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INTRODUCTION

Health monitoring of nuclear power plants (NPP) is 
one of the key issues addressed in nuclear energy safety 
research. The effects of health monitoring depend on the 
performance of sensors. Traditionally, sensor calibration 
is performed during each nuclear power plant refueling 
outage, which may not be cost effective [1]. On the other 
hand, in unusual circumstances, the normal calibration 
schedule may not be able to detect aggravation of hidden 
faults, which may result in a permanent damage of the 
plant components or a potentially catastrophic accident. 
Hence, there is a need for new technologies of health 
monitoring for NPPs, which can be pursued online during 
operation and without the need for installation of 
additional sensors. 

Anomaly (i.e., deviation from the nominal condition) 
detection algorithms, built upon a data-driven statistical 
pattern recognition tool called symbolic dynamic filtering 
(SDF), have been developed and experimentally validated 
for real-time execution in different applications [2].  

A major challenge in data-driven fault detection with 
degraded sensors is to satisfy the specified probabilities of 
false alarms and correct detections. The situation becomes 
worse if a controller relies on sensor signals as the 
feedback information to calculate the control inputs. To 
address this issue, tools of analytic redundancy have been 
traditionally used for sensor fault detection.  

This paper presents a novel approach that investigates 
necessary developments and modifications of SDF to 
distinguish the effects of sensor degradation from those of 
actual system faults. The key idea is Pareto optimization 
of statistical feature extraction as a trade-off between the 
effects of sensor degradation and system fault signatures. 
Pareto (multi-objective) optimization has been used to 
identify a partitioning that is highly sensitive for detection 
of statistical information changes in the data and, at the 
same time, robust to sensor degradation. 

PROBLEM STATEMENT & METHODOLOGY 

Let a dynamical system (or plant) , equipped with a 
sensing system , be monitored to detect faults in .
While  and  denote both the plant and its sensing 
system to be in nominal condition,  and  denote any 
possibly anomalous conditions of the plant and the 
sensing system, respectively. The objective of the fault 
detection algorithm is to detect whether the plant is in an 

anomalous condition or not, in spite of a degraded 
condition of the sensing system. Let  and  be the 
anomaly measure values for only degraded sensor 
condition  or only plant fault condition  respectively, 
whereas  is the anomaly measure in the presence of 
both conditions  and . In this context, the fault 
detection algorithm should achieve the following 
objectives: 

• Minimization of 
• Maximization of  and 
• Satisfying the constraint  where 

 is the threshold. 

The multi-objective anomaly detection optimization 
problem is realized as a partitioning problem. Among the 
plant fault conditions denoted by , only the minimal 
fault that needs to be detected is considered for 
optimization of partitioning. The underlying assumption 
here is that for any partitioning,  for any 

, where  is the minimal plant fault that needs to be 
detected. Similarly, among the sensor degradation 
conditions denoted by , only the maximal degradation 
that is allowable, is considered for optimization of 
partitioning. The underlying assumption here is that for 
any partitioning ,  for any , where 

 is the maximal sensor degradation that is allowable. 
The multi-objective optimization problem, described 

above, involves: (i) a two-dimensional objective space 
that consists of the reward  and the penalty 

, and (ii) the space  of all possible partitions 
where the decisions are made. As a further simplification, 
it is assumed that the time series data is one-dimensional 
wherein a partition consisting of  cells (denoted by 

). The reward and penalty values are 
dependent on a specific partition  and are denoted by 

 and  respectively. Hence, the optimal 
partitioning scheme involves an estimation of the 
elements of the partitioning  that minimizes 
and maximizes .

A search-based Pareto optimization has been 
adopted, where the number of cells, ,  of the partitioning 

 is first chosen. Then, using a suitable fine grid size 
depending on the data characteristics, the space of all 
possible partitioning  is explored and the positions in a 
partitioning are located in the two-dimensional objective 
space. The Pareto front is generated by identifying the 
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non-dominated points in the objective space, as shown in 
Fig. 1. Results generated by maximum entropy partition 
(MEP) and uniform partitioning (UP) are also shown in 
Fig. 1. Finally, the Neyman-Pearson criterion is applied to 
choose the optimal partitioning  to have maximum 
reward for detecting minimal plant fault while not 
allowing the penalty due to detecting maximal sensor 
degradation to exceed a specified threshold, say . In 
other words, the optimal partitioning according to the 
Neyman-Pearson criterion is the solution to the following 
constrained optimization problem: 

, such that 

Fig. 1. Pareto front for partition optimization 

SIMULATION VALIDATION ON IRIS TESTBED 

The proposed methodology has been validated on the 
International Reactor Innovative and Secure (IRIS) 
testbed representing a modular pressurized water reactor. 

Sensor degradation with changes in the sensor-noise 
variance is studied in this paper. Also, the reactor coolant 
pump (RCP) is chosen to be the location of a component 
level (plant) fault and the sensor THL (i.e. the hot-leg 
reactor coolant temperature sensor at RCP outlet) is 
chosen for fault detection in RCP. 

Time series data have been collected from the THL
sensors under persistent excitation of turbine output 
power load that have step profiles with the mean value of 
0.99, fluctuations within  and frequency of 0.0025 
Hz. The NPP simulation is conducted at a frequency of 10 
Hz (i.e., inter-sample time of 0.1 sec). 

In the IRIS testbed, the RCP is considered in nominal 
condition when no fault is injected, denoted as .
Fault is injected into RCP by over-speeding its rotor. The 
result presented here considers degradation of RCP and 
the minimal fault that needs to be detected (i.e., ),
corresponds to  of its measurement span. The 
sensor THL has an additive Gaussian random noise with 
variance  of its measurement span. The 
degradation in the sensor is realized as a change in the 
noise variance (  that range from  to .

Thus, the maximum allowable sensor degradation 
condition  corresponds to  of the 
sensor’s measurement span.  

Fig. 2. Partitioning of time-series data space 

Fig. 2 shows three types of partitioning on the time-
series data that collected from sensor THL from different 
level of faulty conditions, i.e.,  and 

. Table I shows the results of anomaly 
measure with the three partition methods. It is seen that 
the optimal partitioning is not sensitive to noise. At the 
two noise levels with no plant fault condition, the 
anomaly measures are very close to 0. When a fault 
occurs (e.g. RCP overspeed by 1%), the anomaly measure 
becomes very high while the anomaly measures between 
two sensor noise levels are still close. For MEP and UP, 
the anomaly measure deviates from 0 even when there is 
no plant fault, and as sensor noise increases, the anomaly 
measure becomes large abruptly. 

Table I. Anomaly Measure with Different Partitions 

Optimal 

Partition 

0.0005 0.0012 
0.7755 0.7355 

MEP
0.0210 0.1412 
0.8114 0.6996 

UP 0.0309 0.1363 
0.7510 0.6992 
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