as well,
since the total number of cognitive functions that can be used
for BCI purposes may be limited. The study by Weyand et al.
(2015a) found that eleven different patterns of activity could be
decoded from the prefrontal cortex. Therefore, focusing on the
hemodynamic response, the following types of brain activity may
be effective for partially and completely locked-in patients:

Prefrontal Activity
Prefrontal cortex signals are the cognitive activity patterns
that are most suitable for LIS patients, as no motor task is
involved. These signals may be generated by simple calculation
or imagination tasks, and can be used in an fNIRS-based BCI.
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FIGURE 2 | An illustration for BCI domain: BCI is required if there is no detectable muscular movement (BCI, brain-computer interface; LIS, locked-in syndrome;

UWS, unresponsive wakeful state; MCD, minimal conscious disorder; MI, motor impairment; CI, cognitive impairment).

As discussed earlier, the study by Weyand et al. (2015a) provided
the list of eleven activity patterns that can be detected from the
prefrontal cortex. In a later study, a total of thirteen tasks are
shown to be distinguishable in the prefrontal cortex using fNIRS
(Naito et al., 2007; Naseer and Hong, 2015a). They are briefly
discussed as follows.

Mental Arithmetic
This task uses a simple mathematical calculation to generate
the brain activity. Usually, a two-digit number is required to be
subtracted from a three-digit number. This may be the most
effective prefrontal active task; many studies have reported its
efficacy for generating a command. One study reported that such
brain activity could be made more prominent by increasing the
complexity of the mathematical problem (Verner et al., 2013).
The use of this task has been reported in both an fNIRS-based
BCI (Bauernfeind et al., 2008; Power et al., 2012b) and a hybrid
EEG-fNIRS-based BCI (Khan et al., 2014; Khan andHong, 2017).

Mental Counting
This is another mathematical task, similar to the mental
arithmetic task above. Although both appear in the same

region of the brain, mental counting task takes on a different
form/feature in the prefrontal cortex. In the case of mental
counting, a patient is asked to count numbers backward from a
three-digit number for a given duration slowly while relaxing. In
comparison to mental arithmetic, mental counting is an easier
task for patients (Naseer and Hong, 2015b).

Mental Singing
The mental singing task involves imagining oneself singing a
song. Notmany studies have used this type of task for research. As
per the literature, the resulting activity appears in the prefrontal
brain region (Power et al., 2010, 2011).

Word Formation
The activity-generation method for this task has been described
in three different ways. One approach is to give a specific letter to
the subject (e.g., “d”) and ask them to form words (e.g., “door,”
“deer,” “desk” using “d”) (Faress and Chau, 2013). The second
approach is to give a scrambled 6–7 letter word (e.g., “tocekr”)
and ask the subject to form the correct word (“rocket” in this
example) (Khan and Hong, 2017). The third is to ask the subjects
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to recognize a letter displayed on a screen (Hofmann et al., 2008).
The third method has shown promising results with patients.

Puzzle Solving
For this, a screen is required to give a stimulus. A tangram puzzle
is shown on the screen and the subjects are asked to imagine a
puzzle solution by rotating the pieces. A few studies have reported
significant results using this puzzle-solving paradigm (Zafar and
Hong, 2017).

Mental Rotation
Similar to mental counting, mental rotation is a type of puzzle-
solving task. In this case, an object is shown on a screen, and
the subjects are asked to imagine the rotation of the object
(Abibullaev and An, 2012; Qureshi et al., 2017). To some patients,
this might be an easy task to perform.

Happy Thoughts
This may not be a very effective task, as only two studies have
reported using it to drive prefrontal activity (Tai and Chau, 2009).
The brain activity is detected when one imagines a past happy
event. It may be a possible option for LIS patients, but further
research is required.

Stroop Test
For this case, the participants are shown a series of color names.
The color names are each written in a single color, but the colors
named by the words do not always match the colors they are
written in. For example, the word “green” may be written in blue.
The participants asked to think about the name of the color that
the word is written in. This task has been used in a few fNIRS
studies (Schroeter et al., 2002; Ehlis et al., 2005).

Future Visualization
The subjects are asked to imagine their life after 5 years,
specifically focusing on day-to-day activities. There is a lack of
evidence on the suitability of this task for use with patients.
Further research is required (Buckner et al., 2008).

Focus
Usually, in this type of task, the subject is asked to focus on
a screen. Most commonly, the subjects are asked to scrutinize
signals appearing on the screen, which could be brain signals
or pictures of a ball moving on the screen. This may be not an
effective task, as it is difficult for LIS patients to focus on a screen
(Izzetoglu et al., 2011).

Motor Imagery in the Prefrontal Cortex
Motor imagery is a motor function-related activity that can be
defined as imagination of a movement of a part of one’s own
body, without any actual movement. According to the current
literature, an activity related to motor imagery appears in the pre-
motor cortex region (Holper and Wolf, 2011; Stangl et al., 2013;
Kaiser et al., 2014). Some studies also indicate that it appears in
the prefrontal cortex (Hatakenaka et al., 2007; Leff et al., 2011;
Weyand et al., 2015a). Although a healthy person can perform
motor imagery, it is often difficult for a disabled person to do so.
Since the primary objective of a BCI is to form a communication

pathway for motor-disabled people, it is a problem that only
limited numbers of patients can perform this task. Both EEG
and fNIRS are good options for detection motor imagery. For
patients with tetraplegia, a hybrid EEG-fNIRS scheme is the
best option for detection of motor imagery (Blokland et al.,
2014).

Picture Imagery
Likemusical imagery, the brain activity is generated by imagining
a picture. This task was used in an early fNIRS-based BCI (Naito
et al., 2007).

Other
Several studies have reported that brain activity increases if
subjects are asked to relax and put their minds to rest (Schudlo
et al., 2013, Schudlo and Chau, 2014).

In the fNIRS-BCI literature, there are only two studies that
have used patients to record the brain signals (see Table 3):
Mental arithmetic and metal listening based tasks were used in
these two studies to measure the hemodynamic signals. Since
listening is a reactive brain activity that requires external stimuli
to generate the brain activity, a mental arithmetic task (being
an active task) can be a better option for a patient. However,
the literature has no conclusive evidence about the best task for
patients for BCI. The pie-chart in Figure 3 shows the distribution
of tasks that have appeared in the literature (2002–2017, 102
articles). This may give an overall idea of the possibilities for the
selection of an activity for patients to perform.

METHODS TO DETERMINE THE REGION
OF INTEREST

It is obvious that if the wrong brain region is selected, proper
signals for a BCI cannot be obtained. If we know the exact
brain location to be monitored, the burden of placing heavy
caps/electrodes/optodes for activity detection can be avoided. A
healthy subject may be able to perform the given tasks correctly
even using a complex brain signal acquisition system; however,
a patient may not be able to do any sort of activity while
wearing heavy head-gear. The research issue in this regard is
how to select a small brain region, so that the BCI system can
be controlled using a limited number of electrodes/optodes. A
very comprehensive study of EEG electrode selection has been
performed by Alotaiby et al. (2015). However, for fNIRS, no
study has fully explored channel selection methodologies yet.
Therefore, in this paper, strategies for fNIRS channel selection,
which plays a vital role for LIS patients, will be the focus of
attention.

Algorithms for Determining the Region of
Interest
There are several algorithms that can be used to select the region
of interest for BCI. The methods reported in the literature when
choosing meaningful fNIRS channels are discussed below:
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FIGURE 3 | Distribution of the prefrontal tasks used for brain-computer interfaces: This chart was constructed using 102 papers (2002–2017) from the Web of

Science (www.isiknowledge.com).

Channel Averaging
This is the simplest approach, adopted in a number of fNIRS BCI
studies (also in EEG and hybrid EEG-fNIRS studies) (Sagara and
Kido, 2012; Naseer and Hong, 2013; Scarpa et al., 2013; Naseer
et al., 2014). Here, all the channels used to detect brain activity
are averaged. Equation (1) shows the channel averaging scheme:

1HbXavg(k) =

M
∑

j=1
1HbX(k, j)

M
, (1)

where HbX∈ {HbO, HbR} represents a type of hemoglobin, M
is the total number of channels, k represents the discrete time
for which the signal is recorded, and j represents the channel
number. This technique has a drawback in the case that the
brain activity appears in only a few channels and the remaining
channels do not show any activation. Averaging over the inactive
channels significantly reduces the intensity (peak) of the data.
This also leads to a significant drop in accuracy. Thus, this
scheme may not be suited for LIS patients.

Averaging Over a Local Region
This technique has a better chance of achieving high accuracy
than the previous scheme. In this case, the brain region on
which optodes are placed is divided into 2–3 smaller sub-regions
(Scarpa et al., 2013; Ichikawa et al., 2014; Aghajani et al., 2017;
Ge et al., 2017; Zhang et al., 2017). During the training phase,
the channels in each sub-region are averaged and their accuracies
are computed offline. The brain sub-region showing the highest
accuracy is selected for the subsequent testing phase. A study
by Khan and Hong (2015) used a total of 28 channels in the
prefrontal region, which was divided into three sub-regions;
sub-region A (the right side, 8 channels), sub-region B (the
middle part, 12 channels), and sub-region C (the left side, 8
channels). Their study showed that sub-region A was more active
than B or C. This approach is more effective than universal
averaging, as it can narrow down the activated brain region.
Moreover, fewer inactive channels are used for classification, thus

improving the classification accuracy. Figure 4 shows an example
of partitioning the prefrontal cortex. It is important to note that
if only active channels are used for averaging, the accuracy can be
further improved.

t-value Based Channel Selection
If a stimulation paradigm is known, the t-value between
the measured hemodynamic response and the expected
hemodynamic response caused by the given stimulation can be
computed. A t-value-based channel selection approach means
that only those channels showing positive t-values are used for
further analyses. In this case, a threshold value for t in selecting
active channels can be set.

In computing the expected/desired hemodynamic response
(dHRF), a type of standard hemodynamics response function,
named the canonical hemodynamic response function (cHRF),
h(k), is used. The dHRF is calculated by convolving the cHRF
with the known stimulation interval, s(k), as follows.

u(k) =
k−1
∑

n=0

h(n)s(k− n), (2)

where u(k) is the dHRF and the stimulation interval s(k) is
defined as

s(k) =
{

0, if k ∈ rest
1, if k ∈ task

, (3)

where rest and task stand for the rest and task periods,
respectively. The cHRF, h(k), is generated as a linear combination
of two (or three) Gamma variant functions. If the rise of
HbO upon brain stimulation and its undershoot afterward are
considered, the cHRF is generated by two gamma functions as
follows.

h(k) = α1

[

(k/τ1)
(φ1−1)e−(k/τ1)

τ1(φ1 − 1)!
− α2

(k/τ2)
(φ2−1)e−(k/τ2)

τ2(φ2 − 1)!

]

, (4)
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FIGURE 4 | Partitioning the prefrontal cortex: Only a subregion showing the highest accuracy can be used for brain-computer interface purposes (for example,

Region A was used by Khan and Hong, 2015).

where α1 is the amplitude, τi and φi (i =1, 2) tune the shape
and scale respectively, and α2 is the ratio of the peak to the
undershoot. If, on the other hand, the initial dip of HbO together
with the peak and the undershoot of HbO need to be modeled,
three gamma functions can be used as follows (Shan et al., 2014).

h(k) =
3

∑

i=1

(αi
kφi−1τ

φi
i e−τik

Ŵ(φi)
), (5)

where αi, τi, and φi for i =1, 2, and 3 are the amplitude, time
to peak, and width at the half peak value of the initial dip, main
hemodynamic response, and undershoot, respectively.

For obtaining t-values, a typical linear regression model using
the desired HR can be formulated as follows (Santosa et al., 2013,
2014).

h s
j (k) = φ s

ju(k)+ ψ s
j · 1+ ε sj , (6)

where the superscript s denotes the stimulation number, u(k) ∈
RN×1 is the modeled hemodynamic response in (2), φ is
an unknown coefficient that indicates the activity strength of
the modeled hemodynamic response, ψ is a coefficient to
compensate for baseline drift of the signal, 1∈ RN×1is a column
vector of ones for correcting the baseline, and ε ∈ RN×1 is the
error term in the regressionmodel. The coefficient φsj is estimated
as φsj using a recursive least squares algorithm (Ye et al., 2009).

The idea is to test the null hypothesis that the estimated
parameter φsj is equal to zero. If φsj is positive, the specific
activation is assumed to be active, and if it is negative, the specific
activation is not active at the j-th channel, for which the t-value

test has been used. The t-value is computed using the formula

tsj =
φ̂sj

SE(φ̂sj )
, (7)

where SE is the standard error of the estimated coefficient. Two
criteria to assess the selection reliability of a particular activation
can be used: tsj > 0 and psj < αc, where p denotes the p-value
and αc is the confidence interval. Alternatively, this could be
done by checking tsj > tcrt, where tcrt denotes the critical t-value
that depends on the degree of freedom (which is N −1). In
the literature, the t-value based method is widely used for ROI
selection, and also for brain imaging, in which the criterion is
used to locate the activated brain areas (Hu et al., 2010; Al-Shargie
et al., 2016; Li et al., 2017).

Baseline Correction
Instead of computing the t-values for individual channels, the
baseline during the rest period can be used as a criterion in
selecting channels for further analysis. In this case, the maximum
value during the task period and that of the rest period are
compared. If the difference is positive, the channel is considered
active (Hu et al., 2013). For example, the following criterion was
used for channel selection by Khan and Hong (2017):

δptrial(j) = max(HbOtrial(k3 : k4, j))−max(HbOrest(k1 : k2, j)),(8)

where δp(j) represents the difference of the peak during the
specified interval from that of the rest period, j is the channel
number, k1 and k2 represent the interval for the rest period, and
k3 and k4 represent the interval for the trial period. If δp(j) is
positive, the channel is selected as active; otherwise, the channel
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is discarded. Thus, this criterion reduces the computational time.
For patients who might not be able to keep their heads steady
during the acquisition of brain data, computation time becomes
important. However, this criterionmay result in higher variability
throughout the BCI process. Due to this drawback, the baseline
correction approach is seldom used. Therefore, it is better to track
brain activity on each task to determine the correct brain regions.

Vector-Phase Analysis
This is a relatively new scheme in comparison to the methods
described above. Since the vector phase plane is made of HbO
and HbR, this method is available only for fNIRS-based BCIs;
that is, this method is not applicable to EEG or fMRI. The
term (i.e., phase-based analysis) does exist in EEG analysis, but
applies to amplitude and phase analyses. The real component
in the EEG vector plane is the original band-passed signal,
and the imaginary component is the Hilbert transform of
the signal, which corresponds to a 90◦ rotation of the real
component (Foster et al., 2016). Therefore, the approach used
for EEG has no relation with vector phase analysis as used for
fNIRS.

Current research indicates that this method is suitable for
hemodynamics-based systems for determination of the correct
channels. The method was initially proposed for evaluating
hemodynamics (Yoshino and Kato, 2012; Sano et al., 2013;
Yoshino et al., 2013; Oka et al., 2015). Moreover, it is capable
of predicting the trajectory of hemodynamic responses, which
can be used for correct channel estimation. Furthermore,
the detection of initial dips has been done by using vector-
based phase analysis with a threshold circle as a decision
criterion (Hong and Naseer, 2016), in which two independent
vectors defined by oxy- and deoxy-hemoglobin (1HbO and
1HbR) signals are orthogonally positioned. In addition to
1HbO and 1HbR, two other components can be defined as
follows:

1HbT = 1√
2
(1HbO+1HbR), (9)

1COE = 1√
2
(1HbR−1HbO), (10)

where 1HbT indicates the total hemoglobin concentration
change and 1COE denotes the cerebral oxygen change.
Alternatively, these two components can be obtained by rotating
the vector coordinate plane defined by 1HbO and 1HbR
by 45◦ counterclockwise (see Figure 5). The magnitude and
phase of a vector, p, in the plane can now be calculated as
follows:

∣

∣p
∣

∣ =
√

1HbO2 +1HbR2, (11)

6 p = tan−1(
1HbR

1HbO
) = tan−1(

1COE

1HbT
)+ 45o. (12)

The ratio of 1COE and 1HbT in (12) defines the degree of
oxygen exchange, since 1COE represents the oxygen exchange
in the blood vessels and thus represents neuronal activity.
Using the four indices, the phase plane is divided into eight

FIGURE 5 | Vector-phase diagram proposed by Kato (2003).

TABLE 2 | Vector phases for initial dip and hemodynamics (Hong and Naseer,

2016).

Phases 1HbO and 1HbR

states

1HbT and 1COE

states

Conclusion

1 Both positive

1HbO > 1HbR

1HbT is positive

1COE is negative

Initial dip

phase

2 Both positive

1HbO < 1HbR

Both positive

1HbT > 1COE

3 1HbO is negative

1HbR is positive

Both positive

1HbT < 1COE

4 1HbO is negative

1HbR is positive

1HbT is negative

1COE is positive

5 Both negative

1HbO < 1HbR

1HbT is negative

1COE is positive

6 Both negative

1HbO > 1HbR

1HbT is positive

1COE is negative

Hemodynamic

phase

7 1HbO is positive

1HbR is negative

Both negative

1HbT > 1COE

8 1HbO is positive

1HbR is negative

Both negative

1HbT < 1COE

phases (see Figure 5). The description of each phase is given in
Table 2.

The use of a threshold circle as a decision criterion,
incorporated in the phase plane analysis, helps to minimize
possible misidentifications of initial dips. The radius of the
threshold circle for each channel is determined by detecting (i)
the peak value of (11), or (ii) max(1HbO), or (iii) max(1HbR)
during the rest state. The initial dip occurrence is concluded
when the trajectories of (11) break out the threshold circle
while its phase lies within the dip phases (i.e., phases 1–5). For
hemodynamics, the activity can be considered concluded if the
trajectory crosses the threshold circle in phases 6–8.

The key aspect of vector-phase analysis is the ability to detect
the neural activity before the occurrence of hemodynamics. If we
are able to tag the locations of individual brain signals, multiple
brain signals can be detected as well. In this case, the addition
of another threshold circle based on peak values of HbO may be
useful to distinguish multiple brain activities using the analysis.
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Hardware Configuration
For fNIRS-BCI, the majority of studies have used a source-
detector-pair configuration, in which a source and a detector are
separated at a distance of 3∼5 cm for signal recording. Recently,
a dense optode configuration has emerged in the literature as a
potential tool for a condensed brain imaging. The methods for
selecting the region of interest based on hardware cofiguration
are discussed below:

Conventional Configuration
Several different emitter-detector configurations have been used
for fNIRS to record brain activities. The emitter-detector distance
is usually kept within a specific range. To measure hemodynamic
responses, an emitter-detector separation at around 3 cm is used.
A separation of less than 1 cm might contain only skin-layer
contribution, whereas that of more than 5 cm might result in
weak signal detection. For the prefrontal cortex, 3 emitters and 8
detectors combination is usually used to record the brain activity
for BCI (Naseer and Hong, 2015a). Mostly, for this configuration,
channel averaging is used for selecting the region of interest.

Bundled-Optode-based Selection
The bundled-optode approach is a recent method of determining
a precise brain region, which is currently being pursued for faster
fNIRS-based brain imaging. This methodology involves spatially
resolved spectroscopy (SRS) (Boas et al., 2014). The SRS approach
was initially used to measure optical properties of tissues (Hunter
et al., 2002; Kek et al., 2008). In this method, one emitter and
at least two associated detectors are used, which means that
at least two channels are required. The absorption coefficient
can then be computed based on the absorbance gradient with
respect to the emitter-detector distance. In this case, the NIRS
optodes are grouped together to form a bundle. First, the brain
location is determined using the International 10–20 system of
electrode placement. The optode bundle is then placed on the
activated brain region determine which portion is most active
(Nguyen and Hong, 2016; Nguyen et al., 2016). In comparison to
the optode placement method discussed in section Conventional
Configuration, the bundled optode method is more spatially
accurate as it removes the skin and skull absorption from the
detected signal. Also, all the cortices of a patient may not be able
to generate the desired brain activity for BCI. The conventional
BCI system is not spatially precise in identifying the desired brain
region (or channels) for a command generation. The bundled-
optode scheme is able to distinguish the multiple tasks in a small
brain region and it is spatially more accurate in identifying the
designated brain. Therefore, it can contribute better in locating
the activated brain region of a patient for BCI in comparison to
the scheme that uses a few channels. Although the current setup
may be bulky but, in the future, a micro-array type fNIRS can be
developed.

Figure 6 shows the configuration used for the bundled-
optode-based scheme. The figure illustrates the concept of a
bundled-optode configuration for the detection of a brain activity
in a local brain region. The circles indicate emitters/detectors
while the blue arrows illustrate the direction of light from
emitters to detectors. The brain activity of each channel is

FIGURE 6 | Bundled optode scheme: A schematic of densely configured

fNIRS probes for deep brain imaging.

detected as the mean values of HbX (i.e., HbO and HbR) that are
encoded in to make the 3D color map. The t- or p-values can also
be used for the reconstruction of the 3D image. Further research
on this approach is needed, as it has a high potential of detecting
a precise brain region of interest for each patient.

FEATURE EXTRACTION AND
CLASSIFICATION CRITERIA

For generation of proper commands, the identification of correct
features is essential. For use with patients this is even more
crucial, as the use of poor features for classificationmay result in a
significant drop in accuracy. The signal mean, signal peak, signal
slope, latency, skewness, kurtosis, and power spectrum density
are the most widely used features for both EEG and fNIRS (Lotte
et al., 2007; Naseer and Hong, 2015a,b). Usually the features
are categorized as temporal, spatial and spatio-temporal based
on their characteristics (Robinson et al., 2016). The temporal
features are evaluated using a specific time window for given data.
The spatial features contain frequency-related information about
the data in a specific time window. Increasing the number of
features in a classifier increases the processing time. Typically, in
fNIRS, a command for an active task is generated using a 2–7-s
window. Thus, the extraction of features is directly dependent on
the types of signals recorded.
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Feature Extraction
In the fNIRS literature, various features have been reported for
various types of tasks. In this section, we discuss the features most
commonly used for an fNIRS-BCI.

fNIRS-based Feature Extraction
Many features can be estimated based on the HbO and HbR
activity in a patient’s brain. Among these features, the mean,
peak, and slope are most commonly used (Hwang et al., 2014).
A predetermined window is required to estimate these features
(Gateau et al., 2015). Research has examined various sizes of
windows, but a 2–7-s window from the onset time seems to show
the best outcome for a 10-s task (Naseer and Hong, 2013).

Signal mean
The signal means of1HbO and1HbR are calculated as follows.

µw = 1

Nw

k2
∑

k=k1

1HbX(k), (13)

where the subscriptw denotes “window,”µw is themean value for
a given window, k1 and k2 denote the start and end time of the
window, Nw is the number of observations in the window, and
1HbX represents the HbO or HbR data. Most fNIRS-based BCIs
include the signal mean as a feature for classification (Hwang
et al., 2016; Noori et al., 2017).

Signal slope
There are two ways to calculate the signal slope. The first method
is to directly obtain the difference of the values at the start and
end points of a predetermined interval (for example, from 2–7 s
from the onset time of a stimulus, or the entire stimulus period
plus a portion of the subsequent rest period) and to use them to
compute the slope (Shin and Jeong, 2014). The second method
uses a curve-fitting approach to fit a line to the hemodynamic
signal for the predetermined interval. The first method is more
widely used, but the second method may be preferable (Weyand
et al., 2015b).

Signal peak
This feature is the peak value of the signal in a given window.
Some studies have reported that peak values worked best in fNIRS
(Stangl et al., 2013; Shin and Jeong, 2014).

Signal minimum
This feature is the minimum value of the signal in a given
window. Most commonly this feature has been used to identify
an initial dip for a 2-s window. To the best of our knowledge, only
three studies have so far used this feature for fNIRS-BCI (Khan
and Hong, 2017; Li et al., 2017; Zafar and Hong, 2017).

Skewness and Kurtosis
The skewness is computed as follows:

skeww = Ex(1HbXw − µw)
3

σ 3
, (14)

where skew is the skewness, σ is the standard deviation of1HbX
for the given window, and Ex is the expectation of 1 HbX. The
kurtosis is computed as follows.

kurtw = Ex(1HbXw − µw)
4

σ 4
, (15)

where kurt is the kurtosis of1HbX. Both skewness and kurtosis
have been reported to workmoderately well for fNIRS (Hong and
Santosa, 2016; Hwang et al., 2016).

Number and sum of peaks
The number of peaks is calculated bymeasuring the local maxima
of the 1HbO signal in a single time window. The findpeaks
function available in MATLAB can be used to measure the
number of peaks (either online or offline). The sum of peaks is
obtained by summing the local maxima in a given window (Khan
and Hong, 2015).

Others
A few other features such as the variance (Holper and Wolf,
2011), root mean square (Tai and Chau, 2009; Watanabe et al.,
2016), standard deviation (Abibullaev et al., 2011) and median
(Shin and Jeong, 2014) have also been reported to work for fNIRS.
The fast optical response can be used as a feature (Hu et al., 2013).
The conversion of optical signals into HbO and HbR can give
more information about the brain activity.

Feature Extraction for Hybrid Modalities
EEG and fNIRS are the two main BCI modalities where mobility
is required, and recent research has shown that these two
systems can be integrated to improve the BCI performance.
Most commonly, EEG features are extracted from frequency
bands that are related to specific brain activity. For current
control applications, event-related desynchronization/event-
related synchronization (ERD/ERS) based features are combined
with fNIRS to improve the system performance. There is a
study that combined EEG and fNIRS for a SSVEP task (Tomita
et al., 2014). In our opinion, ERD/ERS based activities can be
more useful for patients than SSVEP, as they can be generated
deliberately. EEG feature extraction schemes are now briefly
discussed.

Power spectrum density
The power spectral density (PSD) describes the strength of a
signal as a function of frequency. For nonparametric methods,
the autocorrelation sequence for a given set of data is first
estimated. The PSD is then calculated by Fourier transforming
the estimated autocorrelation sequence. One way of doing this
is using the Welch’s method. The method is applied to a
moving window, producing a modified periodogram. The power
spectrum density is expressed as follows:

Psf =
1

N

N
∑

n=1

∣

∣

∣
xnse

−j2π fn
∣

∣

∣

2
, (16)

where Ps
f
denotes the power of the f -th frequency band in the s-th

data sequence, xns is the magnitude of the s-th sequence, and N
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is the number of samples. Several EEG based control studies have
used this method for evaluation of features (Tanaka et al., 2005;
Carlson and Millan, 2013). Moreover, most hybrid EEG-fNIRS
BCI studies have used the power spectrum as a classification
feature (Putze et al., 2014; Tomita et al., 2014).

Logarithmic band power
As the name suggests, this feature is estimated using the
logarithms of the power of different bands of EEG data. To
estimate this feature, first the power value of each frequency band
is estimated (see Equation 16). The logarithm of the signal power
is taken to estimate the highest value in the band:

LPf = log(Pf ), (17)

where LPf is the logarithmic power of the signal. This approach
is used in some wheelchair control studies (Tsui et al., 2011; Lee
et al., 2015).

Common spatial patterns
Common spatial patterns (CSP) for EEG feature extraction
and classification are used to project the multi-channel EEG
data into a low-dimensional spatial subspace with a projection
matrix of which each row consists of weights for channels.
This transformation can maximize the variance of two-class
signal matrices. The CSP method is based on simultaneous
diagonalization of covariance matrices for the two classes.

To calculate the CSP features, first a sample covariance matrix
for a trial is calculated as follows:

R = XXT

tr(XXT)
, (18)

where X is the sample data, tr(X) denotes the trace of a matrix,
and T denotes the transpose of a matrix. The composite spatial
covariance is estimated as follows:

R̄1 + R̄2 = UAUT , (19)

where U denotes the matrix of eigenvectors, and A denotes the
diagonal matrix of corresponding eigenvalues. The full projection
matrix is then formed as follows:

W = BT
√
A−1UT , (20)

where B denotes the matrix of Eigen vectors for the whitened
spatial covariance matrix. The eigenvalues and eigenvectors are
sorted in descending order, from first to last:

Z = WTX. (21)

A 2-dimensional feature is then constructed from the variance of
the rows of Z:

fq = log(
var(Zq)
2

∑

i=1
var(Zi)

), (22)

where Zqis the q-th row of vector Z. The CSP method of feature
extraction has been adopted for wheelchair control using both
active and reactive tasks (Li et al., 2013b, 2014; Cao et al., 2014;
Buccino et al., 2016; Zhang et al., 2016; Ge et al., 2017; Shin et al.,
2017).

Others
There have been a few studies that have also used the time
frequency phase (Yin et al., 2015b) and the coefficients of a
wavelet transform (Li et al., 2017) as features for EEG, which were
combined with fNIRS for hybridization. In an example of hybrid
EEG-fNIRS, Blokland et al. (2014) used band power and logistic
regression coefficients as features with a 0–15-s window for EEG
and a 3–18-s window for fNIRS for tetraplegia patients.

Classifiers for Hybrid EEG-fNIRS
Classification techniques are used to identify different brain
signals that are generated by the user. These identified signals
are then translated into control commands for application
interface purposes. In most existing fNIRS-BCIs, identification
is performed by using classification techniques to discriminate
various brain signals based on appropriate features. Classification
algorithms, calibrated by supervised learning during a training
phase, can detect brain-signal patterns during the testing stage.
Here, we will discuss only the classifiers that are most commonly
used for hybrid EEG-fNIRS.

Linear Discriminant Analysis
Linear discriminant analysis (LDA) is the most commonly
used classification method in fNIRS and hybrid EEG-fNIRS
studies. It utilizes discriminant hyperplane(s) to separate data
representing two or more classes. Because of its simplicity and
low computational requirements, it is highly suitable for online
BCI systems. In LDA, the separating hyperplane is found by
seeking a data projection that maximizes the distance between
the means of two or more classes and minimizes the interclass
variances. LDA assumes a normal data distribution along with
equal covariance matrices for both classes.

The optimal projection matrix V for LDA that maximizes the
corresponding Fisher’s criterion is given as follows:

J(V) = det(VTSBV)

det(VTSWV)
, (23)

where SB and SW are the between-class scatter matrix and the
within-class scatter matrix, respectively, which are defined as
follows:

SW =
m

∑

i=1

∑

xk∈ class i

(x− µi)(x− µi)
T (24)

SB =
m

∑

i=1

ni (µi − µ) (µi − µ)T . (25)

Here, x ∈ R2 denotes the samples, µi is the sample mean of class
i, and µ is the total mean of all the samples,m is the total number
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of classes, ni is the number of samples of class i, and n is the
total number of samples. Equation (27) is treated as an eigenvalue
problem to obtain the optimal vector V that corresponds to the
largest eigenvalues. Many fNIRS and hybrid EEG-fNIRS studies
have successfully used LDA for BCIs (Luu and Chau, 2009;
Bauernfeind et al., 2011; Fazli et al., 2012; Moghimi et al., 2012;
Khan et al., 2014; Lee et al., 2015; Ahn et al., 2016; Buccino et al.,
2016; Shin et al., 2017).

Support Vector Machines
The support vector machine (SVM) is a very popular pattern
recognition technique for brain signal classification. It has been
used in various fNIRS studies (Sitaram et al., 2007; Cui et al.,
2010; Tanaka and Katura, 2011; Putze et al., 2014; Koo et al.,
2015). It is a supervised classifier that can define two or more
classes by determining the maximum class separation, known as
the “maximum margin hyperplane.” The algorithm does this by
mapping the input data to a feature space that can be divided
using linear or non-linear decision boundaries, depending on the
kernel. The SVM classifier tries to maximize the distance between
the separating hyperplane and the nearest training point(s) (the
so-called support vectors). The separating hyperplane in the 2D
feature space is given by the equation

f (x) = r · x+ b1, (26)

where r, x ∈ R2 and b ∈ R1. The optimal solution r∗ that
maximizes the distance between the hyperplane and the nearest
training point(s) can be obtained byminimizing the cost function

L(r, ξ ) = 1

2
‖r‖2 + C ·

∑Z

n=1
ξn, (27)

while satisfying the constraints

(xn.r + b1) ≥ 1− ξn for yn = +1, (28)

(xn.r + b1) ≥ −1+ ξn for yn = −1

ξn ≥ 0 ∀n,

where ‖r‖2 = rTr,C is a positive regularization parameter chosen
by the user (a large value of C corresponds to a high penalty for
classification errors), ξn is a measure of training error, z is the
number of misclassified samples, and yn is the class label (+1 or
−1 in the case of binary classification) for the n-th sample.

The radial basis function (RBF) kernel is widely used, as it
allows complex separation surfaces requiring a reduced number
of hyper-parameters to tune. The hyper-parameters for this SVM
give an upper bound on the fraction of margin errors and a
lower bound on the fraction of support vectors. For a multi-
class problem, the data are subdivided into several binary class
problems and used in a one-against-one approach. Thus, for an
m-class problem,m(m− 1)/2 machines are trained.

Extreme Learning Machine
The extreme learning machine (ELM) is a learning algorithm in
which single-hidden-layer feedforward neural networks are used
for classification and regression. The ELM training algorithm can
adaptively set the number of hidden layer nodes and randomly

assigns the input weights and hidden layer biases. The output
layer weights are obtained by the least squares method, and the
whole learning process is completed in one calculation stage
without iteration (Deng et al., 2010). The ELM for N arbitrary
distinct samples (xi, li), where xi =[xi1, xi2, . . . xin]T ∈ Rn and
li =[li1, li2, . . . lim]T ∈ Rm, and (xi, li) ∈ Rn x Rm (i-1,2,. . . ,N),
for a standard single-layer feedforward neural network with NH

hidden nodes and activation function g(x), is given as follows:

N
∑

i=1

βigi(xd) =
N

∑

i=1

βigi(ai.xd + bi) = od, d = 1, 2, ...,N, (29)

where ai is the weight vector connecting the i-th hidden neuron
to the input, and bi is the threshold of the i-th hidden neuron,
βi is the weight vector connecting the i-th hidden neuron to
the output, and od is the d-th output vector of single layer feed
forward neural network. The above equation can be written as
follows:

Hβ = O,






f (a1.x1 + b1) · · · f (aN .xN + bN)
... · · ·

...
f (a1.xN + b1) · · · f (aN .xN + bN)







N×N

, (30)

β =







βT1
...
βTN







N×m

,O =







oT1
...
oTN







N×m

where H(a1, a2, . . . , aN, b1, b2, . . . , bN, x1, x2, . . . , xN) is called the
hidden layer output matrix of the neural network. After the input
weights and hidden layers biases are determined in accordance
with the random assignment, the input samples are used to obtain
the hidden layer output matrixH. A least squares solution for the
above equation can be found as follows:

∧
β = H†O, (31)

whereH represents theMoore-Penrose generalized inverse of the
hidden layer output matrix H. The optimal solution β̂ controls
the minimal training error gain of the algorithm. A few fNIRS
studies have used ELM for BCI (Yin et al., 2015a,b).

Vector Phase Analysis as a Classifier
As discussed earlier, vector phase analysis can be used for
identification of brain regions (see the Vector-Phase Analysis
section). It has applications in classification as well. To the
best of our knowledge, only one study has used this classifier
to decode two different brain states (Zafar and Hong, 2017).
The current limitation in this method is that it has been used
only to distinguish between resting and activity states. Further
research in this area is needed to improve the usability of
the method for decoding multiple tasks. Figure 7 shows the
strategy adopted by vector phase analysis for decoding two
choices.

Deep learning algorithms can also be a potential candidate for
classification of brain images. The conventional classifiers may
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FIGURE 7 | Illustration of vector-phase analysis for two choice decoding.

not be effective for identification of neuro-plasticity from brain
images. So far, only one fNIRS study has used deep learning
approach for BCI (Trakoolwilaiwan et al., 2017). As described
in the study, a Convolutional Neural Network (CNN) can be
effective for classification of multiple brain activities from a
brain image. Just like the extreme learning machine, a CNN is
comprised of one or more layers that are convolutional followed
by one or more fully connected layers. The architecture of a CNN

is designed to take advantage of the 2D structure of an input
image that can be beneficial to detect an activity from a brain
map. CNN can be trained with a few parameters and thus the
command generation for BCI control may not be increased.

Figure 8 shows distributions of the features and classifiers that
have been used during 2010–2017 for fNIRS. The lower part of
the figure shows information on hybrid EEG-fNIRS features and
classifiers used to generate multiple commands.
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FIGURE 8 | Features and classifiers used in fNIRS and hybrid EEG-fNIRS studies (64 fNIRS-BCI papers and 14 hybrid EEG-fNIRS papers from 2010 to 2017).

DEVICE INTERFACES

The purpose of a BCI is not achieved if a final interface with a
machine is not provided for communication with a patient. It can

be difficult for a patient to generate multiple commands needed
to operate a complex system. A simplified and easy interface is
required for a BCI to be taken out of the laboratory environment.
The BCI should be designed in accordance with the number of
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commands that a patient is able to generate. Even if a reactive
BCI may be able to generate multiple commands, it may not be
a viable option for real life. It is obvious that if the wrong brain
region is selected for activity detection, a proper signal for BCI
cannot be generated. Most fNIRS studies have not yet provided a
device interface that can prove its utility for patients. To discuss
the major role of device interfaces in fNIRS and fNIRS-based
hybrid BCI, we categorize the existing studies based on the types
of applications.

Choice Selection
A great majority of fNIRS studies for BCI have focused on
decoding only two commands. A list of these studies was
provided in Table 3. It can be clearly seen from the table that
only a single study was able to implement their BCI for LIS
patients. The remaining studies do not show any evidence of
working with patients. The table also shows that the signal mean
was used most often as a feature, with LDA for classification.
Moreover, none of the studies was able to implement their BCI
in real-time. Probably the inherent delay of the hemodynamic
signals was a restricting factor; this problem is not easy to
overcome, because implementation of the results for real-time
applications may significantly reduce the accuracy. Even so, after
examining the literature, we can say that fNIRS-based BCIs have
the capability to decode two choices for patients using active
paradigms. Further research with LIS patients as subjects can
focus on finding optimal features that can be used to enhance the
classification accuracy and to increase the number of commands
available for control.

Gait and Balance Control
Mihara et al. (2008) have reported that the cortical activation
associated with postural adjustment of a patient results in a
significant increase in HbO in the bilateral prefrontal cortex.
These activations can be used to control a robotic interface for
postural control and balancing of a locked-in patient (Khan et al.,
2018). However, further research is needed in this domain to
decode multiple postures for patients.

Brain Plasticity Monitoring
fNIRS can serve as a tool for monitoring of neuroplasticity and
functional recovery after brain injury. Patients with acute brain
injury such as stroke can take months to recover from the injury
(Jørgensen et al., 1999). fNIRS can be used for estimating the
cortical plasticity of the patient’s brain. However, deep brain
imaging may be required to estimate different stages of brain
recovery/plasticity of a patient. For these cases, deep learning
algorithms like convolutional neural network can play a vital role
in estimation of brain plasticity/recovery.

Wheelchair Control
In this category, we selected only fNIRS and hybrid EEG-fNIRS
studies in which more than two commands were generated.
The list of these studies is provided in Tables 3, 4. It can
be seen from Table 3 that the accuracy of fNIRS-BCI is very
low for 5-command decoding. However, the accuracy for four
or more commands becomes higher if a hybrid EEG-fNIRS

technique is used. Patients who suffer severely from motor
disorders may not be able to generate many commands even
with hybridization. However, an increase in the number of
commands and enhancement in accuracy promises more safety
and flexibility for patients. Themain reason is that the commands
generated using one brain signal acquisition modality can be
verified with the other; thus, the accuracy is improved. Although
wheelchair control has not yet been implemented using fNIRS
alone, hybridization might achieve this objective with enhanced
accuracy.

WHAT FUTURE DIRECTION TO ADOPT?

From the information presented here, it can be deduced that we
are still far from successfully implementing a BCI for a patient
that works in real-time. However, the current research trends are
headed in the right direction and the goal may not be impossible
to achieve. There are certain issues that must be resolved first to
allow more rapid progress toward achieving the goal.

The first requirement is to use patients instead of healthy
subjects to validate a BCI method. Even if BCI schemes can be
successfully implemented on healthy persons, it may be difficult
to use the same methods for patients. Many studies suggest that
high accuracy for patients should be possible, but the reality may
be different (Chaudhary et al., 2017).

The second necessity is the selection of appropriate brain
activity for LIS patients. Currently, we cannot say for sure which
brain task is best suited for a patient. A healthy person can
perform any reasonable task, but a patient requires a task from a
number of options. Strong conclusions can only be drawn if large
samples of patients are used to evaluate different types of brain
tasks.

Another issue is the selection of a good brain region. As
discussed, most studies have focused on averaging or selecting
a single channel for BCI. A precisely localized brain location
is required for high-quality detection of brain activity. In this
context, further research on the bundled optode scheme using
fNIRS is required to narrow down the optimal brain region
for a patient. Moreover, deep brain imaging techniques may
have a possibility of better discriminating brain signals than
conventional methods (Nguyen and Hong, 2016; Nguyen et al.,
2016).

Another point raised here is that most fNIRS studies
have not physically implemented their BCI. There might be
benefit in using additional external sensors (e.g., blood-pressure
monitoring, respiration, and cardiac monitoring at the same
time) to make the final decision to generate a command. Even
for a very basic problem of Yes/No decoding (see section Choice
Selection), an incorrectly generated command may lead to severe
consequences in a real environment; especially for a locked-
in patient who may not be able to respond to a misclassified
decision. Therefore, improvement in this category is needed.

Most BCI studies have found that the output from
hemodynamic or neuronal signals are sufficient for device
control. However, the high accuracy sometimes occurs due to
false detection of brain signals. For real-time control, this false
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TABLE 3 | fNIRS-BCI studies (2012–2017) that decoded brain activities from the prefrontal cortex.

References Type of

subject

Brain region

selection

scheme

Analysis type Task Features Classifier Possible

application

Number of

commands

Classification

accuracy

(%)

Hu et al.,

2012

Healthy Channel

averaging

Online Truth/lie Absolute values of

1HbO and 1HbR

SVM 2 choice

decoding

2 83.4

Power et al.,

2012a

Healthy Channel

averaging

Offline Mental

arithmetic

Signal slope LDA 2 choice

selection

2 72.6

Power et al.,

2012b

Healthy Channel

averaging

Offline Mental

arithmetic and

mental

singing

Signal slope of

linear regressing

line

LDA Can be

used for

wheel

chair

control

3 56.2

Chan et al.,

2012

Healthy Channel

averaging

Offline Mental

singing

Peak of 1HbO

and 1HbR

HMM

and ANN

2 choice

decoding

2 55.7 for HMM

and 63 for

ANN

Abibullaev

and An, 2012

Healthy Single

channel

selection

based on

wavelet

coefficients

Offline Object

rotation, letter

padding and

multiplication

Filter coefficients

from wavelet

transform

LDA and

SVM

Applicable

for

wheelchair

control

2 (can be

used to

generate 4

commands)

> 85

(LDA) > 90

(SVM)

Moghimi

et al., 2012

Healthy Channel

averaging

Offline Music listning Mean and

difference between

signal and noise of

1HbO and 1HbR

LDA 2 choice

decoding

2 71.9

Power and

Chau, 2013

Duchenne

muscular

dystrophy

patient

Individual

channel used

Online Mental

arithmetic

Signal slope of

1HbO and 1HbR

LDA 2 choice

decoding

2 71.1

Stangl et al.,

2013

Healthy Channel

averaging

Online Motor

imagery,

mental

arithmetic

Amplitude of

1HbO

LDA 2 choice

decoding

2 65

Faress and

Chau, 2013

Healthy Individual

channel used

Offline Verbal fluency Slope of HbO,

HbR and HbT

LDA 2 choice

decoding

2 86

Schudlo and

Chau, 2014

Healthy Individual

channel used

Online Mental

arithmetic

Slope of 1HbO,

1HbR and 1HbT

LDA 2 choice

decoding

2 77.4

Naseer et al.,

2014

Healthy Channel

averaging

Online Mental

arithmetic

Mean values of

1HbO and 1HbR

LDA and

SVM

2 choice

decoding

2 74.2 (LDA)

82.1 (SVM)

Hwang et al.,

2014

Healthy Channel

averaging

Offline Motor

Imagery,

mental

singing,

mental

arithmetic,

mental

rotation and

mental

character

writing

Mean values of

HbO, HbR and

HbT

LDA 2 choice

decoding

2 > 70 (mental

arithmetic and

mental

rotation)

Herff, 2014 Healthy Individual

channel used

Offline n-back task

for mental

workload

Slope of HbO and

HbR

LDA Mental

workload

measurement

2 78

Khan and

Hong, 2015

Healthy Brain

segmentation

to identify

precise

location

Online Active and

drowsy state

Mean, peak and

sum of pekas of

1HbO

LDA and

SVM

Drowsiness

detection

2 83.1 (using

LDA) 84.4

(using SVM)

(Continued)
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TABLE 3 | Continued

References Type of

subject

Brain region

selection

scheme

Analysis type Task Features Classifier Possible

application

Number of

commands

Classification

accuracy

(%)

Hong et al.,

2015

Healthy Channel

averaging

Online Motor

imagery,

mental

arithmetic

Mean and slope of

HbO

LDA Can be

used for

wheelchair

control

3 75.6

Naseer and

Hong, 2015b

Healthy Channel

averaging

Online Motor

imagery and

mental

arithmetic

Mean and slope of

HbO and HbR

LDA 4 choice

selection

(can be

used for

wheelchair

control)

4 73.3

Bhutta et al.,

2015

Healthy Channel

averaging

Online Truth and lie Signal mean and

signal slope

LDA 2 choice

decoding

2 86.5

Weyand

et al., 2015a

Healthy Individual

channel used

Online 11 mental

tasks

Changes in HbO,

HbR and HbT

LDA 2 choice

decoding

2 76.0

Yin et al.,

2015a

Healthy Individual

channel

Online Motor Difference of HbO

and HbR

ELM Applicable

to

wheelchair

control

3 >75

C Schudlo

and Chau,

2015a

Healthy Individual

channel used

Online Verbal

fluency,

Stroop and

rest

Slope of HbO,

HbR and HbT

LDA Can be

used for

wheelchair

control

3 71.7

Schudlo and

Chau, 2015b

Healthy Individual

channel used

Offline Verbal

fluency,

Stroop and

rest

Slope of HbO,

HbR and HbT

LDA 2 choice

decoding

2 82.8

Weyand

et al., 2015b

Healthy Individual

channel

Online 5 mental

tasks

Temporal changes

in HbO, HbR and

HbT

LDA 2 choice

decoding

2 76.6

Weyand and

Chau, 2015

Healthy Individual

channel

Online 6 mental

tasks

Temporal changes

in HbO, HbR and

HbT

LDA Can be

tested for

wheelchair

control

Upto 5 78.0 for 2

class 37.0 for

5 class

Durantin

et al., 2016

Healthy Averaging Offline Digit

memorization

Peak of HbO and

HbR

SVM 2 choice

decoding

2 77.8%

Naseer et al.,

2016a

Healthy Averaging Offline Mental

arithmetic

Mean, slope,

variance, peak and

kurtosis

LDA 2 choice

decoding

2 93.0

Naseer et al.,

2016b

Healthy Averaging Offline Mental

arithmetic

Mean, slope,

variance, peak and

kurtosis

LDA,

QDA,

KNN,

Bayes,

SVM and

ANN

2 choice

decoding

2 96.3

Zafar and

Hong, 2017

Healthy Averaging on

specific

channels

Offline Mental

arithmetic,

mental

counting and

puzzle solving

Initial dip features

(signal mean and

signal minimum of

1HbO)

Vector

phase

analysis

and: LDA

2 choice

decoding

2 57.5 for initial

dip

Qureshi et al.,

2017

Healthy Averaging Offline Motor

imagery and

mental

rotation

Coefficients of

GLM

LDA Can be

used for

wheelchair

control

3 87.8

Chaudhary

et al., 2017

Amyotrophic

lateral

sclerosis

Individual

channel

Online Mental

listening task

Signal mean SVM Choice

decoding

2 70.0
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TABLE 4 | Features and classifiers used for hybrid EEG-fNIRS.

References Type of

subject

Analysis type Task NIRS

features

EEG

features

Classifier Possible

application

Number

of

commands

Classification

accuracy

(%)

Fazli et al.,

2012

Healthy Offline Motor tasks Mean 1HbO,

1HbR and

1HbT

Band

power

LDA Choice

decoding

2 >90

Tomita et al.,

2014

Healthy Offline SSVEP First and

second

derivative of

1HbO and

1HbR

Band

power

Joint classifier Multiple

choice

selection and

wheelchair

control

2 >90

Khan et al.,

2014**

Healthy Online Motor

execution,

mental

counting and

mental

arithmetic

Mean values

of 1HbO and

1HbR

Band

power

LDA Wheelchair

control

4 > 80

Blokland

et al., 2014

Tetraplegia

patients

Offline Motor task Mean of HbO

and HbR in

3∼18 sec

window

Band

power

Linear logistic

regression

classifier

Choice

decoding

2 Average

accuracy >80

Putze et al.,

2014

Healthy Offline Audio and

video

perception

Difference of

mean of HbO

and HbR

Band

power

SVM Choice

decoding

2 Highest

accuracy>90

Koo et al.,

2015

Healthy Online Motor task Threshold for

HbO

CSP SVM for EEG

and threshold

for fNIRS

Choice

decoding

2 >85

Lee et al.,

2015

Healthy Online Motor task Mean

amplitude of

HbO and HbR

CSP and

Logarithmic

power

LDA Choice

decoding

2 >85

Yin et al.,

2015b

Healthy Online Motor Difference of

HbO and HbR

Time-

frequency

Phase

ELM Choice

decoding

2 >89

Buccino

et al., 2016

Healthy Offline Motor Signal mean

and Signal

slope of HbO

CSP LDA Applicable to

wheelchair

control

4 >70

Ahn et al.,

2016

Healthy Online Drowsiness Amplitude of

HbO and HbR

Band

power

LDA Sleep task 2 >75

Khan and

Hong, 2017

Healthy Online Mental task Initial dip and

hemodynamic

features

(Mean,

minimum and

peak of HbO

in 2 sec

window)

Band

power

and Peak

amplitude

LDA Quadcopter

control (More

possibilities

for wheelchair

control)

8 >75

Li et al., 2017 Healthy Online Motor Mean values

of HbO and

HbR in 2 sec

window

Coefficient

of

wavelet

transform

SVM Choice

decoding in 2

sec window

2 >90

Aghajani

et al., 2017

Healthy Online Working

memory

Peak, slope,

standard

deviation,

skewness

and kurtosis

of HbO and

HbR

Band

power

and

phase

locking

value

SVM Mental fatigue

estimation

2 >80

Ge et al.,

2017

Healthy Offline Motor Hurst

exponent

CSP SVM Choice

decoding

2 >80
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FIGURE 9 | Proposed brain-computer interface (BCI) scheme to improve the BCI performance for device control for locked-in syndrome patients.

positive detection may create a safety issue for LIS patients.
Therefore, a better approach is to hybridize neuronal and
hemodynamic signals. Current research on hybridization has
only used system based on combinations of probability scores
(Buccino et al., 2016). There is a need to develop new methods
of integrating neuronal and hemodynamic deep brain activity.

One more issue in achieving device control is reliability of
the brain signals from patients. It may be difficult for a patient
to concentrate on the brain task for a long duration. Thus, the
accuracy for controlling a machine will be reduced significantly.
It will be better if a shared control is implemented to achieve
better outcome for a patient. The shared control is to use an
artificial intelligence technique combined with a BCI to improve
the control performance. For example, in the case of a wheelchair
control, a semi-autonomous control can be implemented. The
brain signals are used to activate/deactivate the wheelchair
whereas a motion planning algorithm can be implemented
for the wheelchair to reach the destination. In this case, the
patient can concentrate less on generating the brain activity
for control, and this will reduce the stress and anxiety level of
the patient.

Brain therapy is also an important factor in the quest to
improve brain state decoding. Many studies have shown that
tDCS- and rTMS-based stimulation can significantly improve
brain activity for purposes of BCI. In stroke patients, it is
essential that the brain be monitored for signs of improvement
(Sood et al., 2016). In our opinion, along with the use of
hybrid brain-signal acquisition modalities, there is a need for
continuous brain stimulation to improve the brain recovery
process. Figure 9 shows our proposed scheme. As indicated
in Figure 9, brain therapy is essential when brain activity
detection is not workable. The correct brain region needs
to be targeted for therapy. Integration of neuronal and
hemodynamic signals may prove to be a good method for
localizing it.

In comparison to the conventional fNIRS-BCIs (Blokland
et al., 2014; Chaudhary et al., 2017), the suggested BCI scheme

has an advantage of being more effective for patients. Currently,
a specific brain region is not targeted and most BCIs are
implemented by averaging the channels. For a patient, it is
important to know the specific brain region that can be used for
BCI. As per the authors’ opinion shown in Figure 9, a specific
brain region needs to be identified first for using EEG/fNIRS
for command generation. If the activity recorded for BCI is not
significant, a neuroplasticity in that brain region can be pursued.
If the unresponsive brain region is identified by an adaptive
algorithm, rTMS/tDCS stimulation can be applied to improve the
neuroplasticity. Then, the brain region that shows improvement
after brain stimulation can be used.

We suggest that the most pressing current need for fNIRS
and hybrid EEG-fNIRS is to take experimentation out of the lab
and test the results on real patients. To achieve this objective, a
significant improvement in hardware development is needed. A
hybrid system for hemodynamic and neuronal signal detection
and integration is required in a package that is comfortable
for patients (less bulky). The hardware should be able to
handle the motion artifacts generated by LIS patients. Moreover,
it is important to detect deep brain activation. Therefore,
research should focus on development of hardware that can
reliably acquire deep brain activity in real-time. Furthermore,
algorithms are needed that can integrate the neuronal and
hemodynamic signals to generate a reliable brain image. Perhaps,
a breakthrough in fNIRS-BCI can be achieved by using brain
imaging features instead of conventional features (Hong et al.,
2017).

CONCLUSIONS

In this paper, we have reviewed recent work on functional near-
infrared spectroscopy (fNIRS) and hybrid fNIRS-EEG studies
for brain-computer interfaces (BCI). The focus was on finding
the brain activity patterns, channel selection criteria, feature
extraction schemes, and classification algorithms that are most
suitable for locked-in patients.

Frontiers in Human Neuroscience | www.frontiersin.org 20 June 2018 | Volume 12 | Article 246

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Hong et al. Hybrid Feature Extraction and Classification

We discussed brain activities that can cause a significant
increase in the hemodynamic response. We noted that
mental arithmetic is the most widely used activity for
fNIRS-BCI. However, there is no specific activity that
can be claimed to be most suitable for locked-in patients.
Similarly, there exist different algorithms for brain area
identification, but their true potential for patients is yet to
be seen. Moreover, signal mean and signal peak are the most
appropriate features for classification of hemodynamics, but
only a limited literature show evidences of these features
giving good results for patients. For hybridization, most
commonly the mean fNIRS signal is combined with the
power spectrum density from EEG to improve the system
accuracy. Lastly, linear discriminant analysis is the most widely
used classifier for fNIRS and hybrid fNIRS-BCI. However,
vector phase analysis is a new method that has potential
both for identification of brain regions and classification of

hemodynamic responses. Further research on this algorithm is
warranted.
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