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Abstract
Image-based approaches to sketch recognition typically cast sketch recognition as a machine learning problem.
In systems that adopt image-based recognition, the collected ink is generally fed through a standard three stage
pipeline consisting of the feature extraction, learning and classification steps. Although these approaches make
regular use of machine learning, existing work falls short of presenting a proper treatment of important issues
such as feature extraction, feature selection, feature combination, and classifier fusion. In this paper, we show that
all these issues are significant factors, which substantially affect the ultimate performance of a sketch recognition
engine. We support our case by experimental results obtained from two databases using representative sets of
feature extraction, feature selection, classification, and classifier combination methods. We present the pros and
cons of various choices that can be made while building sketch recognizers and discuss their trade-offs.

Categories and Subject Descriptors (according to ACM CCS): Information Interfaces and Presentation [H.5.2]: User
Interfaces—Evaluation/methodology, Interaction styles, Prototyping, User-centered design Computing Method-
ologies [I.5.4]: Pattern Recognition—Applications

1. Introduction

Image-based approaches to sketch recognition encompass a
large portion of the existing sketch recognition algorithms
in the literature. Unlike temporal and constraint-based ap-
proaches, which generally model measurements taken be-
tween stroke pairs/groups, image-based approaches treat
sketches as raster images and compute fixed-length feature
vectors for image patches. This property makes them well
suited for the standard three-step machine learning pipeline,
where first feature vectors are extracted from a set of exam-
ple images, then classifiers are trained using these features,
and then new sketches are classified using the trained mod-
els.

For image-based recognition methods, the issue of how
sketches are converted to feature vectors is of critical im-
portance, because the accuracy of the classification system
ultimately depends on how well the features can capture
important characteristics of the training data. In an effort
to achieve better recognition accuracies, authors have at-
tempted to adapt various feature extraction methods from
the machine vision literature to the domain of sketch recog-

nition, and a number of these methods were shown to work
well for hand-drawn data (e.g., Zernike Moments [KH90],
IDM features [OD09], shape contexts [BMP02]). These fea-
tures were then used within the three-step machine learning
pipeline as explained above.

Although many feature extraction methods have been pro-
posed in the literature, important issues regarding their prac-
tical use have not been discussed. In particular the following
issues have not been addressed with sufficient detail:

1. To what extent do the recognition accuracies depend on
parameter extraction settings?

2. What courses of action can be taken if an exhaustive
search of feature extraction parameters is not feasible?

3. Do different feature extraction methods (e.g., shape con-
texts, Zernike moments) capture different and potentially
complementary information?

4. If this is the case, can the complementary information be
fused to improve recognition accuracy?

In this paper, we show that selecting good feature ex-
traction parameters is important for achieving good sketch
recognition accuracies. However, an exhaustive search of all
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combinations of parameters is not practical in most cases.
We show that, for cases where searching for optimal feature
extraction parameters is not feasible, higher recognition ac-
curacies can be obtained by training ensembles of classifiers
on the same data. In particular, we illustrate that combining
different classifiers yields higher recognition rates even for
suboptimal feature sets.

We illustrate that when multiple feature extraction meth-
ods are available (e.g., shape contexts, Zernike moments
etc.), recognition accuracies can be improved by performing
feature-level fusion. Furthermore, using a feature-selection
method (e.g., Maximum Relevance & Minimum Redun-
dancy) yields further accuracy improvements, and also
speeds up online recognition. These results also illustrate
that not all features generated by feature extraction meth-
ods are useful, and filtering out irrelevant features improves
recognition accuracy.

We also show that improvements due to feature selection
come at the cost of substantial offline processing. We present
quantitative evaluation results from two databases illustrat-
ing the trade-off between the offline processing required for
feature selection, and the resulting gains in online speed and
accuracy.

Over the course of evaluating feature extraction methods,
we introduce the Extended Trace Transform (ETT), an ex-
tension of the Trace transform [KP01], which can deal with
the free-hand nature of sketches. We show that ETT con-
tributes many useful features toward the construction of op-
timal feature sets during feature selection. This demonstrates
the utility of ETT as a compact and informative feature ex-
traction method.

In the rest of this paper, we introduce components of the
experimental framework that we use to explore how recog-
nition accuracy changes with respect to factors including
the choice of feature extraction parameters, feature selec-
tion, feature combination, and classifier fusion. Section 2
briefly introduces the feature extraction algorithms that we
study including Zernike moments, IDM, shape contexts and
ETT. Then we introduce two databases used in our exper-
iments, and the list of classification methods used in our
study. In Section 5, we report the results of a series of ex-
periments that measure the effects of the aforementioned is-
sues regarding feature extraction, feature selection, feature
combination, and classifier fusion.

2. Feature Extraction Methods

A number of image-based feature extraction methods have
been suggested in the literature. Here we focus on five meth-
ods. We use IDM and shape contexts, because they represent
the state of art in terms of high recognition accuracy. We use
two Zernike-moment-based features (Zernike moments and
extended Zernike moments), because they are simple and
easy to implement. We also introduce a new feature based

on an extension of the Trace transform [KP01]. Below we
introduce each of these methods, and list their free parame-
ters. Because trying out a large number of parameter combi-
nations is impractical, for the purposes of our experiments,
we limited the set of values to be tested to reasonable ranges,
which when extended further on either direction cause sub-
stantial accuracy reductions.

2.1. Zernike moments

Zernike moments were demonstrated as simple and effective
feature representations for sketch recognition [HN04]. The
way we use Zernike moments is similar to the framework
introduced by Hse et al., and we refer the reader to their
paper for details [HN04].

We also use a variant of the Zernike moments, where
we apply the feature extraction algorithm to the image data
as opposed to the interpolated stroke data as described in
[HN04]. We refer to these features as the extended Zernike
features.

Both variants of Zernike moments have one free parame-
ter, which is the order of the Zernike moment o. We used
o = {3,4,5, ...,21}, which results in a total of 19 different
feature extraction parameters.

2.2. Image Deformation Model Features (IDM)

IDM features are adaptations of the annotated images, which
were initially suggested by LeRec for handwriting recog-
nition, to the domain of sketch recognition. This image-
based feature representation was proposed by Ouyang et al.
in [OD09].

IDM features have 720 entries, and the feature extrac-
tion mechanism has three free parameters, k (kernel size),
 (smoothing factor), and r (resampling parameter),. We set
k = 25, and use the following candidate values for the other
parameters:  = {1,2, ..,15}, r = {25,50,100,150}. This
results in a total of 60 feature extraction parameters.

2.3. Shape Context

Shape context is a histogram based local descriptor which
captures image intensity statistics in the neighborhood of a
reference point. Oltmans et al. have adapted shape contexts
to sketch recognition [Olt07].

Shape context has three free parameters, c (the number of
concentric circles), s (the number of slices), r (radius of the
shape context). We used the following candidate values for
these parameters: c = {1,2,3,4}, s = {4,8,12,16,20,36},
r = {10,50,100,150,200}. These values result in a total of
120 different feature extraction parameters.

Oltmans et al. used a sophisticated matching method for
using shape contexts to do image segmentation, however in

c© The Eurographics Association 2010.

64



R. Sinan Tumen et al. / Feature Extraction and Classifier Combination for Image-based Sketch Recognition

Figure 1: Shape context placement.

order to be able to fit them in our framework, we used a
simpler approach and placed five shape context histograms
on the corners and the center of the bounding box of each
shape as illustrated in Fig. 1.

2.4. Extended Trace Transform (ETT)

ETT is our extension of the Trace transform, which itself is a
generalization of the Radon transform [KP01]. ETT features
for sketches are calculated from stroke data.

The feature extraction starts with a normalization step. In
this step, first the symbol is scaled such that the standard
deviations in horizontal and vertical directions are 1. Next,
the scaled symbol is sampled into a 100x100 grid image. The
points are translated so that the center of mass of the points is
the center of the grid. Sampling of the symbol into the grid is
performed such that the grid spans 2.5 standard deviations of
the symbol in both directions. This normalization is similar
to the process described in [OD09].

The resulting image f(x,y) is the grid image of the sym-
bol. This image is then convolved with a Gaussian filter
G(x,y) to obtain the smoothed image g(x,y) according us-
ing Eq. 1 and Eq. 2.

G(x,y) = e
−

(
x2

22
x

+ (y2

22
y

)
(1)

g(x,y) = f(x,y)∗G(x,y), (2)

The convolution is carried out to eliminate sampling er-
rors of the stroke points and to smooth out the noise intro-
duced during drawing. The convolved image g is rotated by
discrete angles in the range [0-180]. For each angle , the
columns of the image correspond to the image tracing lines
f(r,, t) of the trace transform where r is distance of the
tracing line to the origin and t is the parameter along the
line. We apply a functional T on these tracing lines to obtain
a single number for each image column. The result is a row
vector for each angle . At the end of the rotations, the trace
transform of the image is obtained using B number of bins
and A number of angles. The result is an AxB image which
is the extended trace transform of the sketch image using
functional T .

We extract feature vectors from this transformed image

by applying the second functional, R, on the rows of the im-
age. For each row, the functional R operates on the columns,
producing a single value for each row. The final result is a
feature vector of length B.

We have implemented and experimented with a total of
seven functionals: Radon, Harmonic1, Harmonic3, FFT ,
Integral, Fourier and Gradient. The definitions of these
functionals can be found in Table 1. A feature extraction
operation consists of applying one functional (T ) along the
image tracing line and another functional (R) along image
rows. Therefore, we had a total of 49 functional combina-
tion pairs to be evaluated for ETT. Of these 49 pairs, 4 cor-
responding to combinations of the first and the fourth func-
tionals worked out best, and had comparable performance.
Therefore we set T and R to the first functional in our exper-
iments.

Setting the functionals leaves three free parameters to
ETT: b (the number of bins),  (the number of discrete an-
gles),  (the smoothing parameter). We used the following
candidate values for these parameters: b = {20,30,40,50},
 = {10,20,30,40,50},  = {1,3,7,11,15}. These values
result in a total of 100 different feature extraction parame-
ters.

3. Databases

We ran all our experiments using two databases. The first
database includes symbols from our Course of Action Dia-
grams database, and the other database is the publicly avail-
able NicIcon database [Vuu].

3.1. Course of Action Diagrams Database (COAD)

The set of objects in this database come from the domain
of military Course of Action Diagrams [Man97] shown in
Fig. 2. A complete list of objects in this domain can be found
in the US Army Field Manual 101-5-1. There are hundreds
of symbols in this domain, and we focus on a subset of 20
for practical reasons.

Some symbols in this domain are quite distinct, while
some others look similar. For example: the symbol for an
Enemy Artillery Observation Unit (Fig. 2(d)) consists of the
symbol for an Enemy Observation Unit (Fig. 2(g)) with a
small circle in the middle.

Eight different users were shown symbols picked ran-
domly and asked to sketch examples from each of the 20
symbol classes. In total 620 examples of different symbols
were collected. The number of examples per symbol varied
between 27 and 45, with a median of 30.

3.2. The NicIcon Database

The NicIcon database includes multi-stroke symbols that are
used in the context of an emergency management applica-
tion (e.g., symbols for fire brigade, gas, roadblock, injury
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No Functional Definition Details
1

∫
f(t)dt Radon transform -

2 |∫ f(t)e− jkw0 | Amplitude of the 1st harmonic k = 1
3 |∫ f(t)e− jkw0 | Amplitude of the 3rd harmonic k = 3
4 max(|F{ f(t)}|) Fourier functional F is the Discrete Fourier Transform
5 [

∫ | f(t)|p dt]q Integral p = 0.5,q = 1/p
6

∫ | f(t)′ |dt Gradient functional f(t)′ is the gradient of f(t)
7 [

∫ |F{ f(t)}|p dt]q Fourier p = 4,q = 1/p

Table 1: Functionals for the Trace Transform.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2: A subset of symbols used in Course of Action Di-
agrams.

Figure 3: Examples of hand drawn Course of Action sym-
bols used in our evaluation.

[WNvGV09]). This database contains a total of 23641 sym-
bols distributed into 14 classes.† The symbols in the data-
base consist of an average of 5.2 strokes, and the average
number of strokes for the individual categories ranges from
3.1 to 7.5.

† In order to keep our experiments tractable, we choose a smaller
subset of 1400 symbols, 100 symbols from each class.

Figure 4: Examples of hand drawn icons from the NicIcon
database [WNvGV09]. From top-to-bottom and left-to-right,
the symbols represent fire brigade, gas, roadblock, injury,
paramedics, police, accident, bomb, fire, car, person and
flood.

4. Classifiers and Training Methodology

In our experiments we used ten different classifiers: 1. lin-
ear perceptron classifier, 2. k-nearest neighbor classifier,
3. Fisher’s least square linear classifier, 4. Parzen classi-
fier, 5. nearest mean classifier, 6. uncorrelated normal based
quadratic Bayes classifier, 7. quadratic Bayes normal classi-
fier, 8. linear classifier using PC expansion,9. Parzen density
based classifier, and 10. Linear Bayes Normal Classifier.

Unless otherwise mentioned, all our experiments were
carried out using separate training, testing, validation sets,
repeated 10 times on sets obtained through uniform sam-
pling.

5. Experimental Setup and Results

In order to evaluate the effects of various design choices that
one has to make during the design of a sketch recognizer,
we set up a series of controlled experiments. Our first set of
experiments measure the effects of feature extraction para-
meters on the recognition accuracy. Later experiments asses
the suitability of classifier combination as a means of im-
proving recognition accuracies even for suboptimal parame-
ter settings. The last two sets of experiments are designed
to assess the complementarity of various feature extraction
methods, and the merits of combining the information they
provide through feature fusion.

5.1. Feature Extraction

5.1.1. Effects of Optimal Parameter Selection for
Feature Extraction

It is important to understand the sensitivity of recognizer ac-
curacies to the values of various feature extraction parame-
ters, because it serves as an indication of how well feature
sets obtained through different parameter settings capture
the important characteristics of sketches. These values also
serve as an indication of the sensitivity of the results to the
parameters of various feature extraction mechanisms.

As mentioned in our discussion of the feature extraction
methods (Sec. 2), all feature extraction methods require a set
of preset parameters. Using the candidate values mentioned
in Sec. 2 gives us a large number possible feature extraction
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Zernike E.Zernike Trace IDM Shape context
19 19 100 60 120

Table 2: Number of feature extraction settings tested for
each feature extraction method.

settings to consider (reproduced in Table 2 for reference).
For each of these settings, we measured the accuracy ob-
tained using the set of 10 different classification algorithms
for the Course of Action Diagrams (COAD) and NicIcon
databases.

The solid blue lines in Fig. 5 show the variations in mean
accuracies for each feature extraction method and database
combination. As illustrated in these plots, there is substantial
variation in accuracies across parameters.

It is important to note that searching for best set of para-
meters took time in the order of days, and may not be prac-
tical in general.

5.1.2. Classifier Combination with Suboptimal
Parameters

Although we do not report the results in this paper due to
space limitations, in the experiment above we also indirectly
observed how well the 10 classifiers mentioned in Sec. 4
worked for all the different feature sets that were tested.
Our tests have revealed that the performances of these classi-
fiers were negatively correlated across feature sets. In other
words, when some classifiers did poorly on a particular case,
the others did relatively well, and vice versa.

Theoretical results from machine learning theory says that
when this sort of behavior is observed, (i.e, when classifier
accuracies are found to be negatively correlated), combining
them yields higher accuracies [LY99]. Therefore a natural
followup to the previous experiment is to test if it is possi-
ble to increase recognition accuracy with suboptimal feature
extraction parameters if the resulting features are fed to en-
sembles of classifiers.

To test this, for each feature extraction method, each
possible feature extraction setting, and each database, we
measured the average accuracy of the 10 classification al-
gorithms, and compared the average accuracies to those
obtained by classifier combination. In our experiment, we
used six different classifier combination schemes (product
rule, mean rule, median rule, max rule, min rule and vot-
ing [KHDM98]).

The dashed red and solid blue lines in Fig.5 respectively
show the mean accuracies for classifier combination meth-
ods and individual classifiers. As seen here, classifier com-
binations results in higher accuracies in all cases except the
case of ETT on the NicIcon database. Wilcoxon’s paired
rank test for accuracies from all database & feature set com-
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Figure 5: The mean accuracies for classifier combination
methods and individual classifiers. Each plot shows the ac-
curacies of all possible feature subsets for a particular data-
base and feature extraction method sorted by its mean com-
bination accuracy (dashed lines). The horizontal axes show
the index of the subset with the ith lowest combined accu-
racy. The solid lines show the mean of individual classifiers
on the same subsets.
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binations show that the differences are statistically signifi-
cant (p = 0.05).

As seen in these figures, classifier combination also re-
sults in smoother curves, and reduces the probability of get-
ting low recognition rates when stuck with a particularly un-
lucky parameter setting.

5.2. Information Fusion

The experiments described above focus on the performance
of individual feature extraction methods. One issue that has
not been sufficiently explored is whether the information ex-
tracted by different feature extraction algorithms are com-
plementary, and whether they can be combined to increase
recognition accuracy.

We answer this question within the Maximum Rele-
vance & Minimum Redundancy feature selection framework
[PLD05]. By selecting subsets of features generated by all
five feature extraction methods, we construct increasingly
larger feature vectors, and then look at how many features
are contributed by each feature extraction method.

The Maximum Relevance & Minimum Redundancy
(MRMR) framework allows one to select the k maximally
relevant and minimally redundant features from a total set of
K features where k < K.

Assume that the respective lengths of feature vectors gen-
erated by IDM, ETT, shape contexts, Zernike moments, and
extended Zernike moments are l1, l2, l3, l4, and l5. So we
have a total of l features, where l = l1 +l2 +l3 +l4 +l5 . Now
we can use MRMR to generate the k maximally relevant and
minimally redundant features from the total set of l features
for k = 1,2, ..., l, and measure the classification accuracies.

Fig 6 and Fig 7 show the classification accuracies for each
set plotted against the number of features in the set. As seen
in these graphs, classification accuracies show a sharp in-
crease as initial features are added. ‡ Past a certain point the
accuracy peaks, and starts declining. This is where irrelevant
features unavoidably make their way into the top k maxi-
mally relevant and minimally redundant features. The peak
occurs for k = 82 for the COAD database, and k = 257 for
NicIcon. These values correspond to optimal feature subsets.

It is instructive to look at the number of features con-
tributed to the optimal set by each feature extraction method.
Fig 8.a shows the breakdown of the 82 features into the five
categories, and as seen here IDM contributes the most num-
ber of features, followed by ETT, and shape context. Inter-
estingly, the two Zernike-based features don’t contribute any
features at all. For the NicIcon database, the ordering of fea-
ture extraction methods is the same, but now a few of the
Zernike-based features are also found to be useful (Fig. 8.a).

‡ The accuracy measurements for MRMR were done using 5 fold
cross validation.
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Figure 6: Classification accuracies for feature sets built in-
crementally using MRMR, plotted against the number of fea-
tures in the sets (COAD database). We used the relatively
faster Parzen,Perceptron,and 1-nearest-neighborclassifiers
to obtain the curves. The mean accuracy is also plotted.
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Figure 7: Classification accuracies for feature sets built in-
crementally using MRMR, plotted against the number of fea-
tures in the sets (NicIcon database). We used the relatively
faster Parzen,Perceptron,and 1-nearest-neighborclassifiers
to obtain the curves. The mean accuracy is also plotted.

Fig 8.a may give the impression that IDM is overall a su-
perior feature representation, though this is not accurate. The
high number of features contributed by IDM is partly due to
the fact that IDM features have 720 entries, while ETT and
Zernike-based features have 20-30 features. The percentage
of features contributed by each feature representation is a
more meaningful figure to look at. These values are shown
in Fig. 8.b, and as seen here, almost half the features gen-
erated by ETT eventually make their way into the optimal
combined set for both databases. The percentage of features
contributed by IDM remains at modest levels.

Fig 8.a and Fig 8.b illustrate that the feature extraction al-
gorithms studied in this paper are complementary. Further-
more, they illustrate the importance of relevant feature selec-
tion in achieving good accuracies, because too many features
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Figure 8: The distribution of the optimal features selected
by MRMR based on the source feature extraction method.

Dataset Feature Training Test Training Testing

Size Time Time Speed-up Speed-up

COAD 901 590 7.27
56.41 4.02

COAD 82 10.46 1.81

NicIcon 1014 550 12.53
17.33 4.20

NicIcon 257 31.73 2.98

Table 3: Amount of time taken for training and testing us-
ing full feature sets, and optimal feature sets found through
MRMR (in seconds). As seen here, reducing the number of
features results in 56-17 fold speedups for training, and a 4
fold speedup in recognition.

may actually hurt recognition performance if they are not all
collectively relevant.

It is worth noting that reducing the number of features
through MRMR is a costly operation. For example, obtain-
ing the accuracy plots for MRMR plotted in Fig. 6 and Fig. 7
took in the order of 2-3 days for each one of our databases.
This is a one-time cost that is paid offline. However, in re-
turn, using smaller and optimized features brings a 17-56
fold speedups during training, and a 4 fold speedup during
testing (recognition) as seen in Table 3. The offline cost of
feature selection can be traded off for the speedups gained
in offline training and online recognition depending on the
computational resources available to the recognition engine
designer, and the end user of the recognition system.

6. Related Work

There are many existing features, and sketch recognition al-
gorithms [SPN02,HD09,MSLL07,SvdP06,GKSS05]. Here,
we have focused exclusively on combining image-based fea-

tures because they typically use the three stage “feature ex-
traction, training, classification” framework, and because the
features are calculated over fixed image patches,hence result
in fixed number of features whose lengths don’t vary by the
number of strokes.

There are lines of work where the possibility of com-
bining classifiers have been explored. For example, Kara
et al. [KS04] combine four image-based classifiers, each of
which defines a distance metric between a drawn symbol and
learned templates. This is an example of combining multiple
classifiers, though the authors use only the “mean-rule” to
combine the outputs of the classifiers. Here, we carry the
state of art forward by including more classifiers, and more
features into our discussion. In addition, we explore the is-
sue of complementarity at the feature level, and show that
relevant feature selection is an important issue. Also, we fo-
cus on the issue of parameter selection for feature extraction,
which has not received much discussion in the literature.

There are also pieces of work where features have been
combined in non-image-based frameworks (e.g., constraint-
based recognition frameworks). For example, Widmayer et
al. [HPW07] and Cheriet et al. [VCC01] describe recogni-
tion systems where constraints (as opposed to classifiers or
features) based on geometric measurements are combined
using various mean-based rules. Anquetil et al. describe
a framework that makes it possible to incorporate “statis-
tical recognition” in a constraint multiset grammar based
recognition framework [MA09]. The constraint-based and
grammar-based frameworks don’t fit the usual three stage
machine learning pipeline that image-based features use as
their common denominator, hence we did not include them
in our experiments.

Cates et al. present a sophisticated method for combining
representations for sketch recognition [Cat09]. Their work
makes use of a rich set of representations including spatial,
temporal and conceptual representations. They don’t address
the feature extraction and classifications issues as we do.

Our work is distinguished from all related work cited
above by from several aspects, but most importantly, we
specifically focus of feature extraction, address the issue of
parameter selection for feature extraction, and we also re-
port new results on feature and classifier combination for
boosting performance. We also introduce the ETT feature as
a compact feature representation.

7. Future Work

In this paper, we have investigated machine learning re-
lated issues that affect the performance of image-based
recognition systems. We have excluded constraint-based
and grammar-based as well as time-based recognition ap-
proaches from our discussion because they do not fit in the
three stage machine learning framework as described above.
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§ However, it is important to investigate how machine-
learning-related design choices affect the performance of
these approaches.

For example, more research is needed to understand how
missing constraints should be handled in constraint-based
recognition frameworks. Or, for example, there is a need to
understand the limitations of the Markov assumption and the
Naive Bayes assumptions on the performance of recognition
accuracy in time-based recognition systems.

8. Summary and Contributions

In this paper we showed that recognition accuracies for
image-based recognition systems are closely related to the
parameters of the feature extraction methods. Using image-
based features effectively requires a careful search for opti-
mal parameter settings. We showed that the search for opti-
mal parameters can be computationally expensive, and that
in these cases ensembles of classifiers can be used to im-
prove recognition accuracy for suboptimal feature sets.

We also showed that features computed using different ex-
traction methods are complementary, and combining them
within the maximum relevance & minimum redundancy
framework is a good way of fusing information provided by
different methods and increasing recognition accuracy.

Finally, we introduced the Extended Trace Transform and
showed that it can be used for sketch recognition. ETT re-
sults in shorter (more compact) feature vectors compared to
IDM (30 vs 720 features). Also, when fed to a feature selec-
tion algorithm such as MRMR, a larger percentage of ETT
features make their way into the final set of features, which
confirms that ETT is a compact and highly informative fea-
ture representation.
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