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�is paper proposes a method that uses feature fusion to represent images better for face detection a	er feature extraction by deep
convolutional neural network (DCNN). First, with Clarifai net andVGGNet-D (16 layers), we learn features fromdata, respectively;
then we fuse features extracted from the two nets. To obtain more compact feature representation and mitigate computation
complexity, we reduce the dimension of the fused features by PCA. Finally, we conduct face classi
cation by SVM classi
er for
binary classi
cation. In particular, we exploit o�set max-pooling to extract features with sliding window densely, which leads to
better matches of faces and detection windows; thus the detection result is more accurate. Experimental results show that our
method can detect faces with severe occlusion and large variations in pose and scale. In particular, our method achieves 89.24%
recall rate on FDDB and 97.19% average precision on AFW.

1. Introduction

Face detection is a classical problem in computer vision,
which is widely used for all facial analysis algorithms, includ-
ing face recognition, face tracking, and facial attribute recog-
nition (e.g., gender, age, and facial expression recognition).
However, due to large variations in pose, blur, occlusion, and
illumination condition, face detection is still confronted with
some challenges.

Since seminal work of Viola and Jones [1], face detection
has made great progress in recent years. Viola-Jones detector
adopted Adaboost classi
er with cascade structure to achieve
real-time face detection. Nevertheless, due to simplicity of
Haar-like features extracted manually, it fails to detect faces
with pose variations, exaggerated expressions, and extreme
illumination. Later deformable part models (DPM) [2] detec-
tor adopted part models based on pictorial structure for
deformation of objects and proposed a detection model to
study the parts and their relations. �is method is robust
to partial occlusion but with higher computational cost.
Nowadays, with the availability of massive data and the
improvement of computing power, deep convolutional neural

network has recently achieved remarkable performance in
many computer vision tasks, including image classi
cation,
object detection, and face recognition. Farfade et al. [3] pro-
pose Deep Dense Face Detector (DDFD) for multiview face
detection; however it fails to detect faceswith heavy occlusion
or blur. Li et al. [4] put forward a cascade structure based
on CNN and adjust the location of detection windows by
recti
cation for face detection, but this needs additional com-
putational costs, thus resulting in high computational com-
plexity. Yang et al. [5] exploit scoring facial parts responses
by the spatial structure and arrangement for face detection,
which can deal with severe occlusion and unconstrained
pose variations but with higher computational complexity.
�erefore, detection algorithms need a trade-o� between
detection performance and speed.

�is paper proposes a feature extraction and fusion
method for face detection by DCNN and achieves the state-
of-the-art performance on FDDB [6], AFW [7], and LFW [8]
dataset. �e rest of this paper is organized as follows. �e
proposed method is presented in Section 2. Experiments and
results are provided in Section 3. Finally, we draw the conclu-
sions in Section 4.
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2. The Proposed Method

�e framework of the proposed method is shown in Figure 1.
In our method, 
rst, we learn and extract feature of input
images at fc6 layer of Clarifai net [9] and VGG Net-D (16
layers) [10]. �en, we fuse the features of the two networks.
To obtain more compact feature and mitigate computation
complexity, PCA is adopted to reduce feature dimension.
Finally, we conduct binary classi
cation by SVM to realize
face detection on images. �e following subsections will
discuss the procedure in detail.

2.1. Feature Extraction by DCNN. In this paper, pretrained
Clarifai net and VGG Net-D (16 layers) model are used for

ne-tuning these two networks. Clarifai net adopts kernels
of size 7 × 7 in the 
rst convolutional layer to 
lter images
to obtain global information, which contains more context
information, making it easier to separate faces from nonfaces
but harder to handle partial occlusion. VGG Net-D (16
layers) network exploits smaller 3 × 3 convolution kernels
to 
lter images to obtain local information, which contains
higher resolution image information to address face detection
under occlusion and blur, but without global superiority;
for example, the region extracted from cheek is di�cult to
be con
rmed as a part of face or not. Since both networks
have strong ability to learn features and generalize well, we
consider feature fusion of them to obtain global and local
information simultaneously to distinguish faces from non-
faces more easily and be more robust to faces under partial
occlusion, resulting in better performance.

�is paper adopts sliding window approach to detect
faces with di�erent sizes on each image. We construct image
pyramid with max scale of 8 and scaling factor of 0.9057,
which is shown in Figure 2. Due to network input (detection
window) of size 224 × 224, we can detect faces as small as size
((224/8) × (224/8) =) 28 × 28.

Due to high computational complexity of original sliding
window approach, we convert the fully connected layers into
convolutional layers and reshape layer parameters; then we
use the fully convolutional network to deal with input images
of arbitrary sizes [11]. Figure 3 illustrates that each sliding
window of size 6 × 6 at fc6-conv layer in fully convolutional
network corresponds to a detection window of size 224 ×
224 on original image; we can obtain features of all candidate
regions by fully convolutional network with just one forward
computation.

And similar to the approach introduced by Giusti et al.
[12], we adopt multiple starting locations at the last pooling
layer with each corresponding to a pooled feature map. We
use max-pooling with stride of 2 for the last pooling layer;
thus each input feature map generates 4 output feature maps
as shown in Figure 4, which contain information of each
candidate region on image for denser detection. More details
are as follows.

We call each starting location as o�set to avoid overlap-
ping with a stride of 2 at the max-pooling layer; there are
only (2 × 2 =) 4 o�sets in �, de
ned as � = {(0, 0), (1, 0),
(0, 1), (1, 1)}. Given an input feature map, one output feature
map is obtained for each o�set � (� = (��, ��) ∈ �), where

� is the coordinate of starting location at the top le	 on the
input featuremap for pooling. As shown in Figure 4, applying
o�setmax-poolingwith kernel size of 3× 3 and stride of 2, one
input feature map of size 7 × 7 can generate output feature
maps of sizes 3 × 3, 3 × 2, 2 × 3, and 2 × 2 by starting at
(0, 0), (1, 0), (0, 1), and (1, 1) of the top le	, respectively. And
four output feature maps above correspond to (3 × 3 +3 ×
2 + 2 × 3 + 2 × 2 =) 25 detection windows of size 3 × 3 on
the input featuremap. However, in case of traditional pooling
operation, there is only one feature map of size 3 × 3, which
corresponds to only 9 detection windows of size 3 × 3 on the
input feature map. If we use a max-pooling with kernel size
of 3 × 3 and stride of 1, an input feature map of size 7 × 7 can
generate a feature map of size 5 × 5, which corresponds to
25 detection windows of size 3 × 3 on the input feature map.
�us our method is equivalent to reduce the stride by half to
conduct denser detection.

2.2. Feature Fusion and Dimensionality Reduction by PCA.
A	er feature extraction of each candidate region by the two
networks above, these feature vectors of the same region are
catenated to form higher dimensional fusion features. And
this can compensate for inadequacy of single network in
feature extraction. However, there always exist some corre-
lation and information redundancy among these features,
and higher dimensional features lead to higher computa-
tion complexity. �erefore, we adopt principle component
analysis (PCA) for selection and dimensionality reduction of
features. In this paper, we de
ne the eigenvalue statistical rate
as the ratio of number of principal components (eigenvalues)
retained by PCA to number of all components. And we
select the eigenvalue statistical rate as 50%, which means
that eigenvectors corresponding to top 50% of principal
components (eigenvalues) are selected to build projection
direction matrix for dimensionality reduction of features. In
Section 3.2, we compare e�ect on the experiment of di�erent
eigenvalue statistical rate in PCA.

Feature fusion helps to learn image features fully for
description of their rich internal information, and a	er
dimensionality reduction, we can obtain compact represen-
tation of integrated features, thus resulting in lower compu-
tational complexity and better performance of face detection
with unconstrained environment.

2.3. Binary Classi�cation Using SVM. �e features, whose
dimension is reduced by PCA a	er feature fusion, are used
to train a SVM classi
er for binary classi
cation. And a	er
comparison between polynomial kernel function and RBF
kernel functions in Section 3.2, we 
nally choose polynomial
kernel functionwith better classi
cation results as 
nal kernel
function.

By the trained SVMmodel, we can score feature extracted
from each candidate region, which is corresponding to
the con
dence of a detection box. Comparing con
dences
of candidate regions with preset threshold, regions with
con
dence higher than the threshold are labelled as faces,
otherwise they are labelled as nonfaces. Despite slow detec-
tion speed, SVM classi
er can result in smaller risk of wrong
classi
cation.
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Figure 1: �e framework of the proposed method.
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Figure 2: Sketch map of image pyramid.

2.4. Bounding Box Regression. Some methods with deep
learning for object detection correct the position of detection
box by bounding box regression, resulting in improvement of

nal detection accuracy [13].�erefore, bounding box regres-
sion is introduced to our method, and comparison between
results with/without bounding box regression is shown in
Section 3.2. As shown in Figure 5, detection box � is a
candidate region extracted by our detector, represented by
(�0, �0, �0, ℎ0), where (�0, �0) is the coordinate of top le	 of
the detection box and �0 and ℎ0 are de
ned as width and
height of the detection box, respectively. And 
 is a ground
truth bounding box for the face on image. �e regression
target is to learn a transformation that maps a detection box
� to a ground truth bounding box
, and
� is our regression
result.

For bounding box regression, candidate regions, whose
IOU with ground truth bounding box are greater than a pre-
set threshold, are used for training. A	er feature extraction
and fusion for each candidate region by these two networks
above, the features, whose dimension is reduced by PCA,
are de
ned as Φ. And the regression target (��, ��, ��, �ℎ) is
de
ned as

�� = (� − �0)�0 ,

�� = (� − �0)ℎ0 ,

�� = log( ��0) ,

�ℎ = log( ℎℎ0) ,

(1)

where (�0, �0, �0, ℎ0) represents a candidate region and
(�, �, �, ℎ) represents the ground truth bounding box. We
learn a set of parameters � (= (��,��,��,�ℎ)) by opti-
mizing the regularized least squares objective as

�∗ = argmin
�0∗

	
∑


(�
∗ − Δ
∗)2 + � �����0∗����2 , (2)

where � is the number of training samples, Δ
∗ = ��0∗Φ
, and∗ is one of �, �, �, ℎ, and each transformation corresponds
to an optimization objective function.

At testing stage, a	er scoring each candidate region with
SVM classi
er, new bounding boxes for regions whose scores
are larger than the preset threshold are obtained by bounding
box regression with the trained transformation. And the
regression result is de
ned as

�� = �0 × Δ � + �0,
�� = ℎ0 × Δ � + �0,
�� = �0 × exp (Δ�) ,
ℎ� = ℎ0 × exp (Δ ℎ) ,

(3)

where (��, ��, ��, ℎ�) represents the detection result a	er
bounding box regression.

2.5. Postprocessing of Detection Boxes. Wehave obtainedmul-
tiscale detection information by image pyramid, and there is
high overlap among output detection boxes. �erefore, we
adopt non-maximum suppression (NMS) [14] for postpro-
cessing of detection boxes. It aims at ensuring to obtain
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only one detection box per object by eliminating redundant
overlapping detection boxes that refer to the same object to

nd optimal detection box for the object. When two objects
on the image are in close distance, say, they are occluded
by each other, in this case, we keep overlapping detection
boxes referring to di�erent objects. Common postprocessing
methods include NMS-Max and NMS-Average.

We 
rst apply NMS-Max and later NMS-Average in this
paper. As for two detection boxes, IOU is taken as the overlap
criterion, and the value of IOU is de
ned as the intersecting
area divided by their union. A	er selecting the detection
box with maximum score, NMS-Max removes the detection
boxes whose IOU is larger than an overlap threshold. And
then the NMS-Average is used to cluster the rest of detection
boxes according to an overlap threshold. Within each cluster,
we remove the detection boxes with score less than the
maximum score of that cluster and average the locations of
the remaining detection boxes to get the optimal detection
box. And themaximum score of the cluster is used as the 
nal
score of the merged detection box. Figure 6 illustrates results
a	er applying NMS-Max and NMS-Average.

3. Experiments and Results

3.1. Experimental Settings

3.1.1. Training Networks for Feature Extraction. WIDER
FACE dataset [15] contains rich annotations, including occlu-
sion, pose, and event categories. We cropped images of
WIDER train, and those are taken as positive samples if

IOU between it and the ground truth bounding box is larger
than 0.65. Due to larger proportion of small-scale samples
in WIDER train, we cropped WIDER val dataset using the
same standard and selected images whose size is larger than
80 pixels to form positive samples with WIDER train to
expand data for training. And we cropped images of AFLW
[16], and those are taken as negative samples if IOU between
it and the ground truth bounding box is smaller than 0.3;
these cropped colorful images are all resized to network input
size. As a preprocessing step, the input image is centered
by subtracting the mean image created from a large dataset,
and we expanded training set by mirror transformation for
training net. Finally we update parameters with a batch size of
128 examples, initializing learning rate at 0.0001, momentum
of 0.9, and ratio of 1 : 5 positives to negatives for 
ne-tuning.

3.1.2. Training SVM Classi�er. A	er cropping WIDER train
and WIDER val dataset according to ground truth anno-
tations, we select a part of them as positive samples and
crop images of AFLW are taken as negative samples if IOU
between it and the ground truth bounding box is smaller than
0.3. �en we set the ratio of positive samples and negative
ones to 1 : 1 to train SVM classi
er.

3.1.3. Testing. We use FDDB, AFW, and LFW dataset as
test sets. FDDB dataset is the benchmark of face detec-
tion, including faces with variations in occlusion, pose, and
scene. Also, faces of out-of-focus are included. Comparisons
of experimental results in 3.2 are conducted on FDDB.
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Figure 6: Results a	er applying NMS-Max andNMS-Average, where (a) is original image, (b) is result of applying NMS-Max, and (c) is result
of applying NMS-Average.

AFW is released by Zhu et al., which includes 205 images
with cluttered background with large variations in both face
viewpoint and appearance (e.g., aging, sunglasses, makeups,
skin color, and expression). LFWdataset is a challenge dataset
for face veri
cation in the wild. All images of LFW dataset
are taken in real scene, which leads to natural variability
in light, expressions, pose, and occlusion. People involved
in LFW mostly are public 
gures, which results in more
complex interference factor, such as makeup and spotlight.
�erefore, we use LFW dataset for evaluating the proposed
method. Since LFW dataset is used for following task of face
alignment and recognition in the future, and only the central
face on each image is needed for face recognition, we take the
bounding box nearest the center of image as 
nal detection
result, in case there is more than one detected bounding box
in an image. �is postprocessing method can lead to no false

positive and accuracy of 100%. In testing stage, we convert the
fully connected layers into convolutional layers and reshape
layer parameters and exploit o�set max-pooling to extract
features with sliding window densely, which leads to better
matches of faces and detection windows. Taking each image
of image pyramid as input of the fully convolutional network,
we extract feature vector of each candidate region at fc6-conv
layer and realize feature fusion and dimensionality reduction,
and we can obtain a set of bounding boxes with con
dence
scores by SVM. �en we merge all boxes at each scale and
apply NMS to get 
nal detection results.

3.2. Comparisons of Experimental Results

3.2.1.�e E�ectiveness of Feature Fusion. In order to prove the
feasibility of our method, we conduct contrast experiment on
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FDDB dataset.

Our method (AP 97.19)

HeadHunter (AP 97.14)

Structured Models (AP 95.19)

Shen et al. (AP 89.03)

Face++

Face.com

Picasa

Recall

1.000.950.900.850.800.750.700.650.60
0.60

0.65

0.70

0.75

0.80

P
re

ci
si

o
n

0.85

0.90

0.95

1.00

TSM (AP 87.99)

Figure 8: Comparisons of our method with other face detectors on
AFW dataset.

Table 1: Comparison between the single net and feature fusion of
these two networks on FDDB.

Network Recall rate (%) False positives

Clarifai net 86.46 2000

VGG Net-D (16 layers) 86.94 2000

Feature fusion of Clarifai and VGG 89.24 2000

FDDB and AFW before and a	er feature fusion, as shown in
Tables 1 and 2.

Table 2: Comparison between the single net and feature fusion of
these two networks on AFW.

Network Average precision (%)

Clarifai net 96.78

VGG Net-D (16 layers) 96.83

Feature fusion of Clarifai and VGG 97.19

Table 3: Test results of the proposed face detector on FDDB with
di�erent eigenvalue statistical rate in PCA.

Eigenvalue statistical rate (%) Recall rate (%) False positives

50 89.24 2000

70 89.27 2000

90 88.64 2000

Table 4: Test results of the proposed face detector with two kernel
functions of SVM classi
er on FDDB.

Kernel function Recall rate (%) False positives

Polynomial kernel function 89.24 2000

RBF kernel function 87.25 2000

Table 1 illustrates that Clarifai net achieves recall rate of
86.46% and VGG Net 86.94% with 2000 false positives on
FDDB dataset. Notably, our method improves the recall rate
to 89.24%, which is 2.3% higher than VGG Net. And the
same improvement is observed on AFW dataset, our method
achieves 97.19% average precision. Experimental results above
demonstrate that the fused features lead to richer represen-
tation of images and compensation for defects of feature
processing in single net, and it outperforms the single net for
face detection on the commonly used face detection datasets.
Compared with single net, we note that our method needs
additional operations, such as PCA, which result in higher
computation complexity and higher memory overhead.

3.2.2. E�ect of Di�erent Eigenvalue Statistical Rate in PCA.
Table 3 illustrates the performance of di�erent eigenvalue
statistical rate on FDDB dataset.

As shown in Table 3, our method achieves recall rate of
89.24% with the eigenvalue statistical rate to 50%, and the
recall rate increases slightly to 89.27% when we set the eigen-
value statistical rate to 70% but with much higher dimension.
However, when we further increase the eigenvalue statistical
rate, recall rate drops to 88.64%,whichmeans that there exists
redundancy in the high dimensional features. Obviously,
higher eigenvalue statistical ratemeans higher computational
cost. Trading o� between the performance and computa-
tional cost, we set the eigenvalue statistical rate to 50%.

3.2.3. Comparison between Two Kernel Functions of SVM
Classi�er. Table 4 illustrates the comparison between dif-
ferent kernel functions of SVM classi
er. Compared with
RBF kernel function, polynomial kernel function can help to
increase recall rate by about 2%; we 
nally choose polynomial
kernel function for our SVM classi
er.
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Figure 9: Qualitative face detection results of our detector on (a) FDDB, (b) AFW, and (c) LFW.
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Table 5: Test results of di�erent classi
er on FDDB.

Classi
er Recall rate (%) False positives

LR 87.50 2000

SVM 89.24 2000

Table 6: Test results of the proposed face detector with/without
bounding box regression.

Method Recall rate (%) False positives

Ours+bounding box regression 89.51 2000

Ours 89.24 2000

Table 7: Evaluation of performance of other methods.

Method Recall rate (%) False positives

DDFD 84.84 2000

Boosted Exemplar 85.65 2000

Joint Cascade 86.68 2000

HeadHunter 88.09 2000

Our method 89.24 2000

Faceness-Net 90.99 2000

Conv3D 91.16 2000

3.2.4. Comparison between Two Classi�ers. In our exper-
iments, besides SVM classi
er, we also consider another
common and simple classi
er, LR (Logistic Regression),
to classify face and nonface, whose output represents the
con
dence of face with cross-entropy loss function based
on probability theory, resulting in lower computational com-
plexity. Comparison of di�erent classi
ers is shown inTable 5.

Table 5 illustrates that SVM classi
er outperforms LR
classi
er. Experiments indicate that SVM classi
er is more
time consuming, but with less false positives and higher
con
dence of detection results, thus achieving better classi-

cation.

3.2.5.�ePerformance ofOurDetectorwith/without Bounding
Box Regression. Table 6 compares the performance of our
detector with/without bounding box regression.

Table 6 illustrates that bounding box regression slightly
improves the performance of our detector but leads to higher
computational complexity at stage of data generation and
training network. Our method adopts o�set max-pooling to
extract features with sliding window densely, which leads
to better matches of faces and detection windows and gets
accurate detection results; therefore, bounding box regression
makes little sense in this case.

3.2.6. Comparisons with Other State-of-the-Art Face Detectors
on FDDB. We compare the performance of our method
with other state-of-the-art methods on FDDB dataset. In
particular, we report recall rate of our method with DDFD,
Boosted Exemplar et al. [17], Joint Cascade [18], HeadHunter,
Faceness-Net, and Conv3D [19] with 2000 false positives in
Table 7. Quantitative comparisons of our method with other
face detectors on FDDB are displayed in Figure 7.

3.2.7. Comparisons with Other State-of-the-Art Face Detectors
on AFW. We compare the performance of our method with
other state-of-the-art methods including TSM, Shen et al.
[20], StructuredModels [21],HeadHunter, Face.com, Face++,
and Picasa on AFW dataset. Precision-recall curve is shown
in Figure 8, where AP is de
ned as average precision.

Some detection results are shown in Figure 9.
Figures 7, 8, and 9 illustrate that our method out-

performs other state-of-the-art detectors and realizes great
improvements of face detection with unconstrained environ-
ment. Detection results show that our method can not only
cope with faces with small-scale and pose variations, but also
perform well for occlusion and blur.

4. Conclusion

In this paper, we propose a face detection method based
on two deep convolutional neural networks with SVM
classi
er; our method has achieved 89.24% recall rate on
FDDB and also achieved high accuracy on other datasets.
Experimental results show that our method can compensate
for defects of feature processing in single deep network by
feature fusion ofmultiple layers and have better performance.
In particular, our method is strongly robust to faces with
occlusion, blur, and rotation. With using o�set max-pooling
to extract features, we can obtain better matches of faces and
detection windows, and the detection result is more accurate.
Further e�ort will be focused on learning e�cient cross-GPU
parallelization method, which can take slightly less time to
train than the one-GPU net.
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