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H
yperspectral images (HSIs) provide detailed spectral 

information through hundreds of (narrow) spectral 

channels (also known as dimensionality or bands), which can 

be used to accurately classify diverse materials of interest. 

The increased dimensionality of such data makes it possible 

to significantly improve data information content but pro-

vides a challenge to conventional techniques (the so-called 

curse of dimensionality) for accurate analysis of HSIs. 

Feature extraction (FE), a vibrant field of research in 

the hyperspectral community, evolved through decades of 

research to address this issue and extract informative fea-

tures suitable for data representation and classification. The 

advances in FE were inspired by two fields of research—the 

popularization of image and signal processing along with 

machine (deep) learning—leading to two types of FE ap-

proaches: the shallow and deep techniques. This article out-

lines the advances in these approaches for HSI by providing 

a technical overview of state-of-the-art techniques, offering 

useful entry points for researchers at different levels (includ-

ing students, researchers, and senior researchers) willing to 

explore novel investigations on this challenging topic. 

In more detail, this article provides a bird’s eye view of 

shallow [both supervised FE (SFE) and unsupervised FE 

(UFE)] and deep FE approaches, with a specific focus on 

hyperspectral FE and its application to HSI classification. 

Additionally, this article compares 15 advanced techniques 

with an emphasis on their methodological foundations and 
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classification accuracies. Furthermore, to push this vibrant 

field of research forward, an impressive amount of code and 

libraries are shared on GitHub, which can be found in [131]. 

A BRIEF INTRODUCTION ON FE

HSI technology provides detailed spectral information by 

sampling the reflective portion of the electromagnetic spec-

trum, covering a wide range, from the visible region (0.4–

0.7 µm) to the short-wave infrared region (almost 2.4 µm). 

Hyperspectral sensors can also characterize the emissive 

properties of objects by acquiring data in the range of the 

midwave and long-wave infrared regions, in hundreds of 

narrow, contiguous spectral channels.

Detailed spectral information provided by hyperspec-

tral sensors presents both challenges and opportunities. 

For instance, HSIs can be used to differentiate between 

different classes of interest with slightly different spectral 

characteristics [1]. However, most of the commonly used 

methods utilized for the analysis of gray scale, color, or 

multispectral images cannot be extended to analyze HSIs 

for several reasons, as detailed in the “Unique Properties of 

High-Dimensional Data” section.

The limited availability of training samples (a common 

issue in remote sensing) dramatically impacts the perfor-

mances of supervised classification approaches due to the 

high dimensionality of HSIs, which poses a problem for de-

signing robust statistical estimations. FE can be used to ad-

dress this. It can be described as finding a set of vectors that 

represent an observation while reducing the dimensional-

ity by transforming the input data linearly or nonlinearly 

to another domain, thereby extracting informative features 

in the new domain. The use of FE techniques can be advan-

tageous for a number of reasons, which are illustrated in 

Figure 1 and described in the following sections.

UNIQUE PROPERTIES OF HIGH-DIMENSIONAL DATA

Several studies (e.g., [2]–[4]) have demonstrated the unique 

geometrical, statistical, and asymptotic properties of high-

dimensional data compared with red, green, blue (RGB) and 

multispectral images. These properties, which have been 

shown through experimental and theoretical examples, 

explain why most analytical approaches developed for RGB 

and multispectral images are not applicable to HSIs [5]. 

Among those experimental examples, we can recall that 1) 

as dimensionality increases, the volume of a hypercube con-

centrates in corners, or 2) as dimensionality increases, the 

volume of a hypersphere concentrates in an outside shell. 

With respect to these examples, the following conclusions 

have been drawn.

 ◗ A high-dimensional feature space is almost empty, which 

indicates that multivariate data in Rp  (p represents the 

number of bands, spectral channels, or dimensions) can 

usually be represented in a lower-dimensional space (re-

ferred to as subspace) without losing considerable infor-

mation in terms of class separability [5].

 ◗ Since the high-dimensional feature space is almost emp-

ty (i.e., Gaussian distributed data have a tendency to 

concentrate in the tails, whereas uniformly distributed 

data have a tendency to be concentrated in the corners), 

the density estimation of hyperspectral data for both 

Gaussian and uniform distributions becomes extremely 

challenging.

Fukunaga [6] claimed that there is a relation between 

the type of classifier, required number of training samples, 

and number of input dimensions. As reported in [6], the 

required number of training samples is linearly related to 

the dimensionality for linear classifiers and to the square of 

the dimensionality for quadratic classifiers (e.g., the Gauss-

ian maximum likelihood classifier [6]); for nonparametric 

classifiers, the number of required samples exponentially 

increases as the dimensionality increases. Landgrebe [7] 

showed the groundbreaking fact that too many spectral 

bands might have negative impacts in terms of expected 

classification performance. 

When dimensionality increases, with a constant and 

limited number of training samples, more statistics must 

be estimated. Thus, the accuracy of the statistical estima-

tion decreases, although higher spectral dimensions in-

crease the separability between the classes. This leads to a 

decrease in classification accuracies beyond an unknown 

number of bands. These problems are related to the curse 

of dimensionality, also known as the Hughes phenomenon 

Pixel
Vector

0.5
0.4
0.3
0.2
0.1

0

R
e
fl
e
c
ta

n
c
e

0.5 0.6 0.7 0.8

Wavelength (µm)

FE

Extracted Features Possible Advantages

Saving Storage

Space; Faster

Transmission

Accurate

Classification

Saving Time

Input Data

FIGURE 1. The FE technique and its advantages for HSI analysis. 
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[8]. This finding went against the general understanding 

of hyperspectral data, which wrongly maintained that full 

dimensionality is always better than subspace in terms of 

classification accuracies.

The unique characteristics of high-dimensional data, as 

discussed, have a pronounced impact on the performances 

of supervised classifiers [9], as they demand an adequate 

number of training samples, which is almost impossible 

to obtain in practice since the collection of such training 

samples is either expensive or time demanding. To address 

this issue, FE-based dimensionality reduction is found to 

be effective.

STORAGE SYSTEMS AND PROCESSING TIMES

We are now in the era of massive data acquisition. Statis-

tics demonstrate that the cumulative volume of existing big 

data has increased tremendously, from 4.4 ZB in 2013 to 

44 ZB in 2020 [130]. The Earth observation (EO) commu-

nity has also faced a similar trend because of the enormous 

volume and variety of data being generated by EO missions. 

For example, EnMAP, a hyperspectral satellite mission, is 

planning to capture hyperspectral data with a maximum 

ground coverage of 5,000 # 30 km per day and a target re-

visit time of four days 30! c^ h with 512-Gb onboard mass 

memory [10]. FE-based dimensionality reduction helps in 

data compression, which leads to faster transmission time, 

removal of redundant features, smaller storage space re-

quirements, and decreasing the required time for perform-

ing the same computations. 

MACHINE LEARNING AND FE: AN EVER-GROWING 

RELATION

Figure 2(a) illustrates the basic idea of a machine-learning 

approach, which consists of FE and classification. In ma-

chine learning, users are requested to provide guidelines for 

the machine (algorithm). This is usually done by applying 

handcrafted FE approaches to produce informative features 

for the subsequent classifier. At the very beginning, each 

image pixel is regarded as a pattern, and its spectrum (i.e., 

a vector of different values of a pixel in different spectral 

channels) is considered the initial set of features. This set 

of features, also known as spectral features, suffers from two 

important downsides: 1) the features are often redundant, 

and 2) they do not consider the spatial dependencies of the 

adjacent pixels.

To address the first issue, a feature-reduction step (through 

FE or selection) can be applied to reduce the dimensional-

ity of the input data (from p1  dimensions in the original 

data to p2  dimensions in a new feature space, ).p p121  

This step, also called spectral FE, tries to preserve the key 

spectral information of the data by reducing the dimen-

sionality and maximizing separability between classes. It 

is interesting that the second issue can also be addressed 

using FE approaches. Note that, here, the FE step, also 

known as spatial FE, is not aimed at reducing the dimen-

sionality; instead, it is intended to model (extract) spatial 

contextual information suitable for the subsequent clas-

sification or object-detection step, and it usually leads to 

an increase in the number of features. The simultaneous 
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FIGURE 2. FE via (a) machine learning and (b) DL.
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use of spectral and spatial features for hyperspectral data 

classification has been studied in numerous works, such 

as [5] and [11]–[13].

Deep learning (DL), as shown in Figure 2(b), which is 

regarded as a subset of machine learning, tries to automa-

tize the building blocks of machine-learning approaches 

(i.e., FE and classification) by developing an end-to-end 

framework that takes the input, performs automatic FE and 

classification by considering the unique nature of the input 

data (instead of those handcrafted FE designs in machine 

learning), and outputs classification maps. It turns out 

that, if an adequate amount of training data is supplied, DL 

approaches can outperform any other shallow machine-

learning approaches in terms of accuracy. Here, a question 

arises: Due to the fact that, in the remote sensing commu-

nity, the available training data are often limited, would 

advanced DL-based approaches outperform their shallow 

alternatives in terms of accuracy? This issue is addressed in 

this article.

Based on the previous descriptions, FE is a key step in 

both machine learning and DL—a concept that has evolved 

significantly through time from unsupervised to (semi-)

supervised, from spectral or spatial to spectral and spatial, 

from manual to automatic, from handcrafted to end-to-

end, and from shallow to deep.

CONTRIBUTIONS

This article provides a detailed and organized overview 

of hyperspectral FE techniques, categorized into two gen-

eral sections: shallow (further divided into supervised and 

unsupervised) and deep. Each section provides a critical 

overview of the state of the art, which is mainly rooted in 

the signal and image processing, statistical inference, and 

machine- (deep-) learning fields. Then, a few representative 

and advanced FE approaches are chosen from each of these 

categories for further analysis and comparisons (mostly in 

terms of usefulness for classification).

This article, therefore, contributes to answering the fol-

lowing questions: 

 ◗ When it comes to hyperspectral data in EO, are DL-

based FE approaches better alternatives than their con-

ventional (yet advanced) shallow FE techniques?

 ◗ Which factors should be considered to design robust 

shallow and deep FE techniques?

In addition, to further promote this field of research, the arti-

cle is accompanied by a significant amount of code and librar-

ies for hyperspectral FE, made publicly available on GitHub, 

which can be found in [131]. 

Finally, several possible future directions are highlight-

ed. To make the contribution of this article clearer, here, we 

briefly discuss the related existing literature. The work of Li et 

al. [14] is dedicated to the evolution of discriminant-analysis-

based FE models, a specific type of dimensionality-reduction 

approach. Jia et al. [15] reviewed FE and data mining works, 

mostly published in 2012 and earlier. Since 2012, however, 

many deep and shallow FE approaches have been developed, 

and these are critically reviewed and compared against each 

other in this article. Sun and Du [16] focused only on fea-

ture selection approaches, whereas our article covers FE tech-

niques; therefore, they complement each other.

DATA SETS AND NOTATION

DATA SETS

INDIAN PINES 2010

This data set (Figure 3) is a very-high-resolution (VHR) HSI 

acquired by the ProSpecTIR system over an area near Purdue 

University, Indiana, on 24 and 25 May 2010. In this article, 

we use a subset of 445 750#  pixels with 360 spectral bands. 

Background
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Soybean: High
Soybean: Mid

Soybean: Low
Residues
Wheat
Hay
Grass/Pasture
Cover Crop 1
Cover Crop 2
Woodlands
Highway
Local Road
Buildings

(a) (b) (c)

FIGURE 3. The Indian Pines 2010 data set: the (a) RGB composition, (b) training set, and (c) test set.
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The data set has a spatial resolution of 2 m and spectral width 

of 5 nm, and it contains the 16 land cover classes listed in 

Table 1, which also shows the training and test sets used in 

this study. Table 1 gives the number of samples, including 

training and test samples, used in the experimental section.

HOUSTON UNIVERSITY 2013

This data set was acquired on 23 June 2012 by the Compact 

Airborne Spectrographic Imager (CASI) over the campus of 

the University of Houston and the neighboring urban area 

[132]. The average height of the sensor was 5,500 ft. The data 

contain ,349 1905#  pixels, with a spatial resolution of 2.5 m, 

and 144 spectral bands ranging from 0.38 to 1.05 µm. The 

data set includes 15 classes of interest, shown in Figure 4. 

A color composite representation of the data and the cor-

responding training and test samples used in this study are 

also shown in Figure 4. The number of training and test sam-

ples for different classes of interest used in the experiments 

is given in Table 2.

HOUSTON UNIVERSITY 2018

This data set was acquired on 16 February 2017 by the hy-

perspectral imager CASI 1500 over the area of the University 

(a)

(b)

(c)

Background Healthy Grass Stressed Grass Synthetic Grass Trees Soil

Water Residential Commercial Road Highway

Running TrackRailway Parking Lot 1 Parking Lot 2 Tennis Court

FIGURE 4. The Houston University 2013 data set: the (a) RGB composition, (b) training set, and (c) test set. 

TABLE 1. THE INDIAN PINES 2010 DATA SET: THE NUMBER OF 

TRAINING AND TEST SAMPLES AND THE TOTAL NUMBER OF 

SAMPLES PER CLASS.

CLASS 

NUMBER CLASS NAME 

TRAINING 

SAMPLES

TEST 

SAMPLES SAMPLES

1 Corn: high 726 2,661 3,387 

2 Corn: mid 465 1,275 1,740 

3 Corn: low 66 290 356

4 Soybean: high 324 1,041 1,365 

5 Soybean: mid 2,548 35,317 37,865 

6 Soybean: low 1,428 27,782 29,210 

7 Residues 368 5,427 5,795 

8 Wheat 182 3,205 3,387

9 Hay 1,938 48,107 50,045 

10 Grass/pasture 496 5,048 5,544 

11 Cover crop 1 400 2,346 2,746 

12 Cover crop 2 176 1,988 2,164 

13 Woodlands 1,640 46,919 48,559 

14 Highway 105 4,758 4,863 

15 Local road 52 450 502 

16 Buildings 40 506 546 

Total 10,954 187,120 198,074 
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of Houston. In this article, we utilized the training portion 

of the whole data set, which was distributed by the Im-

age Analysis and Data Fusion Technical Committee of the 

IEEE Geoscience and Remote Sensing Society (GRSS) and 

the University of Houston for the 2018 data fusion contest 

[133], [134]. The data cover the spectral range of 380 to 

1,050 nm with 48 bands and a ground-sampling distance 

of 1 m. The data set contains 601 # 2,384 pixels and 20 land 

cover classes of interest, shown in Figure 5. The VHR RGB 

image is downsampled (Figure 5), together with the corre-

sponding training and test samples used in this study. The 

number of training and test samples for different classes of 

interest used in the experiments is given in Table 3.

NOTATION

The observed HSI is denoted by ,X R
p n! #  where p and n 

are the number of spectral bands and pixels in each band, 

respectively; d indicates the dimension of the feature space 

(the subspace); ,X Rm
p m! #  where m n1  denotes the ma-

trix, which contains the training samples; y Rm
m1! #  de-

notes the vector, which contains the class labels, where 

, , , ;y k1 2i f! " ,  and k denotes the number of classes. I is 

the identity matrix, and Xt  is the estimate of matrix X. The 

Frobenius norm is denoted by ,F$  and X( )tr  denotes the 

trace of matrix X. The definitions of the symbols used in 

the article are given in Table 4.

SHALLOW FE TECHNIQUES

UFE TECHNIQUES

UFE often refers to FE techniques that do not incorporate the 

knowledge of the ground (ground reference or labeled sam-

ples) to extract features. UFE techniques often rely on intrin-

sic characteristics of the HSI data, such as geometric, spatial, 

or spectral information, to extract the features. Arguably, the 

main advantage of UFE, compared with other FE techniques, 

is the lack of need for training samples, which is of great im-

portance in the case of remote sensing data sets. In this ar-

ticle, four major UFE groups widely used for HSI analysis are 

studied and categorized in the following sections. Figure 6 

provides graphical abstracts of those groups. 

Before explaining UFE techniques in more detail, we 

briefly refer to three groups of commonly used FE tech-

niques that could also be considered UFE but are not stud-

ied in depth in this article due to their specific applications. 

The first group includes a range of approaches, such as nor-

malized differential vegetation index and normalized dif-

ferential water index, that often rely on the knowledge of 

the characteristics of the sensors. The second group includes 

unmixing techniques, which could be assumed to be UFE 

techniques. These often exploit optimization techniques to 

show the fractions of materials existing in pixels based on 

some assumptions on the spectral signatures of the mate-

rials. Therefore, the final features extracted represent dif-

ferent materials in the scene at the subpixel level [17]. The 

third group includes an impressive number of approaches 

based on mathematical morphology that hierarchically 

extract spatial and contextual information from the input 

image, which usually leads to a significant increase in the 

number of features [18].

CONVENTIONAL DATA PROJECTION/ 

TRANSFORMATION TECHNIQUES

Numerous UFE techniques fall into this category. The con-

ventional techniques categorized in this group are often 

designed to linearly project or transform the data, ,X  in a 

lower-dimensional feature space (also called subspace), ex-

ploiting different nonlocal intrinsic characteristics of the 

hyperspectral data set. The transformation can be given by

 Z V X,
T

=  (1)

where Z  is the projected data in the lower-dimensional space 

and V  is the transformation matrix or the bases for the sub-

space. Arguably, principal component analysis (PCA) [19] 

is the most conventional UFE technique, and it has been 

widely used for hyperspectral analysis [20]. PCA captures the 

maximum variance of the signal by projecting the signal on 

the eigenvectors of the covariance matrix C^ h using

 .max
V V

V CV
T

T

V
 (2)

A widely used HSI UFE techniques is the maximum noise 

fraction (MNF) [21] or noise-adjusted principal compo-

nents [22]; this technique seeks a projection in which the 

signal-to-noise ratio (SNR) is maximized. MNF uses the fol-

lowing optimization:

 ,max
V C V

V CV
T

n

T

V
 (3)

TABLE 2. THE HOUSTON UNIVERSITY 2013 DATA SET: THE 

NUMBER OF TRAINING AND TEST SAMPLES AND THE TOTAL 

NUMBER OF SAMPLES PER CLASS.

CLASS 

NUMBER CLASS NAME 

TRAINING 

SAMPLES

TEST 

SAMPLES SAMPLES

1 Healthy grass 198 1,053 1,251 

2 Stressed grass 190 1,064 1,254 

3 Synthetic grass 192 505 697

4 Trees 188 1,056 1,244 

5 Soil 186 1,056 1,242

6 Water 182 143 325 

7 Residential 196 1,072 1,268

8 Commercial 191 1,053 1,244 

9 Road 193 1,059 1,252 

10 Highway 191 1,036 1,227 

11 Railway 181 1,054 1,235 

12 Parking lot 1 192 1,041 1,233 

13 Parking lot 2 184 285 469 

14 Tennis court 181 247 428 

15 Running track 187 473 660 

Total 2,832 12,197 15,029 
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where Cn  is the noise covariance matrix. Another conven-

tional technique is independent component analysis (ICA) 

[23]. ICA assumes a linear mixture model of the non-Gauss-

ian independent source signals and the mixing matrix, both 

of which are simultaneously estimated; therefore, ICA is re-

ferred to as blind source separation. ICA is also often used for 

HSI analysis [24].

To cope with the nonlinearity of HSI data, the kernel 

(nonlinear) versions of the aforementioned techniques, 

i.e., kernel MNF [25], kernel ICA (KICA) [26], and kernel 

PCA (KPCA) [27], have been proposed. Using the kernel 

trick, the data are projected into a feature space where the 

inner products are defined using a kernel function. KICA 

and KPCA were used as UFE techniques for change detec-

tion and classification in [28] and [29], respectively. In [30], 

discrete wavelet transformation (DWT) was used for hyper-

spectral FE. Since DWT does not reduce the dimension, in 

[30], linear discriminant analysis (LDA) was exploited to 

reduce the dimension.

BAND-CLUSTERING/-SPLITTING AND  

MERGING-BASED TECHNIQUES

Figure 6(b) shows the basic steps of band-clustering and 

merging-based FE methods. As indicated, the core idea 

(a)

(b)

(c)

Background Healthy Grass Stressed Grass Synthetic Grass Evergreen Trees

Deciduous Trees Soil Water Residential Commercial

Railway

Seats

Paved Parking Lot Gravel Parking Lot Cars Trains

Road Sidewalk Crosswalk Major

Thoroughfares

Highway

FIGURE 5. The Houston University 2018 data set: the (a) VHR RGB image (downsampled), (b) training set, and (c) test set. 
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behind this group of methods is to split the spectral bands 

into several groups in which the spectral bands have very 

high correlation. Hence, the proposed techniques often 

use similarity and dissimilarity criteria to split the spec-

tral bands into several nonoverlapping groups. By select-

ing or fusing the bands of each group, some representa-

tive bands or features of different groups are obtained. 

Furthermore, followed by the merging step, some band-

filtering and processing operations can be also used to 

further improve the discrimination of the resulting fea-

tures. This group of techniques is often computationally 

cheap and, thus, is often used in real applications. On the 

other hand, spectral information is often neglected by the 

methods in this category.

For band clustering and merging, two algorithms are 

proposed in [31]. The first selects discriminative bases by 

considering all of the classes simultaneously; however, the 

second selects the best bases for a pair of classes at a time. 

In [32], a hierarchical clustering algorithm was introduced 

to split and cluster the hyperspectral bands, where the rep-

resentative band for each cluster is selected based on both a 

mutual information (MI) criterion and a divergence-based 

criterion. Another band-clustering technique was proposed 

in [33], where the splitting is done by minimizing an MI cri-

terion iteratively applied on averaged bands. Iterative algo-

rithms were proposed in [34] for both splitting and merging 

the bands. The splitting procedure is done using the Pear-

son correlation coefficient between adjacent bands; then, 

the merging is applied by averaging over the split bands.

Besides splitting/clustering and merging hyperspectral 

bands, another operation is to further improve the feature 

discrimination by band filtering or processing. For ex-

ample, a hyperspectral FE using image fusion and recur-

sive filtering was given in [35], where the adjacent bands 

are fused by averaging, and, then, recursive filtering was 

used to extract spatial information. In [36], intrinsic im-

age decomposition was applied for processing the merged 

bands, which can effectively remove information that is 

not related to the material of different objects. After that, 

multiple improved versions of intrinsic decomposition-

based band-processing methods were developed [37], 

[38]. In [39], a relative total-variation-based structure-

extraction method was applied for band processing so as 

to construct multiscale structural features that are robust 

to image noise.

LOW-RANK RECONSTRUCTION-BASED TECHNIQUES

Low-rank reconstruction-based FE techniques proposed by 

Rasti et al. [40]–[43] are based on finding an orthogonal 

subspace by minimizing a constrained cost function. They 

exploit low-rank models and reconstruction-based opti-

mization frameworks to extract features. The optimization 

frameworks take into account prior knowledge of the data 

using different types of penalties. Due to the noise assump-

tion in the low-rank model used, this group of FE techniques 

is robust to noise. They are often computationally expensive 

compared to groups 1 and 2 due to the iterative algorithms 

used to solve the (nonconvex) optimization problem.

Wavelet-based sparse reduced rank regression (WSRRR) 

[41] applies the sparsity prior on the wavelet coefficients, 

considering that the projected data on wavelet bases are 

sparse. WSRRR uses the model

 ,X V QD NT
2= +  (4)

TABLE 3 THE HOUSTON UNIVERSITY 2018 DATA SET: THE 

NUMBER OF TRAINING AND TEST SAMPLES AND THE TOTAL 

NUMBER OF SAMPLES PER CLASS.

CLASS 

NUMBER CLASS NAME 

TRAINING 

SAMPLES

TEST 

SAMPLES SAMPLE

1 Healthy grass 1,458 8,341 9,799 

2 Stressed grass 4,316 28,186 32,502 

3 Synthetic grass 331 353 684 

4 Evergreen trees 2,005 11,583 13,588 

5 Deciduous trees 676 4,372 5,048 

6 Soil 1,757 2,759 4,516

7 Water 147 119 266 

8 Residential 3,809 35,953 39,762

9 Commercial 2,789 220,895 223,684

10 Road 3,188 42,622 45,810

11 Sidewalk 2,699 31,303 34,002 

12 Crosswalk 225 1,291 1,516 

13 Major thorough-
fares

5,193 41,165 46,358 

14 Highway 700 9,149 9,849 

15 Railway 1,224 5,713 6,937 

16 Paved parking lot 1,179 10,296 11,475 

17 Gravel parking lot 127 22 149 

18 Cars 848 5,730 6,578 

19 Trains 493 4,872 5,365 

20 Seats 1,313 5,511 6,824 

Total 34,477 470,235 504,712

TABLE 4 THE DIFFERENT SYMBOLS USED IN THIS ARTICLE 

AND THEIR DEFINITIONS.

SYMBOLS DEFINITION 

xi the ith entry of the vector x

X ij the (i, j)th entry of the matrix X

x i  the ith column of the matrix X

x( )j  the jth row of the matrix X

x 0  the l0-norm of the vector x —i.e., the number of nonzero 
entries

x 1 the l1 norm of the vector x,  obtained by .x iiR

x 2 the l2 norm of the vector x,  obtained by x ii
2

R

X 1  the l1 norm of the matrix ,X  obtained by X,i j ijR

X F  the Frobenius norm of the matrix ,X  obtained by X, iji j
2

R

Xt  the estimate of the matrix X

X( )tr  the trace of the matrix X

X TV  the TV norm of the matrix ,X  obtained by ( )xTV ( )i iR  
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where D2  represents 2D wavelet bases, X  is the observed 

HSI, V  contains the orthogonal subspace bases, and N  is 

the noise and model error. WSRRR simultaneously esti-

mates the low-rank projection matrix and the wavelet coef-

ficients W, which minimizes

 
( )

.

argmin 2
1

,

 s.t.

V Q X V QD q

V V I

,
( )

T
F j

j

d

j
T

T

2
2

1
1Q V

m= - +

=

=

t t /
 

(5)

Note that the extracted features are given by .F QD2=t t

To capture the spatial (neighboring) information, or-

thogonal total variation (TV) component analysis (OTVCA) 

was proposed in [42], where the HSI is modeled as

 ,X V F N
T

= +  (6)

with matrix F  containing the unknown features. OTVCA 

assumes that the hyperspectral features are spatially piece-

wise smooth and, therefore, exploits the TV penalty and 

simultaneously estimates F  and V  using

 ,argmin 2
1

TVX V F fF ( )
T

F
j

d

j
T2

1
F

m= - +

=

t ^ h/  (7)

where

( ) ( ( )) ( ( ))TV x D x D xh v
2 2

1= +

and Dv  and Dh  are the matrix operators, to calculate the 

first-order vertical and horizontal differences, respec-

tively, of a vectorized image. Recently, sparse and smooth 

low-rank analysis (SSLRA) was proposed in [43], which 

models the HSI based on a combination of sparse and 

smooth features:

 ( ) ,X V F S N
T

= + +  (8)

where F  and S contain smooth and sparse features, respec-

tively. SSLRA simultaneously extracts the sparse, ,S  and 

smooth features, ,F  by taking into account both sparsity 

and TV penalties:

 
( ) ( )

.

F S2
1

, ,

s.t. 

F S V X V F S

V V I

T

F

T

2
1 2 1TVm m= - + + +

=

t t t

 
(9)

GRAPH-EMBEDDING AND/OR MANIFOLD- 

LEARNING TECHNIQUES

Considering the nonlinear characteristic of HSIs, this 

group of FE techniques aims to capture the data mani-

fold through the local geometric structure of neighboring 

pixels in the feature space. Figure 6(d) demonstrates the 

concept of manifold-learning FE techniques applied on the 

Swiss roll data set. The pink line in the left image shows the 

Euclidean distance between two data points in 3D space. It 

is clear that this line is not an effective metric to measure 

the similarity of the two points selected in the Swiss roll 

data set. 

On the other hand, after unfolding of the data set, which 

is represented in 2D space in the right image of Figure 6(d), 

the Euclidean distance between two data points shown by 

the pink line is a better representation of the similarity of 

the two points in the data set. The FE techniques catego-

rized in this group are designed to capture such a mani-

fold while representing the data in a lower-dimensional 

feature space.

Graph-embedding or manifold-learning FE techniques 

often include three main steps: 1) neighborhood pixel se-

lection, 2) weight selection, and 3) embedding construc-

tion. Isometric mapping (ISOMAP) [44], [45] is a global 

PCA

PC2

P
C

2PC1

PC1
Original Data Space Component Space

Input
Band

Clustering

Band

Merging

Band

Filtering
Output

Input Features Subspace

Basis
Noise Original Data Space Embedding Space

Graph

Embedding

(a) (b)

(c) (d)

FIGURE 6. The four major categories of UFE methods: (a) transform, (b) band-clustering and -merging, (c) low-rank reconstruction, and (d) manifold-

learning based. 
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geometric nonlinear FE. ISOMAP searches for geodesic dis-

tances between data points and includes three main steps: 

1) constructing a neighborhood graph of the data points, 

2) computing the shortest path distances between all data 

points in the neighborhood graph, and 3) creating the low-

er-dimensional embedding vectors that preserve the path 

distances in the neighborhood graph.

Locally linear embedding (LLE) [46], Laplacian eigen-

maps [47], and locality-preserving projection (LPP) [48] 

are also geometric nonlinear FE techniques based on 

graph embedding. LLE constructs the embedding graph 

in three steps. First, the neighbors for data points are se-

lected using the K nearest neighbors. Second, the weights 

A ,i j  that linearly reconstruct the data points are computed 

using their neighbors by minimizing the following con-

strained least squares:

 . ,min 1s. tx A x Ai ij

j

j

i

n

ij

j2

2

1
A

i i

- =

! !z z=

// /  (10)

where ( )xi iz  contains the neighborhood pixels selected for 

.xi  We should note that the constrained weights estimated 

from (10) for every data point are invariant to rotations, 

rescalings, and translations of that data point and its neigh-

bors; therefore, they characterize the intrinsic geometric 

properties of each neighborhood. Third, the lower-dimen-

sional embedding vectors y  are constructed by minimizing

 

 ,

.

min

n z
1

s. t.z A z z 0

z I

i ij

j

j

i

n

i

i

n

i

i

n

i
T

2

2

1 1

1

z
i

- =

=

!z= =

=

// /

/
 

(11)

We should note that the reconstruction weights Aij  are fixed 

in minimization (11), and, therefore, the intrinsic geomet-

ric properties of the data with dimension p are invariant to 

such a transformation into a lower-dimension d.

In [49], a general framework for graph embedding is 

given by

 min s.t.z z W ZBZ I
,

i j

i j

ij2

2 T

z
i

- =

!z

/  (12)

or, equivalently,

 
( ( ) ) )

 ,

min mintr tr

s.t.

Z D W Z (ZLZ

Z Z IB

T T

T

Z Z
- =

=

 
(13)

where L D W= -  denotes the Laplacian matrix of the un-

directed weighted graph ,G X W= " , (where X  is the vertex 

set and W R
n n! #  is the similarity matrix) and D is a diago-

nal matrix where its entries are given by

 , .iD Wii ij

j i

6=

!

/  (14)

The diagonal matrix B is for the scale normalization and 

might also be the Laplacian matrix of a penalty graph, such 

as , .G X W
p p
= " ,  We should note that the vertices of Gp  and 

G (i.e., )X  are the same, while the similarity matrix ( )W
p  cor-

responds to the similarity characteristics suppressed in the 

lower-dimensional feature space ( ;B L D W
p p p

= = -  see [49]). 

LLE can be reformulated using the graph embedding men-

tioned earlier with similarity matrix W A A A Aij ij ij
T

ij
T

ij= + -  if 

;j i!z  otherwise, 0Wij=  and B I=  [49]. ISOMAP, LE, and 

LPP can also be formulated using graph embedding [49]. 

From the viewpoint of graph embedding, the main differ-

ence between these FE techniques is the selection of the 

matrices W  and .B  For instance, LE and LPP use the Gauss-

ian function with the standard deviation v to choose the 

similarity matrix as

 ,

,

, ( )exp i j
2

0 otherwise.
W

x x
x

ij

i j
i i2

2
2

6
< <

!
v

z
=

- -*  (15)

We should note that the techniques categorized in this 

group are assumed to be SFE methods when they are ap-

plied only on the training samples. This is common in the 

case of HSI due to the large volume of the image, which 

makes the algorithm computationally very expensive. In 

the following section, we discuss how the ground reference 

(training samples) can be used to construct the edge matrix, 

;W  therefore, those techniques are considered SFE.

SFE TECHNIQUES

Unlike UFE techniques that rely on modeling various pri-

or assumptions of hyperspectral data, supervised meth-

ods are capable of extracting class-separable features 

more effectively, owing to the use of label information. 

Over the past few decades, some seminal models have 

been widely developed and applied to perform SFE on 

HSIs; these can be roughly categorized into two streams: 

subspace-learning (SL)-based and band-selection (BS)-

based approaches.

Different from handcrafted features [50], SL-based ap-

proaches learn to extract the low-dimensional represen-

tation from the data by formulating different supervised 

rules in view of label information. There are some typical 

methods in SL, including LDA [51], matrix discriminant 

analysis (MDA) [52], decision boundary FE [53], and so 

on. The latter BS-based methods, which aim at screening 

out the representative and informative spectral bands, 

are unfolded with MI-based BS [54], rough set, and fuzzy 

C-means [55], to name a few. To further enhance class 

separability, many extended methods have been success-

fully proposed in recent years: subspace LDA (SLDA) [56], 

regularized LDA [57], local Fisher’s discriminant analysis 

(LFDA) [58], feature space discriminant analysis (FSDA) 

[59], rough-set-based BS [60], and FE with local spatial 

modeling [61].

Because of the powerful learning ability of SL meth-

ods compared to that of BS-based strategies, we focus 

on reviewing the SL-related FE techniques, in which two 

main streams—discriminant analysis FE (DAFE) and 
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regression-induced representation learning (RIRL)—are 

emphatically investigated and compared by clarifying their 

similarities and differences as well as pros and cons, as 

briefly illustrated in Figure 7.

DAFE

Generally speaking, DAFE seeks to find an optimal projec-

tion or transformation matrix P R
p d! #  (d is the dimen-

sion of the subspace to be estimated) by optimizing cer-

tain class-relevant separation criteria associated with the 

label information. In this process, the estimated subspace 

,Z R
d n! #  which consists of a series of vector ,zi  can be ob-

tained by projecting the samples X x Rm i i
m p m

1!=
#

=
" ,  onto 

a decision boundary, which can be generally expressed as 

Z P X.
T

=  Each vector zi  in Z  can be collected by .P x
T

i  De-

pending on the different types of label embedding, DAFE 

can be subdivided into LDA and its variants, graph-embed-

ding-based discriminant analysis (GDA) and its extensions, 

and kernelized discriminant analysis (KDA).

LDA AND ITS VARIANTS

Traditional LDA linearly transforms the original data into 

a discriminative subspace by maximizing the Fisher’s ratio 

in the form of the generalized Rayleigh quotient, that is, 

minimizing the intraclass scatter and maximizing inter-

class scatter simultaneously. Given a pairwise training set 

( , ), ,( , ), ,( , ) ,x y x y x yi i m m1 1 f f" ,  the objective function of 

multiclass LDA to estimate the linear projection matrix P  

can be written as follows:

 max
tr( )

tr( )
,

P S P

P S P
T

T

P w

b

 (16)

where Sw  and Sb  are defined as the within-class and be-

tween-class scatter matrices, respectively. With the con-

straint of ,P S P I
T

w =  the optimization problem in (16) can 

be equivalently converted to one of S P S Pb wm=  by intro-

ducing the Lagrange multiplier .m  The close-form solution 

to the simplified optimization problem can be deduced by 

generalized eigenvalues decomposition (GED).

Due to the sensitivity to complex, high-dimensional 

noises caused by environmental and instrumental fac-

tors and the availability of labeled samples, the original 

LDA inevitably suffers from an ill-posed statistical deg-

radation, especially in the case of small-scale samples. 

The degraded reasons mainly lie in the singularity of the 

two scatter metrics (Sw  and ),Sb  thereby easily leading to 

the overfitting problem. To improve stability and gen-

eralization, the regularized LDA was proposed by add-

ing an l -2 norm constraint on ,Sw  parameterized by c as 

.S S Iw w
reg c= +  By replacing Sw  in (16) with the regularized 

,Sw

reg  the solution in the regularized LDA can be still ob-

tained by the GED solver.

Considering the local neighborhood relations between 

samples in the process of model learning, LFDA breaks 

through the bottleneck of those LDA-based methods by 

assuming that the data are distributed in the nonlinear 

manifolds rather than a homogeneous Gaussian space. For 

this purpose, LFDA is capable of effectively excavating the 

locally underlying structure of the data that lie in the real 

world. Essentially, LFDA can be regarded as a weighted LDA 

by locally weighing Sw  and Sb  matrices. Therefore, the two 

modified scatter matrices, denoted as Sw
u  and ,Sb

u  can be for-

mulated as

 

( )( ) ,

( )( ) ,

2
1

2
1

S W x x x x

S W x x x x

w ij
w

j

m

i

m

i j i j
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j

m

i

m

i j i j

11

11

T

T

= - -

= - -

==

==

u

u

//
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(17)

where the two weights (Ww  and )W
b  denote the samplew-

ise similarities. There are several commonly used strategies 

for calculating such a similarity matrix symbolized by W. 

A simple yet effective one is given by ,1Wij=  if ( ),x xj k i!z  

where ( )xk iz  represents the k-nearest neighbor of ;xi  oth-

erwise, .0Wij=  Another commonly used technique was 

constructed based on the radial basis function with a stan-

dard derivation of ,v  as defined in (15). Refer to [62]–[64], 

which might be useful for those who are interested in more 

types of .W

Similar to SLDA, which first projects the original data 

into a subspace and then LDA is performed in the trans-

formed subspace, FSDA starts with maximizing the be-

tween-spectral scatter matrix )(S f  to enhance the differenc-

es along the spectral dimension; similarly, LDA is further 

used to extract the representations of class separability 

from the feature domain. In the first step, let ,i jn  be the av-

erage value of the jth class and the ith spectral band. Then, 

we have the definition of S f  as follows:

 ( )( ) ,2
1

S h h h hf i

i

p

i

1

T
= - -

=

r r/  (18)

where [ , , , ]h , , ,i i i i k1 2 fn n n=  is the spectral representation 

in the feature space and /( / ) .p1h hi
p

i1= =
r  The primary 

transformation ( )Pf  that aims at improving spectral dis-

criminant can be estimated by maximizing the trace term 

of S f  as

 ( ).max tr P S Pf f f
T

Pf

 (19)

Using the obtained ,Pf  the latent representation in the fea-

ture space ,g P hi f i
T

=  , , ,i p1 2 f=  can be further fed into the 

next step, LDA.

GDA AND ITS EXTENSIONS

Before revisiting the GDA methods, we first introduce and 

formulate the general graph embedding (GGE) framework 

presented in [49] with (12). Obviously, the extracted fea-

tures Z  in the GGE framework are determined by the con-

struction of W  to a great extent. Thus, we highlight several 

types of representative affinity matrices corresponding to 

the different graph-embedding approaches, i.e., LDA, LE 
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[47] and its linearized LPP [48], LLE [46], sparse GDA (SGDA) 

[65], and collaborative GDA (CGDA) [66]. Figure 8 visual-

izes the affinity matrices given by five different strategies in 

a four-class case selected from the Houston 2013 data set.

LDA-LIKE AFFINITY MATRIX

In essence, LDA is vested in a special case of the GGE frame-

work with ,D I
(LDA)
=  whose affinity matrix can be repre-

sented as

 
/ ,

,

;N C1

0

if and

otherwise,
W

x x( )
ij

k i j kLDA !
= (  (20)

where Nk  is the number of samples belonging to kth class.

LPP- OR LE-BASED AFFINITY MATRIX

One is to be constructed in kernel space with a higher dimen-

sion via similarity measurement, i.e., extensively using (15).

LLE-BASED AFFINITY MATRIX

Different from the handcrafted graph, LLE reconstructs 

each given sample with its k-nearest neighbors by exploit-

ing linear regression techniques [67], [68]. As a result, the 

reconstruction coefficients ( )A  can be obtained by solv-

ing the optimization problem of (10). With the known A, 

it is straightforward to derive the needful affinity matrix, 

denoted as ,W(LLE)

 
,

,

( );

0

if 

otherwise,
W

A A A A x x
ij

ij ij ij ij j k i(LLE)
T T !z

=
+ -(  (21)

thereby inducing the Laplacian matrix as L D W
(LLE) (LLE) (LLE)
= - = 

.( ) ( )I A I A
T

- -

SGDA- AND CGDA-GUIDED AFFINITY MATRIX

Similar to LLE, the affinity matrix can be estimated using 

data-driven representation learning, i.e., sparse and col-

laborative representations [69]–[71]. Accordingly, the two 

learning strategies can be equivalent to respectively solving 

the constrained l -1 norm optimization problem,

 ,min s.t.W X W Xm m F1

2

W
#e-  (22)

and the l -2 norm optimization problem,

 .min s. t.W X W XF m m F

2 2

W
#e-  (23)

These affinity matrices can be unified to the GGE frame-

work of (12).

In addition to SGDA and CGDA (the two baselines), 

Huang et al. [72] learned a set of sparse coefficients on 

manifolds and then preserved the sparse manifold struc-

ture in the embedded space. In [73], Xue et al. extended the 

existing SGDA to the spatial–spectral graph embedding 

to address issues of spatial variability and spectral multi-

modality. With the embedding of the intrinsic geometric 

structure of the data, a Laplacian regularizer CGDA [74] 

was developed to further improve the graph’s confidence. 

Li et al. [75] simultaneously integrated sparsity and low 

rankness into the graph to capture a more robust structure 

of the data locally and globally. Furthermore, Pan et al. 

[76] improved the work by Li et al. [75] by unfolding the 

HSI data with the form of a tensor.

KDA

In reality, the HSI usually exhibits a highly nonlinear data 

distribution, which may result in difficulties in effec-

tively identifying the materials. The solution to this issue 

makes use of a so-called kernel trick [77] that can map 

the data of the input space into a new Hilbert space with 

a higher feature dimension. In the kernel-induced space, 

the complex nonlinearity of the HSI can be well ana-

lyzed in a linearized system. Comparatively, the input to 

KDA is an inner product of original data pairs, defined as 

( , ),k x xi j  which can be given by (15). By introducing the 

kernel Gram matrix K  with ( ) ( ) ( , ),kK x x x x,i j i j i j
T

U U= =  

most of the previous LDA-based methods can be simp   -

ly  extended to the corresponding ker ne l i zed ver-

sions; i.e., kernelized LDA (KLDA) and kernelized LFDA 

 (KLFDA) can calculate their projections P  by solving a 

GED  problem of

 ( ) .KLKP KBK I Pm c= +  (24)

Note that B I=  in KLDA, whereas L Lw=  and B Lb=  are 

computed by D Ww w-  and D Wb b-  in the kernel space, 

respectively, for KLFDA. Furthermore, for kernelized SGDA 

0

0.5

1

(a) (b) (c) (d) (e)

FIGURE 8. A four-class showcase for affinity matrices W( ) with respect to five different approaches, where the connectivity (or edge) of W  is 

computed within each class: (a) LDA, (b) LPP, (c) LLE, (d) SGDA, and (e) CGDA. 
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(KSGDA) and kernelized GCDA (KCGDA), the main differ-

ence lies in the computation of the adjacency matrix, which 

can be performed in the kernel space by solving the general 

kernel coding problem as follows:

 ( ) ( ) ( ) ,min s.t.W X W Xm m F

2

W
#eX U U-  (25)

where ( )WX  can be selected to be either the sparsity-prompt-

ing term W 1  of KSGDA or the dense (or collaborative) 

term W F

2  of KCGDA. In [78] and [74], the solutions in 

(25) were theoretically guaranteed in the same way by solv-

ing (22) and (23) using the alternating-direction method of 

multiplier (ADMM) [79] and least-square regression with 

Tikhonov regularization [80], respectively.

RIRL

RIRL provides a new insight from the regression point of 

view to model the FE behavior by bridging the training sam-

ples with the corresponding labels rather than indirectly us-

ing the label information in the form of a graph or affinity 

matrix in DAFE-based methods.

LEAST-SQUARES DIMENSION REDUCTION 

We begin with sliced inverse regression [81], which is a 

landmark in SFE techniques. It assumes that the pairwise 

data {( , )}x yi i i
m

1=  are conditionally independent on the 

to-be-estimated subspace features { } ,zi i
m

1=  formulated as 

( )| .X Y Z=  Following this rule, the least-squares dimen-

sion reduction (LSDR) proposed by Suzuki and Sugiyama 

[82] attempts to find a maximizer of the squared-loss MI 

(SMI) to satisfy the previously mentioned independence 

assumption. The projections P  for LSDR can be searched 

by optimizing the following maximization problem:

 . .maxSMI( , ) s.tZ Y PP I
T

P
=  (26)

And the SMI to measure a statistical dependence between 

two discrete variables is defined as

 ( ) ( )
( ) ( )
( , )

,p p
p p

p
1SMI( , )Z Y z y

z y

z y 2

y Yz Z

= -

!!

d n//  (27)

where ( )p :  is the probability distribution function.

LEAST-SQUARES QUADRATIC MI

Limited by the sensitivity of MI to outliers, Sainui and Sugi-

yama [83] designed a more robust least-squares quadratic 

MI (LSQMI) on the basis of a QMI criterion; hence, let us 

define the QMI as

 ( , ) ( ) ( ) .( )p p pQMI( , )Z Y z y z y 2

y Yz Z

= -

!!

//  (28)

Similarly, we solve (26)-like optimization problem by re-

placing SMI with QMI.

LSQMI DERIVATIVE

Due to the difficulty in accurately computing the deriva-

tive of the QMI estimator, LSQMI was further extended to 

a computationally effective LSQMI derivative by estimat-

ing the derivative of QMI instead of QMI itself [84]. In that 

article, Tangkaratt et al. [84] demonstrated a more accurate 

and efficient derivative computation of QMI.

JOINT AND PROGRESSIVE LEARNING STRATEGY

Another MI-free estimation group is latent SL (LSL). One 

representative LSL performs FE and classification simulta-

neously in a joint-learning (JL) fashion [85]. With an ex-

pected output X ,mH  the process can be modeled as

 . ,min
2

s.tY P X P I
,

l k m F k F

2 2 T

Pk

a
H HH- + =

H
 (29)

where Y Rl
k m! #  and R

d p!H #  are defined as the one-hot 

encoded label matrices and the latent subspace projections, 

respectively. P Rk
k d! #  denotes the regression matrix that 

connects the learned subspace and the label information. 

Yl  can be formulated as
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In [85], the model’s solution was proven to be a closed 

form. Moreover, in [86], Hong et al. explored an LDA-like 

graph as a regularizer to learn a spectrally discriminative 

feature representation; thus, (29) becomes
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min 2 2 tr
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a b
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Beyond the JL-based models, Hong et al. [87] estab-

lished a novel multilayered regression framework by fol-

lowing a joint and progressive learning strategy (JPlay). 

With the layerwise autoreconstruction mechanism ef-

fective against the spectral variabilities caused by com-

plex noises and atmospheric effects, the linearized JPlay 

breaks through the performance bottleneck of tradition-

al linear methods. More specifically, we have the result-

ing model 

 
( )

,

. , , ,

min 2

2

2

0 1

tr

s.t

Y P X P

X LX

X X

X X X x

,{ }

T T

T

l k q m F k F

l

q

l l l l

l l l l F
l

q

l l l l i

1
2 2

1

1 1

1 1
2

1

1 2

Pk l l
q

1

f

$ #

a

b

c

H H

H H

H H

H

- +

+

+ -

=

H

=

- -

- -

=

-

=

/

/
 

(32)

where the soft constraint 1xi 2#  can be used to relax 

the orthogonality. It is worth noting that such a JL-based 
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strategy can clearly tell the model which features are 

positive to the classification task, owing to the joint 

strategy of FE and classification.

DEEP FE TECHNIQUES

Shallow FE techniques often require careful engi-

neering and domain knowledge of experts, which 

limits their applications. In contrast, DL techniques 

aim at automatically learning high-level features 

from raw data in a hierarchical fashion. These fea-

tures are more discriminative, abstract, and robust 

than those in shallow methods. Due to their pow-

erful feature representation ability, DL techniques 

have been widely used to extract features from HSIs 

in recent years [88], [89]. Among various DL mod-

els, autoencoders (AEs), convolutional neural net-

works (CNNs), and recurrent NNs (RNNs), shown 

in Figure  9, are the most popular. In this section, we 

present these models and their applications to hy-

perspectral FE.

AES

As demonstrated in Figure  9, AE mainly comprises 

two modules: encoder and decoder. Encoder maps 

the input vector x  into a hidden space ,h  whereas de-

coder aims at getting a reconstruction result xt  of the 

original input from .h  These processes can be formu-

lated as

 
,

,( )

( )f

f

h W x b

W h bx

1 1

2 2

= +

= +t
 

(33)

where W1  and W2  denote the weights connecting the 

input layer to the hidden layer and the hidden layer to 

the output layer, respectively; b1  and b2  represent the 

biases of the hidden units and output units, respec-

tively; and f is a nonlinear activation function. The 

training of an AE is to minimize the residual between 

x  and x.t  Once trained, the decoder is deleted, and 

the hidden layer h  is considered as a feature represen-

tation of x. To extract deep features, several AEs are 

often stacked together, generating a stacked AE (SAE) 

model. For SAE, the hidden layer in the preceding AE 

is used as the input of the subsequent AE.

SAE is, perhaps, the earliest deep model used to 

extract features of HSIs [90]. One typical benefit of 

SAEs is that each AE inside the network can be pre-

trained using both labeled and unlabeled samples, 

thus providing better initial values for network pa-

rameters compared to random initialization. After 

layerwise pretraining, the fine-tuning of only a few 

layers can acquire satisfactory discriminant features. 

This training method is capable of alleviating the 

overfitting problem when there exist only small num-

bers of training samples in HSIs. In [91], the spectral 

information for each pixel was considered as a vector 

and fed into an SAE model to extract deep features. 
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These features extracted by SAEs can also be generalized 

from one image to another image, which was validated in 

[92] and [93]. 

To extract the spatial features of each pixel, one often 

needs to select a local patch or cube centered at the pixel 

and then input it into an FE model. Since the inputs of 

SAEs are vectors, it is difficult to directly process patches 

or cubes. In [91] and [92], the local cubes from the first 

principal components of HSIs were initially reshaped into 

vectors and then fed into SAEs to extract spatial features. 

In [94] and [95], Gabor features and extended morpho-

logical attribute profiles (i.e., the joint use of shallow and 

deep FE methods) were used as the inputs of SAEs, mak-

ing it easier for the network to extract high-level spatial 

features. After the extraction of spectral and spatial fea-

tures, these features can be easily concatenated together 

to generate a spectral–spatial joint feature [91], [92]. Com-

pared to the concatenation method, Kang et al. [94] and 

Deng et al. [95] proposed using another SAE to fuse the 

spectral and spatial features, which may further enhance 

the discriminative ability of spectral–spatial features.

Similar to traditional FE methods, one can also em-

bed some prior or expected information into SAEs. Based 

on the assumption that neighboring samples in the input 

space should have similar hidden representations, graph 

regularization was added to SAE to preserve this property 

[96], [97]. In [98], Zhou et al. imposed a local regulariza-

tion via FDA on hidden layers to make the extracted fea-

tures of samples from the same category close to each other 

and those from different categories as far apart as possible, 

thus improving the discriminative ability of the SAE. Mean-

while, they also added a diversity regularization term to 

make the SAE extract compact features.

CNNs

CNNs are the most popularly adopted deep model for hy-

perspectral FE. As shown in Figure  9, the basic components 

of a CNN model include convolutional layers, pooling lay-

ers, and fully connected layers. The convolutional layers are 

used to extract features with convolutional kernels (filters), 

which can be formulated as

 ( ),bfX X W
l l l l1

)= +
-  (34)

where Xl  is the lth feature maps; W l  and b l  denote the fil-

ters and biases of the lth layer, respectively; and ) represents 

the convolutional operation. After the convolutional layer, 

the pooling layer is often adopted to reduce the size of the 

generated feature maps and produce more robust features. 

On the top of a CNN model, there often exist some fully 

connected layers, aiming at learning high-level features and 

outputting the final results of the network.

For HSIs, CNNs can be used to extract spectral features 

[99] or spatial features [100]–[102], depending on the in-

puts of networks. In [99], Hu et al. designed a 1D CNN 

model to extract spectral features of each pixel. Compared 

to traditional fully connected networks, CNNs have weight-

sharing and local-connection characteristics, making 

their training processes more efficient and effective. In 

[100], 2D CNN was explored to extract spatial features 

from a local cube. Different from SAEs, CNNs do not need 

to reshape the cube into a vector, thus preserving as much 

spatial information as possible. However, to make full 

use of the representation ability of CNNs, two important 

issues need to be considered. The first issue is the small 

number of training samples but high-dimensional spec-

tral information, which will easily lead to the overfitting 

problem. The second issue is the extraction of spectral–

spatial joint features, which can improve the classification 

performance in comparison with using the spectral or spa-

tial feature only.

For the first issue, many commonly used strategies in 

the field of natural image classification, such as dropout 

and weight decay, can be adopted. In addition, many prom-

ising methods have been proposed in the past few years. 

These methods can be divided into four different classes.

The first class of methods is dimensionality reduction. 

In [100], [101], and [103], PCA was employed to extract 

the first principal components of HSIs as inputs of CNNs, 

thus simplifying the network structures. Similarly, a simi-

larity-based BS method was used in [104]. However, these 

dimensionality-reduction methods are independent from 

the following CNNs, which may lose some useful informa-

tion. Different from them, Ghamisi et al. [105] proposed 

a novel method to adaptively select the most informative 

bands suitable for the CNN model.

The second class of methods is data augmentation. 

In [101], two methods were proposed to generate virtual 

samples. One is to multiply a random factor and add a 

random noise to training samples, while the other is to 

combine two given samples from the same class with 

proper ratios. In [106], a data-augmentation method 

based on distance density was proposed. Recently, Kong 

et al. [107] proposed a random zero-setting method to 

generate new samples.

The third class of methods is transfer learning. In [108] 

and [109], the authors found that CNNs trained by one hy-

perspectral data set can be transferred to another data set 

acquired by the same sensor and that fine-tuning only a few 

top layers achieves satisfying results. More interestingly, the 

works in [110]–[112] indicated that CNNs pretrained by 

natural images can be directly applied to extract spatial fea-

tures of HSIs.

The fourth class of methods is semisupervised or even 

unsupervised learning. For example, Wu and Prasad [113] 

attempted to use a clustering model to obtain pseudo-la-

bels of unlabeled samples and then combine the training 

samples and unlabeled samples (with their pseudo-labels) 

together to train their network.

In terms of the second issue, one popularly used 

method is feeding a local cube, directly cropped from the 

original HSI, into a CNN with 3D convolution kernels 
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for processing the spectral and spatial information si-

multaneously. The number of channels in the 3D con-

volutional kernel is smaller than or equal to that of its 

input layer. However, the former dramatically increases 

the computational complexity due to the simultaneous 

convolution operators in both the spectral and spatial 

domains, whereas the latter heavily increases the number 

of parameters to optimize. Another candidate method is 

to decouple the task of spectral–spatial FE into two parts: 

spectral FE and spatial FE. 

In [108] and [114], a parallel structure was employed to 

extract spectral–spatial features. Specifically, 1D and 2D 

CNNs were designed to extract spectral features and spatial 

features, respectively; these two features were then concat-

enated together and fused via a few fully connected lay-

ers. Since 2D CNN focuses on extracting spatial features, 

some redundant spectral information can be preprocessed 

to reduce the computational complexity. In [115], a serial 

structure was also used to extract spectral–spatial features. 

It first applied several 1 × 1 convolutions to extract spectral 

features and then fed the extracted features into several 3D 

convolutions to extract spatial features.

RNNs

RNNs have been popularly employed to sequential data 

analysis, such as machine translation and speech recogni-

tion. Different from the feedforward NN, RNN takes ad-

vantage of a recurrent edge to connect the neuron to itself 

across time. Therefore, it is able to model the probability 

distribution of sequence data. To make this subsection eas-

ier to follow, we first provide a brief and general discussion 

on RNN. Then, we briefly describe how to use RNN specifi-

cally for the classification of HSIs.

Figure 9 shows an example of RNN. Given a sequence 

( , , , ),x x x xT1 2 f=  where ,xt  { , , , }t T1 2 f!  generally de-

notes the information at time t, the output of the hidden 

layer at the tth time step is

 ( ),fh Ux Wh bt t t h1= + +-  (35)

where U  and W  represent weight matrices from the cur-

rent input layer to the hidden layer and the preceding hid-

den layer to the current hidden layer, respectively; ht 1-  is 

the output of the hidden layer at the preceding time; and 

bh  is a bias vector. According to this equation, it can be ob-

served that the contextual relationships in the time domain 

are constructed via a recurrent connection. Ideally, hT  will 

capture most of the information and can be considered the 

final feature of the sequence data. In terms of classification 

tasks, one often inputs ht  into an output layer ,ot  which can 

be described as

 ( ),fo Vh bt t o= +  (36)

where V  is the weight matrix from the hidden layer to the 

output layer and bo  is a bias vector.

In recent years, RNNs have attracted more and more at-

tention in the field of HSI FE. To make full use of RNNs, 

one must first ask the following question: How is the se-

quence to be constructed? An intuitive method is to regard 

the whole spectral bands as a sequence [116], [117]. For each 

pixel, its spectral values are fed into RNNs from the first 

band to the last band, and the output of the hidden layer 

at the last band is the extracted spectral feature. Different 

from the traditional sequences in speech-recognition or 

machine-translation tasks, the succeeding bands do not de-

pend on the preceding ones. Thus, Liu et al. [116] also fed 

the spectral sequence from the last band to the first band to 

construct a bidirectional RNN model. 

Another method is to use a local patch or cube to con-

struct the sequence [117]–[119]. For example, Zhou et al. 

[117] regarded the rows of each local patch, cropped from 

the first principal component of HSIs, as a sequence and 

fed them into an RNN one by one to extract spatial fea-

tures; Zhang et al. [118] adopted each pixel and its neigh-

boring pixels in the cube to form a sequence. These pixels 

were first sorted according to their similarities to the center 

pixel and then fed into the RNN sequentially to extract lo-

cally spatial features.

In real applications, the constructed sequence may be 

very long. In the widely used Indian Pines data, the length 

of the sequence is 200 (the number of spectral bands) if we 

use the first method mentioned earlier to construct the se-

quence. This sequence increases the training difficulty be-

cause the gradients tend to either vanish or explode. To deal 

with this issue, long short-term memory (LSTM) was em-

ployed as a more sophisticated recurrent unit [116], [117], 

[120], [121]. The core components of LSTM are three gates: 

input, forget, and output gates. These gates together control 

the flow of information in the network. 

Similarly, the gated recurrent unit (GRU), which has 

only two gates (i.e., an update gate and a reset gate), was 

also employed. Compared to LSTM units, GRUs have fewer 

parameters, which may be more suitable for HSI FE since it 

usually has a limited number of training samples. Another 

candidate scheme to address the issue is to divide the long-

term sequence into shorter sequences [121], [122]. For ex-

ample, in [122], Hang et al. proposed grouping the adjacent 

bands of HSIs into subsequences and then using RNNs to 

extract features from them. Since nonadjacent bands have 

some complementarity, they also used another RNN to 

fuse the extracted features.

INTEGRATED NETWORKS

In general, AEs and RNNs are good at processing vectorized 

inputs, thus achieving promising results in terms of spec-

tral FE. However, both of them need to reshape the input 

patches or cubes into vectors during spatial FE, which may 

destroy some spatial information. In contrast, CNNs are 

able to directly deal with image patches and cubes, resulting 

in more powerful spatial features than AEs and RNNs. It is 

natural to wonder whether we can integrate these networks 
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together to make full use of their respective advantages. In 

the past few years, numerous works have been proposed in 

this direction.

One type of integration method is to use each network 

independently and then combine their results together 

[119], [121]–[123]. In [123], a parallel framework was pro-

posed to extract spectral–spatial joint features from HSIs. 

In this framework, SAE was employed to extract spectral 

features of each pixel, and CNN was used to extract spatial 

features from the corresponding image patch. These two re-

sults were fused by a fully connected layer. Similar to this 

article, Xu et al. [121] also adopted the parallel framework 

but used LSTM to extract the spectral features. In contrast, 

Hang et al. [122] proposed a serial framework to fuse CNNs 

and RNNs. Specifically, they used a CNN to extract the spa-

tial features from each band of HSIs and then used an RNN 

to fuse the extracted spatial features. In [119], Shi and Pun 

also employed a serial framework to integrate the CNN and 

RNN for spectral–spatial FE.

Another kind of integration method is embedding the 

core component (i.e., convolutional operators) of CNNs 

into AEs or RNNs [93], [116]. In [93], an unsupervised 

spectral–spatial FE network was proposed. The whole 

framework was similar to AEs, also adopting the so-called 

encoder–decoder paradigm. However, the fully connected 

operators in AEs were replaced by convolutional opera-

tors, so that the network can directly extract spectral–spa-

tial joint features from cubes. In [116], Liu et al. proposed 

a spectral–spatial FE method based on a convolutional 

LSTM network. Instead of fully connected operators, they 

also used convolutional operators in LSTM units. For a 

given cube, each band was fed into the convolutional 

LSTM unit sequentially. The convolutional operators could 

extract the spatial features, while the recurrent operators 

could extract the spectral features. The whole network was 

optimized in an end-to-end manner, thus achieving satis-

factory performance.

EXPERIMENTAL RESULTS

To evaluate the performance of different FE techniques, 

we selected four techniques from the UFE category (i.e., 

PCA [19], multiscale structural total variation (MSTV) [39], 

OTVCA [42], and LPP [48]), four techniques from the SFE 

category (i.e., LDA [51], CGDA [74], LSDR [82], and JPlay 

[87]), and five techniques from the deep FE category [i.e., 

SAE [124], RNN [122], CNN [125], convolutional AE (CAE) 

[93], and convolutional RNN (CRNN) [116]]. Here, we set 

the tuning parameters for those algorithms before repre-

senting the experimental results.

ALGORITHM SETUP

The parameter setting usually plays a crucial role in as-

sessing the performance of FE algorithms. Subspace 

dimension (or number of features, d) is a common pa-

rameter for all of the compared algorithms. Selection of 

the number of features is a hard task for HSI analysis. The 

endmember selection/extraction, subspace identifica-

tion, and/or rank selection are all referred to this subject 

[126]–[128]. For a fair and simplified comparison, the 

parameter d is assigned to be equal to the number of 

classes (k). We should note that d in LDA is automati-

cally determined as ,k 1-  due to the class separability 

(Fisher’s criterion).

UFE

 ◗ PCA: This method is a parameter-free technique.

 ◗ MSTV: In [39], all parameters are adjusted using a trial-

and-error approach. The multiscale parameters adjust-

ing the degree of smoothness (as suggested in [39]) are 

set to 0.003, 0.02, and 0.01. The spatial scale for the 

structure extraction in three levels (as suggested in [39]) 

is set to 2, 1, and 3.

 ◗ OTVCA: This method is initialized as recommended in 

[42]. The tuning parameter ,m  which controls the level of 

smoothness applied on the features, is set to 1% of the 

maximum intensity range of the data sets.

 ◗ LPP: The number of neighbors is set to 12. The band-

width of the Gaussian kernel is set to 1.

SFE

A common strategy for model selection is to run cross vali-

dation (CV) on the training set, since the labeled samples 

are available in SFE. Therefore, we used the CV strategy on 

the following studied algorithms for parameter selection.

 ◗ LDA: This method can be viewed as a baseline for SFE. 

There is no additional parameter in LDA.

 ◗ CGDA: Equation (23) can be tuned to a regularized opti-

mization problem, where one extra parameter—regular-

ized l -2 norm—must be set in advance in the process of 

graph construction, which can be searched in the range 

of { , , , , , }10 10 10 10 104 3 2 1 2
f

- - -  by CV. In the experi-

ments, 0.1 is used for all three data sets.

 ◗ LSDR: Two parameters are involved in LSDR, the stan-

dard deviation for the Gaussian function and the regu-

larization parameter, which are selected in the range of 

{ . , . , , . , }0 05 0 1 0 95 1f  and { , , , },10 10 10 102 1 1 2- -  respec-

tively, using CV. Finally, v and m are both set to one in 

our experiments.

 ◗ JPlay: There are three regularization parameters ( ,a  ,b  

and )c  that must be set in the JPlay model (32). With 

the CV conducted on the training set of three differ-

ent data sets, the regularization parameters are select-

ed in the ranges of { , , , },10 10 10 102 1 1 2- -  yielding the 

final setting of ( , , ) ( . , , )0 1 1 1a b c =  for the first data 

set, ( , , ) ( . , . , )0 1 0 1 1a b c =  for the second data set, and 

( , , ) ( . , , )0 1 1 1a b c =  for the last data set.

DEEP FE

 ◗ SAE: The input of SAE is the original spectral informa-

tion of each pixel. Three hidden layers are used. The 

numbers of neurons from the first to the third hidden 

layer are set to 32, 64, and 128, respectively. Rectified 
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linear unit (ReLU) is adopted as the activation function 

for each hidden layer.

 ◗ CNN: The input of CNN is a small cube with a size of 

,p16 16# #  where p represents the number of spectral 

bands for each data. Three convolutional layers are used. 

Each convolutional layer is sequentially followed by a 

batch normalization layer, a ReLU activation function, 

and a max-pooling layer. Note that the last pooling layer 

is an adaptive max-pooling layer, making the output 

size equal to 1 # 1 for any input sizes. The kernel size for 

each convolution is 3 # 3, and the numbers of kernels 

from the first to the third convolutions are set to 32, 64, 

and 128, respectively. Padding operators are used to pre-

serve the spatial size after each convolutional operator.

 ◗ PCNN: PCA is applied prior to CNN to reduce the spec-

tral dimension of the HSI. The number of reduced di-

mensions by PCA is set to the number of classes (k). The 

input cube for the CNN is of size .k16 16# #

 ◗ RNN: The input of RNN is the same as the input of SAE. 

Two recurrent layers with GRU are employed. The num-

ber of neurons in each recurrent layer is set to 128.

 ◗ Integrated networks: CAE and CRNN are selected as two 

representative integrated networks. The input for them 

is the same as that for the CNN. For CAE, three convo-

lutional layers and three deconvolutional layers are ad-

opted. All of them use 3 # 3 kernels. The numbers of 

kernels from the first to the third convolutional layers 

are set to 32, 64, and 128, respectively. In contrast, the 

numbers of kernels from the first and third deconvolu-

tional layers are set to 64, 32, and p, respectively. Similar 

to [116], CRNN adopts two recurrent layers with con-

volutional LSTM units. For both recurrent layers, 3 # 3 

convolutional kernels are applied. The numbers of ker-

nels for the first and the second recurrent layers are set to 

32 and 64, respectively.

All of these DL-related models are implemented in the 

PyTorch framework. To optimize them, we use the Adam 

algorithm with default parameters. The batch size, learning 

rate, and number of training epochs are set to 128, 0.001, 

and 200, respectively. To reduce the effects of random ini-

tialization, all of the DL models are repeated five times, and 

the mean values are reported.

RANDOM FOREST CLASSIFIER

Apart from the deep FE techniques, all of the other FE 

techniques use random forest (RF) to perform the clas-

sification task. The number of trees selected for RF is 

set to 200. We  set the number of the prediction vari-

able approximately to the square root of the number of 

input bands.

PERFORMANCE OF FE TECHNIQUES ON THREE HSIS

We applied FE techniques on the three hyperspectral data 

sets—i.e., Indian Pines 2010, Houston 2013, and Houston 

2018—and the classification accuracies, including class ac-

curacies, average accuracy (AA), overall accuracy (OA), and 

kappa coefficient ( )l  are shown in Tables 5, 6, and 7, re-

spectively. The results are first discussed within the cat-

egories and then between different categories. We should 

note that the results and discussions are in terms of clas-

sification accuracies obtained from the classification of 

the HSIs.

UFE

 ◗ PCA: PCA demonstrates the poorest performance com-

pared with the other techniques; however, it consider-

ably improves the classification accuracies compared 

with the results obtained by applying the RF on the 

spectral bands. One of the main disadvantages of PCA 

is that it does not take into account the noise; therefore, 

the extracted features with lower variance are often de-

graded by different types of noise existing in the HSI 

[129]. Additionally, PCA takes into account only the 

spectral correlation, and it entirely neglects the spatial 

(neighboring) information.

 ◗ LPP: LPP considerably outperforms the other UFE tech-

niques for the Indian Pines data set. However, in the 

case of the Houston data sets, it provides very poor re-

sults. LPP incorporates the spatial information using 

the manifold-learning process and by constructing the 

neighboring graph [48].

 ◗ OTVCA: OTVCA outperforms the other UFE technqi-

ues for the Houston data sets. In the case of Houston 

2013, the improvements are considerable. OTVCA is 

robust to noise due to the signal model, which takes 

into account the noise and model errors. Additionally, 

OTVCA exploits the spatial correlation by incorporat-

ing the TV penalty; therefore, the extracted features are 

piecewise smooth and have a high SNR [42]. Overall, 

it can be observed that OTVCA, which is a candidate 

from the low-rank reconstruction techniques, gener-

ally provides better classification accuracies than the 

other UFE techniques.

SFE

 ◗ LDA versus spectral classifier (RF): With the embedding of 

supervised information, LDA obviously performs bet-

ter than the situation where RF is directly applied to the 

spectral signatures, in terms of the overall performance 

and individual accuracies for most materials. This indi-

cates the effectiveness of SFE to a great extent.

 ◗ LDA versus CGDA: Although the classification perfor-

mance of CGDA is inferior to that of LDA from an over-

all perspective, the advantage of CGDA mainly lies in its 

automation in computing the similarity (or connectivity) 

between samples. This could lead to a relatively stable FE, 

particularly in large-scale and more complex hyperspec-

tral scenes. Due to the data-driven graph embedding, 

CGDA yields a lower running speed than LDA in the pro-

cess of model training.

 ◗ LDA versus LSDR: Intuitively, LSDR provides competitive 

classification performance with LDA. However, LSDR 
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TABLE 5. THE CLASSIFICATION ACCURACIES OBTAINED ON FEATURES EXTRACTED FROM  

THE INDIAN PINES 2010 DATA SET  USING DIFFERENT SHALLOW AND DEEP FE TECHNIQUES.

INDIAN PINES 2010

SHALLOW FE DEEP FE

UFE SFE SFE

SPECTRAL PCA MSTV OTVCA LPP LDA CGDA LSDR JPLAY SAE RNN CNN CAE CRNN PCNN

1 0.926 0.9064 0.9992 0.926 0.885 0.9628 0.8144 0.8459 0.923 0.9327 0.8829 0.9275 0.9432 0.959 0.9397

2 0.8769 0.9976 1 1 0.9976 1 0.9961 0.8933 0.9984 0.9573 0.9178 0.9544 0.9961 0.8596 0.9998

3 0.8862 0.9724 0.9724 0.9897 0.9724 0.9724 0.9759 0.9655 0.9862 0.9683 0.9405 0.989 0.9986 0.8241 0.9938

4 0.6888 0.7762 1 0.8953 0.8742 0.927 0.7474 0.8194 0.83 0.7508 0.7621 0.884 0.8822 0.8569 0.893

5 0.8058 0.8855 0.8039 0.8151 0.8682 0.8802 0.8096 0.8394 0.8665 0.8488 0.8474 0.8692 0.857 0.8638 0.8706

6 0.8172 0.8797 0.9946 0.7094 0.9739 0.7883 0.8284 0.9397 0.9418 0.9013 0.9204 0.9268 0.9167 0.6975 0.9127

7 0.417 0.5954 0.6792 0.7166 0.6985 0.7166 0.6845 0.703 0.6958 0.6265 0.5795 0.6507 0.6818 0.6348 0.7103

8 0.253 0.2583 0.2599 0.2768 0.2961 0.2955 0.2431 0.2952 0.2758 0.5349 0.284 0.8776 0.6776 0.9934 0.4725

9 0.6545 0.7498 0.7048 0.7943 0.8913 0.8452 0.7971 0.8419 0.8142 0.8732 0.8533 0.8302 0.8336 0.8194 0.8621

10 0.8229 0.9406 0.9594 0.9368 0.9019 0.9804 0.8514 0.7761 0.9663 0.9015 0.8096 0.8368 0.8752 0.7946 0.9289

11 0.6658 0.8402 0.9224 0.9945 0.8943 0.9288 0.7195 0.7651 0.8052 0.8121 0.7414 0.744 0.7633 0.6492 0.9165

12 0.9985 1 1 1 0.9995 1 1 1 1 0.9998 0.9765 0.9945 0.9838 0.9748 0.9991

13 0.9468 0.9962 0.9879 0.9888 0.9925 0.983 0.958 0.9738 0.9819 0.9621 0.9427 0.9925 0.993 0.9892 0.9959

14 0.8783 0.9 0.9615 0.9145 0.9344 0.9174 0.8756 0.8628 0.8953 0.9094 0.903 0.9984 0.9985 0.8981 0.9993

15 0.9333 0.9667 0.9511 0.9933 0.9489 0.9756 0.9333 0.9311 0.96 0.9307 0.8119 0.9947 0.9942 0.7556 0.9978

16 0.3735 0.2036 0.2885 0.1601 0.5217 0.1719 0.3439 0.4901 0.4466 0.2053 0.206 0.098 0.17 0.6028 0.1051

AA 0.7465 0.8043 0.8428 0.8194 0.8532 0.8341 0.7861 0.8089 0.8367 0.8197 0.7737 0.848 0.8478 0.8233 0.8498

OA 0.7866 0.8598 0.8561 0.8378 0.9112 0.8748 0.837 0.8748 0.8829 0.8836 0.8655 0.8945 0.8911 0.8525 0.9018

l 0.739 0.8297 0.8247 0.8054 0.8909 0.8481 0.801 0.8466 0.8571 0.858 0.8355 0.8716 0.8673 0.8213 0.8802

The highest accuracy in each row is shown in bold.

TABLE 6. THE CLASSIFICATION ACCURACIES OBTAINED ON FEATURES EXTRACTED FROM  

THE HOUSTON UNIVERSITY 2013 DATA SET USING DIFFERENT SHALLOW AND DEEP FE TECHNIQUES.

HOUSTON 2013

SHALLOW FE DEEP FE

UFE SFE SFE

SPECTRAL PCA MSTV OTVCA LPP LDA CGDA LSDR JPLAY SAE RNN CNN CAE CRNN PCNN

1 0.8262 0.8272 0.8025 0.8205 0.811 0.8177 0.8139 0.812 0.7768 0.8217 0.8182 0.8104 0.8154 0.8245 0.8089

2 0.8318 0.8393 0.8412 0.8515 0.8214 0.8355 0.8327 0.8553 0.9662 0.8274 0.8153 0.8425 0.8167 0.8412 0.8293

3 0.9782 1 0.9822 1 1 1 1 1 0.998 0.9895 0.9939 0.8594 0.7731 0.9156 0.8432

4 0.9138 0.9081 0.7633 0.8873 0.9479 0.892 0.9053 0.8864 0.9564 0.9773 0.904 0.917 0.9153 0.9129 0.9159

5 0.9659 0.9886 0.9915 0.9991 0.9867 0.9384 0.9915 0.9688 0.9782 0.9438 0.9389 0.9699 0.9585 0.9881 0.9824

6 0.9930 0.993 0.958 0.958 0.979 1 0.8741 0.986 0.993 0.9874 0.9678 0.8769 0.9776 0.9483 0.9497

7 0.7463 0.8927 0.6362 0.709 0.9123 0.7901 0.8535 0.8526 0.7817 0.7293 0.7392 0.8802 0.8694 0.8642 0.8627

8 0.3305 0.4606 0.5992 0.6724 0.4311 0.7379 0.4302 0.471 0.7806 0.3792 0.4153 0.6344 0.6762 0.5305 0.8351

9 0.6771 0.7885 0.8706 0.9008 0.7413 0.6449 0.7186 0.6752 0.7592 0.7145 0.7367 0.8595 0.854 0.8404 0.8691

10 0.4295 0.4749 0.6612 0.8398 0.4595 0.4662 0.4826 0.5792 0.6014 0.5556 0.5373 0.5674 0.5782 0.4514 0.6168

11 0.7011 0.7268 0.982 0.9924 0.7306 0.7239 0.7287 0.5806 0.6983 0.6231 0.725 0.7417 0.7292 0.6186 0.7913

12 0.5485 0.9145 0.7349 0.9625 0.756 0.6513 0.7656 0.5687 0.7858 0.6305 0.7606 0.9379 0.9402 0.844 0.9593

13 0.614 0.7754 0.6982 0.7789 0.8105 0.6105 0.7719 0.6702 0.7509 0.4516 0.6656 0.8835 0.8968 0.8414 0.8765

14 0.9838 0.9919 1 1 0.996 0.9919 0.9879 0.9595 0.9879 0.9692 0.985 0.9943 0.9773 0.9603 0.9968

15 0.9789 0.9746 1 0.9789 0.9746 0.9831 0.9852 0.9514 0.9831 0.9732 0.9607 0.8072 0.7471 0.9345 0.8592

AA 0.7679 0.8371 0.8347 0.8901 0.8239 0.8056 0.8094 0.7878 0.8532 0.7716 0.7976 0.8388 0.835 0.821 0.8664

OA 0.7278 0.8058 0.8088 0.8753 0.7874 0.7745 0.7789 0.7524 0.828 0.7436 0.7646 0.8239 0.8184 0.7921 0.8526

l 0.7076 0.7895 0.7923 0.8648 0.77 0.7552 0.7604 0.7315 0.8134 0.7235 0.7469 0.8096 0.8036 0.7761 0.8404

The highest accuracy in each row is shown in bold.
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is time consuming due to the distribution matching 

between input samples and labels. The requirement to 

estimate the statistical distribution also limits LSDR’s 

stability, especially when the training set is available on 

a small scale (e.g., for the Indian Pines 2010 and Hous-

ton 2013 data sets).

 ◗ LDA versus JPlay: Unlike conventional regression tech-

niques, JPlay is capable of extracting semantically mean-

ingful and robust features, due to the multilayered structure 

and self-reconstruction constraint (32). Quantitatively 

speaking, JPlay outperforms the other SFE methods. The 

CV provides a feasible solution to automatically deter-

mine the parameter combination in JPlay. Despite the 

ADMM solver designed for speeding up the optimization 

process, such a multilayered parameter update inevitably 

suffers from high computational cost.

DEEP FE

 ◗ Spectral versus spectral–spatial models: Most of the spec-

tral–spatial models (i.e., CNN, PCNN, CAE, and CRNN) 

achieve superior performance compared to spectral models 

(i.e., SAE and RNN) in terms of AA, OA, and kappa due 

to the joint use of spectral and spatial information. This 

indicates that, besides the rich spectral information, spa-

tial information is also important for HSI classification.

 ◗ PCNN and CNN versus CAE and CRNN: Similar to SAE, 

CAE focuses on image reconstruction rather than clas-

sification. In contrast, PCNN and CNN are exclusively 

designed for the classification task, so they are able to 

learn more discriminative features than CAE, leading 

to better classification performance, especially on the 

Houston 2018 data set. Although CRNN also focuses on 

the classification task, it has more parameters to train. 

Using the same number of training samples and epochs, 

PCNN and CNN can achieve better results than CRNN 

in terms of AA, OA, and kappa.

 ◗ PCNN versus CNN: PCNN outperforms CNN in terms of 

classification accuracies for all three data sets. We should 

note that the improvements are substantial in the case of 

the Houston 2013 and 2018 data sets. Due to the use 

of PCA, most of the redundant spectral information is 

reduced. Therefore, the number of trainable parameters 

in PCNN is smaller than that of CNN, making it easier 

to learn under the same conditivon.

TABLE 7. THE CLASSIFICATION ACCURACIES OBTAINED ON FEATURES EXTRACTED FROM  

THE HOUSTON UNIVERSITY 2018 DATA SET USING DIFFERENT SHALLOW AND DEEP FE TECHNIQUES.

HOUSTON 2018

SHALLOW FE DEEP FE

UFE SFE SFE

SPECTRAL PCA MSTV OTVCA LPP LDA CGDA LSDR JPLAY SAE RNN CNN CAE CRNN PCNN

1 0.3088 0.8781 0.0536 0.6842 0.6618 0.6256 0.7575 0.7969 0.5991 0.794 0.5702 0.7516 0.4428 0.6338 0.6638

2 0.7603 0.8396 0.7046 0.6376 0.8122 0.8474 0.8076 0.7747 0.8347 0.7893 0.6975 0.8173 0.8849 0.8707 0.8376

3 1 1 1 0.9972 1 1 1 1 1 1 0.9972 0.7739 0.8482 0.9924 0.8045

4 0.9134 0.9494 0.6238 0.6775 0.9453 0.9059 0.9265 0.9276 0.9298 0.9221 0.8613 0.9444 0.9362 0.9439 0.9595

5 0.4119 0.4668 0.2676 0.1679 0.4728 0.5258 0.4661 0.4289 0.3971 0.4982 0.404 0.433 0.5396 0.5404 0.48

6 0.257 0.299 0.3835 0.3164 0.3008 0.291 0.2776 0.2726 0.278 0.2585 0.2537 0.305 0.308 0.2902 0.3377

7 0.3025 0.3025 0.3025 0.3025 0.3025 0.3025 0.3109 0.3025 0.2857 0.3025 0.3025 0.2908 0.2723 0.2997 0.3176

8 0.7657 0.7675 0.7599 0.7417 0.7785 0.7849 0.7544 0.7518 0.7771 0.7216 0.7356 0.8538 0.8583 0.8092 0.8677

9 0.3849 0.3877 0.5767 0.599 0.4887 0.3917 0.3672 0.5255 0.5877 0.6302 0.4186 0.7970 0.7371 0.3717 0.8659

10 0.3603 0.436 0.3747 0.4491 0.423 0.4086 0.379 0.3497 0.401 0.3819 0.3465 0.5902 0.4957 0.5484 0.5778

11 0.4162 0.4792 0.7862 0.7596 0.5085 0.4667 0.4266 0.4422 0.5359 0.4143 0.4699 0.5456 0.5781 0.6048 0.5948

12 0.0132 0.0046 0.0093 0.0077 0.007 0.0023 0.017 0 0.0302 0.0152 0.0697 0.0511 0.0477 0.0927 0.0579

13 0.4525 0.5556 0.4238 0.409 0.5442 0.5164 0.5707 0.5603 0.5324 0.4523 0.4789 0.5148 0.5619 0.4246 0.5811

14 0.3019 0.2629 0.546 0.4665 0.3651 0.4152 0.2294 0.2073 0.3212 0.3789 0.3309 0.5289 0.6763 0.3375 0.5705

15 0.6303 0.4721 0.4457 0.4887 0.4602 0.5549 0.418 0.5234 0.5944 0.5197 0.5289 0.6277 0.6476 0.6447 0.6591

16 0.6412 0.7611 0.622 0.7648 0.7559 0.5888 0.7374 0.6403 0.6688 0.7457 0.7086 0.8498 0.7594 0.7173 0.8572

17 1 1 1 1 1 1 0.9545 1 1 1 1 0.9545 0.8909 1 1

18 0.4983 0.6885 0.6576 0.5197 0.714 0.6581 0.6625 0.5686 0.7366 0.5346 0.608 0.6365 0.5981 0.7692 0.702

19 0.5265 0.6363 0.906 0.8777 0.7323 0.6989 0.61 0.6266 0.6771 0.6569 0.6545 0.9102 0.896 0.8006 0.9476

20 0.4444 0.8904 0.9706 0.5253 0.8479 0.9189 0.6797 0.5955 0.5393 0.5388 0.4801 0.6246 0.5566 0.4879 0.6519

AA 0.5195 0.6039 0.5707 0.5696 0.606 0.5952 0.5676 0.5647 0.5863 0.5777 0.5458 0.64 0.6268 0.609 0.6667

OA 0.4634 0.5101 0.575 0.5899 0.5552 0.5027 0.4825 0.5492 0.5944 0.5938 0.4851 0.7278 0.6969 0.5116 0.7728

l 0.3732 0.4317 0.4833 0.4974 0.4714 0.4231 0.4018 0.456 0.5037 0.4948 0.3936 0.6474 0.6124 0.4372 0.7011

The highest accuracy in each row is shown in bold.
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SHALLOW UFE VERSUS SHALLOW SFE

For all three data sets used in the experiments, the UFE 

techniques provide better classification accuracies than the 

SFE techniques. Unlike SFE, UFE tends to pay more atten-

tion to spatial–spectral information extraction because it 

fully considers all samples of HSI as the model input. Con-

versely, the performance of SFE is, to a great extent, lim-

ited by the ability to largely gather HSI ground sampling. 

Direct evidence is given in Tables 5–7. For the Indian Pines 

2010 and Houston 2018 data sets, for which more training 

samples are available, SFE-based methods produce results 

competitive with those of UFE-based techniques, whereas 

for the Houston 2013 data set, the classification perfor-

mance of SFE is relatively inferior to that of UFE, due to the 

small-scale training set. 2013 Considering the low number 

of ground samples often available in HSI applications, the 

experimental results confirm the advantage of UFE over 

SFE for HSI FE.

SHALLOW FE VERSUS DEEP FE

At first glance, the shallow FE approaches slightly outper-

form the deep FE techniques for the two data sets, i.e., 

Indian Pines 2010 and Houston 2013. However, a deep 

comparison reveals that some deep FE techniques, such as 

CNN-based FE, provide consistency and good performance 

over all three data sets. Additionally, when the dimension-

reduced step (e.g., using PCA) is applied prior to the CNN 

technique, the resulting PCNN yields, by far, the second 

highest accuracies in the case of the Indian Pines 2010 and 

Houston 2013 data sets (only moderately lower than LPP or 

OTVCA, respectively) and simultaneously obtains the best 

performance on the Houston 2018 data set. 

It is worth mentioning that CNN-based FE methods 

obtained at least a 10% increase over the shallow tech-

niques in the case of the Houston 2018 data set. This 

could be due to the high nonlinear behavior of this data 

set, which contains 20 land cover classes. The main fac-

tors for CNN-based FE methods to obtain approximately 

20% improvement over the shallow FE methods on the 

Houston 2018 data set are the availability of sufficient 

training samples and modeling the spatial information 

of the HSI well.

COMPARISONS OF THE LAND COVER MAPS

Figures 10–12 compare the classification maps for the In-

dian Pines, Houston University 2013, and Houston Uni-

versity 2018 data sets, respectively. The figures compare 

the maps obtained from methods that provide the highest 

OA from each category (i.e., shallow UFE, shallow SFE, and 

deep FE) along with the map 

obtained from the spectral 

classifier (HSI). Additionally, 

we depict the maps obtained 

by CNN for all three data 

sets since this provides the 

highest OA among the deep 

FE techniques, which do not 

exploit a reduction step.

Overall, the classification 

maps of either the UFE- or 

SFE-based approaches (e.g., 

LPP, JPlay, CNN, PCNN) are smoother compared to HSI, 

which tends to generate sparse mislabeled pixels. More spe-

cifically, the classification maps generated by spectral–spa-

tial FE-based methods, e.g., OTVCA, CNN, and PCNN, are 

usually a bit oversmoothed, leading to the creation of fake 

structures, especially for the Indian Pines 2010 and Hous-

ton 2018 data sets. In the case of OTVCA, the oversmooth-

ing can be avoided by decreasing the tuning parameter. In 

contrast, JPlay obtains relatively desirable classification 

maps, despite the lack of spatial information modeling. It 

is worth mentioning that the JPlay algorithm can maintain 

the structural information for the Houston 2013 data set 

in the shadow-covered region, where pixels at some bands 

are considerably attenuated. This is due to the elimina-

tion of the spectral variability using self-reconstruction 

(a) (b) (c) (d) (e) (f)

FIGURE 10. The classification maps obtained on the extracted features from the Indian Pines 2010 data set: (a) HSI, (b) LPP, (c) JPlay, (d) 

CNN, (e) PCNN, and (f) ground reference. From each category, the method with the highest OA is shown for the demonstration, and (a) is 

the one obtained from the spectral bands. 

FOR ALL THREE DATA SETS 

USED IN THE EXPERIMENTS, 

THE UFE TECHNIQUES 

PROVIDE BETTER 

CLASSIFICATION 

ACCURACIES THAN THE  

SFE TECHNIQUES.
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regularization [the third term in (32)] and the multilayered 

linearized regression technique.

PERFORMANCE WITH RESPECT TO THE NUMBER  

OF TRAINING SAMPLES

In this section, we investigate the performance of the FE tech-

niques in terms of classification accuracies with respect to 

the number of training samples. As we have already stat-

ed, this analysis is of great interest for two main reasons. 

First, ground sample acquisition and measurements are 

often cumbersome and could be impossible in cases 

for which the target area is not reachable. Additionally, 

the limited number of samples affects the performance 

of not only the supervised classifiers but also the SFE 

techniques, since they are highly reliant on the number 

of training samples. Therefore, in this experiment, we 

perform an analysis on the 2017 Houston University data 

set by comparing the performances of the FE techniques 

when selecting 10, 25, 50, and 100 training samples ran-

domly. Figure 13 compares the OAs obtained by applying 

(a) (b)

(c) (d)

(e) (f)

FIGURE 12. The classification maps obtained on the extracted features from Houston University 2018 data set: (a) HSI, (b) OTVCA, (c) JPlay, 

(d) CNN, (e) PCNN, and (f) ground reference. From each category, the method with the highest OA is shown for the demonstration, and (a) 

is the one obtained from the spectral bands.

(a) (b)

(c) (d)

(e) (f)

FIGURE 11. The classification maps obtained on the extracted features from Houston University 2013 data set: (a) HSI, (b) OTVCA, (c) JPlay, 

(d) CNN, (e) PCNN, and (f) ground reference. From each category, the method with the highest OA is shown for the demonstration, and (a) 

is the one obtained from the spectral bands. 
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RF on the spectral bands (labeled by HSI) and the fea-

tures extracted by OTVCA and JPlay along with the OAs 

obtained by CNN and PCNN. The results are mean values 

over 10 experiments based on selecting the samples ran-

domly. (The standard deviations are shown by the error 

bars.) The outcomes of the experiment can be summa-

rized as follows:

 ◗ The SFE technique (i.e., JPlay) improves the OAs com-

pared to the spectral classifier. However, it provides a 

much lower OA compared with UFE and deep FE for all 

cases. Two aspects might explain this point. One is that 

JPlay fails to model spatial and contextual information; 

another is that, although JPlay attempts to enhance the 

reorientation ability of the features via multilayered lin-

ear mapping, it is still incomparable to the nonlinear 

deep-FE-based techniques, particularly when the num-

ber of samples is increased.

 ◗ In this experiment, the UFE technique (i.e. OTVCA) and 

the deep FE method, CNN, performed similarly in terms 

of classification accuracies. Compared with the results 

given in Table 7, it can be observed that the random se-

lection of the training samples over the entire class of re-

gions from the ground reference considerably improves 

the performance of RF applied on the features extracted 

by OTVCA. This is often due to the lack of a parameter 

selection technique to choose the optimum parameter 

for the OTVCA algorithm, which could lead to over-

smoothing on the features.

 ◗ The DL technique (i.e., PCNN), after using the reduc-

tion (i.e., PCA), provides very high OA for all the cases. 

Comparing the results with CNN (i.e., without using the 

PCA reduction) confirms the advantage of using the re-

duction stage prior to DL techniques.

CONCLUSIONS AND SUMMARY

In the past decade, HSI FE has considerably evolved, lead-

ing to three main research lines (i.e., shallow UFE, shallow 

SFE, and deep FE approaches) that include the majority of 

FE techniques presented in this article. We systematically 

provided a technical overview of the state-of-the-art tech-

niques proposed in the literature by categorizing the afore-

mentioned three focuses into subcategories. To make this 

research article easy to follow for researchers at different 

levels (i.e., students, researchers, and senior researchers), 

we aimed to show the evolution of each category over the 

decades rather than including many techniques with an ex-

haustive reference list. 

The experimental section was designed to compare the 

performances of the techniques in two ways: 1) between 

all of the categories (i.e., shallow UFE, shallow SFE, and 

deep FE approaches) and 2) within each category by ana-

lyzing the corresponding subcategories. In this manner, a 

various subcategories were investigated, detailing the evo-

lution of the shallow UFE (i.e., conventional data-projec-

tion schemes, band clustering/splitting techniques, low-

rank reconstruction techniques, and manifold-learning 

techniques), shallow SFE (i.e., class-separation discrimi-

nant analysis, graph-embedding discriminant analysis, 

regression-based representation learning, and JPlay), and 

deep FE approaches (i.e., AE, CNN, RNN, and integrative 

approaches). Three recent hyperspectral data sets were 

studied, and the results were evaluated in terms of clas-

sification accuracies and the quality of the classifica-

tion maps. 

The experiments carried out in this study showed the 

following, in terms of classification accuracies: 1) DL FE 

techniques (i.e., CNN and PCNN) can outperform the 

shallow methods, particularly when a sufficient amount 

of training data are available; 2) applying a dimensionality 

reduction step (such as PCA) prior to the DL techniques 

considerably improves their performances; and 3) shallow 

UFE techniques not only outperform the SFE methods but 

also are very competitive compared with deep FE meth-

ods. However, we should mention that the conclusions are 

limited by the experiments carried out on the three HSI 

data sets. In addition, this article provides an impressive 

amount of code and libraries, mostly written in Python 

and MATLAB, to ease the task of researchers in this vibrant 

field of research.
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