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ABSTRACT This study focuses on defining and comparing response features that can be used for 

structural dynamics model validation studies. Features extracted from dynamic responses obtained 

analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time­

series models, can be used to compare characteristics of structural system dynamics. By comparing 

those response features extracted from experimental data and numerical outputs, validation and 

uncertainty quantification of numerical model containing uncertain parameters can be realized. In this 

study, the applicability of some response features to model validation is first discussed using measured 

data from a simple test-bed structure and the associated numerical simulations of these experiments. 

issues that must be considered were sensitivity, dimensionality, type of response, and presence or 

absence of measurement noise in the response. Furthermore, we illustrate a comparison method of 

multivariate feature vectors for statistical model validation. Results show that the outlier detection 

technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique 

for selecting appropriate model parameters. However, in this process, one must not only consider the 

sensitivity of the features being used, but also correlation of the parameters being compared. 

1. Introduction 

The purpose of structural model validation is to assess whether a numerical model, such as a finite 

element model, has adequate predictive capability for the model's intended purpose by comparing 

analytical predicted and experimentally observed structural responses quantities. In constructing 

numerical models of structures, many quantities are assigned based on incomplete and/or unavailable 

knowledge of their true value. Uncertainties can result from measurement error, environmental 

variability, allowable manufacturing tolerances and variability associated with assembly procedures; 

while others are due to lack-of-knowledge about the actual structural condition; i.e., materials, loads, 

friction, energy dissipation (damping), and boundary condition. Therefore, it is important to assess 

whether the assumptions used in the modeling process provide accurate simulations on the intended 

purpose of the model. 



In this study, the model validation is more generally defined that it should be validating statistically 

accurate models. Some previous studies were carried out on the basis of this definition according to the 

uncertainty quantification of the numerical model, e.g., [1]. In those works, it was indicated that it was 

so important to use appropriate response features to compare the numerical output and the measurement 

data. A response feature is the quantity extracted from the dynamic response that is used to compare the 

structural system's experimentally observed response characteristic to those predicted by its numerical 

model. Fundamentally, the feature extraction process is based on processing the data waveforms or 

spectra of waveforms, or fitting some model to the data. Many feature extraction techniques have been 

developed for structural health monitoring. Those include finding indications of nonlinear response and 

identifying system changes due to damages on structures, e.g., [2] and [3]. Many of these features can 

potentially be used for the model validation applications. 

This paper focuses on defining and illustrating some response features that can be used for structural 

dynamics model validation studies. After a brief general discussion regarding response features, the 

application of these features for dynamic model validation are studied using experimental and numerical 

response data from a test-bed structure. Then, a comparison procedure for multivariate feature vectors 

based on Mahalanobis distance analysis is presented for the statistical model validation. This paper 

concludes with an additional discussion regarding the importance of appropriate feature selections. 

2. Test-bed structure and numerical model description 

The LANL three-story share building structure shown in Fig.1 (a) was used as a test-bed structure in 

this study [2]. The structure consists of aluminum plates and columns assembled using bolted joints. The 

structure slides on rails that allow movement only in the x-direction. The input force was applied in the 

x-direction by an electromagnetic shaker connected to the base floor. A force transducer was attached at 

the end of a stinger to measure the input force, and four accelerometers were attached at the centerline of 

each floor on the opposite side from the excitation to measure the system response at each floor. 

This structure was modeled as a 4-DOF lumped-mass system as shown in Fig.1 (b). Mass, stiffness 

and damping of i-th story was defined as mi, ki and Ci (i= 1-4), respectively. The values of mi and ki 

(except k l ), were determined from the measured sizes of structural members and nominal values for 

Young's Modulus, and the mass density of aluminum. The stiffness ki (i= 2-4) was the summation of 

the bending stiffness of four columns treated as beams that are constrained against rotation at their ends. 

For stiffness kl' a relatively low numerical value was assigned because the friction between the rails and 

the structure was negligible. Notice that the model includes the base mass that slides on the rails . The 

equation of motion of the structure was described in a matrix notation using mass, stiffness, and 

damping matrixes; [M], [K] , and [C], as follows 

[M]{x} + [C]{i} + [K]{x} = {F(t)} , (I) 

where vector {F(!)} is the input force vector, and {x} is the displacement vector of XI~X4 in Fig.1 (b). In 

the application of time-response analysis, the displacement vector {X(/)} was calculated by a Runge­

kutta numerical integration scheme. A proportional damping was adopted to assign a damping matrix 

[C] that could be discribed as 

[C] =a[ M]+,8[ K] . (2) 

Theoretically, coefficients a and jJ can be related to k-th mode resonant frequency ())k and modal 

damping ratio t;k as in 

t;k = J. (~ + jJ())k ) . 
2 ())k 

(3) 

Therefore, a and jJ can be assigned when two modal parameter sets (())k, Sk) are given. 



Additionally, this structure included a center column suspended from the 3rd floor, and a bumper 

mechanism attached on the 2nd floor as shown in Fig.2 (a). This system produces nonlinearity in the 

system response when the column impacts the bumper mechanism. The clearance (gap) between the 

bumper and the column can be adjusted to vary the extent of impacting that occurs during a particular 

excitation. This nonlinearity is intended to produce a small perturbation to an essentially stationary 

process, causing a nonlinear phenomenon. In the modeling, this nonlinearity can be described by 

adopting a kind of bilinear model in stiffness k4 as shown in Fig.2 (b), where kc is the summation of the 

bending stiffness of four assembled columns, and the kb is the bending stiffness of the suspended 

column, corresponding to a cantilever beam. In the modeling here, distance ~ was defined to make a 

smooth transition between two stiffness states by a quadric function to satisfy CI-continuity. This 

transition area indicates that the actual structural condition should not show a complete discontinuous 

point at X=Gap because, in reality, some kinds of compliance should exist in the actual assembling 

system. 

X4 

X1 f---------'C!!..!...----,-...,r-- F (Shaker) 

(a) Three-story share building set-up (b) 4DOF lumped-mass model 

Fig. I. Test-bed structure setup and its numerical model 

3rd Floo< 
force 

,.- Column 

kc + kB 

kc 
: k(X) 

Gap Gap + .1 X=X4-X3 

(a) Bumper and suspended column mechanism (b) Bi-linear model for stiffness k4 

Fig.2. Nonlinear behaviour mechanism between 2nd and 3rd floor 



Some uncertain parameters were then recognized in the modeling of this lumped-mass model. Notice 

that the application of this model was defined to be the accurate prediction of the system's time-history 

response. From this viewpoint, not only mj and kj , but also damping parameters related to Cj will 

influence this prediction. The damping parameters were thus considered to be uncertain parameters in 

the calculation. Furthennore, the parameters, Gap and Ll, were also considered to have uncertain values 

in the nonlinear system calculation. 

3. Response feature for structural model validation 

3.1. General about feature selection 

Response features are quantities that can be used to compare the measured and calculated system 

response. When used for model validation, the extracted response features should be sensitive to the 

target uncertain parameters of the numerical model. It should be noted that the intended purpose of the 

numerical simulation should also be considered when performing feature selection because the 

parameters that most influence the response may be different depending on in the intended purpose of 

the analysis . Dimensionality is another important consideration in the feature selection process. The 

feature dimension is the number of independent scalar quantities that are necessary to describe the 

feature. Low-dimensional features are preferable to high-dimensional features because this makes it 

easier to compare values and to statistically analyze their trends. Furthennore, the feature selection 

should reflect the type of response that is being considered, such as linearity or nonlinearity. Some 

response features that have been suggested for dynamic response calculations are [4]: 

- Linear, stationary, Gaussian vibrations: Direct and inverse Fourier transfonns, Power spectral density, 

Input-output transfer functions, Frequency responses, Modal parameter. 

- Transient dynamics and mechanical shock response: Peak values, Energy content, Decrement and 

exponential damping, Shock response spectrum, temporal moments. 

- General-purpose time-series analysis: AR, ARMA, ARX, AR-ARX models, Time-frequency 

transfonns, Wavelet transfonn, Principal component decomposition. 

- Unstable, chaotic, multiple-scale dynamics: Holder exponent, State-space maps, Time-frequency and 

higher-order transfonns, Symmetric dot pattern, Fractal analysis. 

It should be emphasized that there is no one feature that will be applicable to all structural dynamics 

predictive modeling scenarios . If multiple aspects of the system response are of interest, the model 

validation process may require different features to be extracted from the data in an effort to validate 

different aspects of the modeling process. 

3.2. Discussion: feature extraction for the structural dynamics model validation 

In this study, the damping parameters were defined to be the most influential uncertain parameters in 

the application of dynamic response analysis of the test-bed structure. Table 1 presents some extracted 

response features expected to be used in the damping parameters validation. Blue results are all from 

experimental data, and red and green results are from numerical outputs. Notice that the numerical 

output used in deriving green results was more accurate than red one because assigned damping ratios in 

the green output were values obtained fonn an experimental modal analysis. Considering the physical 

meaning of damping, the parameters should influence on the amplitude behaviour of the response , which 

is directly related to the energy dissipating behaviour. In the use of a random and stationary response 

from the linear system; i.e., w /o the bumper-column mechanism, the standard deviation, which was one 

of basic statistics, showed sensitivity to the accuracies of damping parameters. The feature that had the 

same physical meaning for a transient response was the energy value of temporal moments , and it also 

showed almost similar sensitivity as the standard deviation . 



On the other hand, the features that were not extracted directly from the wavefonn, such as features 

derived by a subsequent model fitting process, were not as sensitive as previous two features . The 

parameters set of a decaying function fit to the data is an example of such features (see Table I) . [t was 

considered that this low-sensitivity was caused by the difference of error components between 

experimental and numerical responses. The experimental data generally includes the measurement noise 

and environmental variability. However, numerical responses are free from such noise components . The 

result of fitting process was greatly influenced by variability in the experimental data; therefore, it was 

not considered to be appropriate to use such features for comparing experimental and numerical outputs. 

High dimensional features such as frequency response function were not considered because of 

difficulties in making quantified comparisons of such high-dimensional quantities . 

For validating nonlinearity modelling parameters; Gap and ~, we found that some time-series 

model parameters; e.g., AR model parameters as shown in Table 2, had sensitivity to the accuracy of 

response. This point was also indicated in the previous work that summarized response features for 

analysing nonlinearity in dynamic responses for the application of structural monitoring [2]. 

Table I. Examples of response features for validating damping parameters 

(Blue: experiment, Red: numerical with all I % damping ratios, 

Green (accurate); numerical with damping ratios from experimental modal analysis) 
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The time-resolution was also recognized as an important factor for investigating the nonlinear 

phenomena. The parameters; Gap and ~, greatly influenced the frequency and the amplitude of impact 

events. Therefore, the feature that is sensitive to the number of impact events (i.e., the skewness for 

random response), had great sensitivity to the accuracy of numerical output as shown in the table. 

However, this feature alone could not be used in the detail validation of Gap and ~ because the dynamic 

amplitude behaviour during the impact events was not well captured by this feature. The response 

feature that provided a time-resolution measure was the Holder exponent [5]; however, there was trade­

off between the feature dimension and the time-resolution. 

Table 2. Examples of response features for validating nonlinearity modeling 

(Blue: experiment, Red (accurate): numerical with ~=O.5mm, 

Green; numerical with ~=O.lmm) 
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4. Statistical model validation using Mahalanobis distance comparison method 

As mentioned in previous section, if multiple aspects of the system response are of interest, the 

model validation process may require comparing several features that have sensitivity to each uncertain 

parameter. A multivariate analysis technique was then expected to be useful in this process. Worden et 

al. had proposed a Mahalanobis distance outlier detection method for comparing multivariate feature 

vectors for the application of statistical structural damage detection in their previous study [6]. 

Applicability of the same approach for the statistical model validation was investigated in this study. 



4.1. Mahalanobis distance outlier detection method 

Mahalanobis distance is a distance measure used for multivariate statistics defined as 

(4) 

where Yk is a multi-dimensional feature vector for which the normalized distance from the mean is being 

calculated, y and S are a mean vector and a covariance matrix based on all acquired vectors defining 

the nominal condition, respectively. The low distance value Dk can be obtained if Yk is similar to the set 

of feature vectors that defines the nominal condition. The outlier detection procedure is then summarized 

as follows. 

(J) Acquire experimental responses (experimental data set) from the target structure. 

(2) Calculate a feature vector from each measured set. 

(3) Derive a Mahalanobis distance each experimental data set k, given as 

D; =(y; -yEr SEI(y; _yE). (5) 

Notice that mean feature vector yE and covariance matrix SE are calculated from all acquired 

experimental data. A set of D/ is then the experimental baseline distribution of Mahalanobis 

distance. 

(4) Create a feature vector from a numerical output, and calculate a Mahalanobis distance DN using the 

mean vector and the covariance matrix from the experimental data set; yE and SE, 

DN = (yN -yEr SEI(y N _yE) . (6) 

(5) Compare DN with the experimental baseline distribution DE. 

If the feature vector form numerical output were similar to those from the experimental data set, DN 

would show a lower value. The validity of a numerical model was then expected to be investigated 

statistically by comparing DN with the experimental baseline distribution. 

4.2. Damping parameters validation using linear system responses 

4.2.1. Experimental baseline distribution and numerical run set 

An experimental baseline distribution was created by acquiring twenty acceleration data sets (Exp. 

data # 1- #20) under the same linear condition (w/o the bumper-column mechanism) of the test-bed 

structure. The input force was the band-limited random excitation with frequency range of 20-200Hz. 

Accelerations from each floor was acquired; the length of data was 16384 points with sampling 

frequency of 640Hz. 

A numerical run set consisted of 200 calculation outputs was created using variable damping 

parameter sets; variable 2nd and 4th modal damping ratios. 200 parameter sets were sampled from the 

ranges of the two damping ratios indicated in Table 3 using Latin hypercube sampling method. 200 

time-response accelerations (Run # 1- #200) were then calculated by using each parameter set. Notice 

that the input force in all calculations was the same time-history that was measured in one of the 

experimental data set acquisitions; Exp. data #10. 

T bl 3 P a e f, L . h arameter ranges or atm Iypercu b e samplmg 

Minimum Maximum 

2nd mode da01Qing ratio S2 0.01 0.08 

4th mode damping ratio S4 0.001 0.02 



The accuracy of all 200 numerical outputs against the experimental data # 10 was plotted in Fig.3. The 

RMS error values were calculated using the 3rd floor acceleration outputs. The highest accuracy was 

shown in Run # 114, and the lowest one was in Run # 174 corresponding to damping values of (S2, '4) = 

(0.046,0.070) and ('2, '4) = (0.0122, 0.0013), respectively. By examining these two responses when 

overlaid on the experimental data they were attempting to predict as shown in Fig.4, it can be seen that 

the different damping parameters mainly influence the amplitude of response as mentioned in the 

previous chapter. 

2 3.5 

a, 

gj 3 
D 

Vi 
Q) 

~ 25 
(f) 

:::;: 

0:: 2 

Numerical data # 

Fig.3. RMSE plots of all 200 numerical data 

nF ~ ~U ~ 
17 17 2 17 4 17.6 17 8 18 17 17 .2 174 17 6 17.8 1.3 

Time (sec) Time (sec) 

(a) The highest RMSE numerical run #114 (b) The lowest RMSE numerical run #174 

Fig.4. Overlays of numerical (Red) and experimental (Blue) time-histories from linear system 

4.2.2. Response feature extraction and Mahalanobis distance comparison 

Response features selected for validating the damping parameters from random and linear responses 

here were then the peak amplitude and the standard deviation. The two values were extracted from 

outputs in the 2nd and 3rd floors producing a four-dimensional feature vector. Figure 5 is the 

corresponding Mahalanobis distance plot. Notice that the blue dots are the experimental baseline 

distribution, and the black dots are distances of the 200 numerical runs. Accurate and inaccurate 

numerical runs, which showed 10% lowest and highest RMSE values in Fig.3, are indicated by red and 

green circles, respectively. Seeing this figure, the accurate numerical runs have Mahalanobis distance 

values that predominantly fall within the experimental baseline distribution. In addition, the numerical 

runs that show the minimum/maximum Mahalanobis distance agree with Run # 114 and # 174, 

respectively as identified by an arrow. It can be said that the Mahalanobis distance derived by using the 

peak amplitude and standard deviation response features, has appropriate sensitivity to the time­

histories; to be appropriated features for validation of the damping parameters. 

The consistency check was then also carried out to confirm the effectiveness of this method for the 

statistical model validation. Consistency here meant that the parameter set that showed the low 

Mahalanobis distance provided accurate responses to any input forces. Additional twenty numerical runs 

were created by using each of twenty input force data in Exp. data # 1 ~#20. Notice that the damping 



parameter set that showed the lowest Mahalanobis distance in Fig.5 was used in all calculations. Figure 

6 (a) is the RMSE plot of additional twenty numerical runs, indicated in green points, presented with that 

of previous 200 runs. It was clearly observed that comparably high accuracies were obtained in all runs. 

Calculated Mahalanobis distances from the twenty runs are also presented in Fig.6 (b). All of them are 

thus distributed in the same Mahalanobis distance order as that of the experimental distribution. These 

results indicate that the parameter set that shows a low Mahalanobis distance can constantly provide 

accurate numerical outputs and vice versa. It can then be concluded that the statistical validity of 

uncertain parameters can be evaluated by this Mahalanobis distance comparison method. 
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Fig.5. Mahalanobis distance plot for validating damping parameters 
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Fig.6. Consistency check of the Mahalanobis distance comparison method 

4.2.3. Discussion: difficulty in validating correlated uncertain parameters 

The success in the damping parameters validation presented in the previous section was realized by 

appropriate response feature selection. This need for appropriate response feature selection was further 

confirmed in the nonlinearity modeling parameters validation study. The uncertain parameters were Gap 

and Ll; however, it was difficult to find appropriate features that could assess the validity of each 

parameter independently. 

In the validation, the experimental baseline distribution was created from twenty experimental data 

acquired under the same random excitation as that in the linear system data acquisition. Notice that the 

clearance between the bumper and the suspended column (= Gap) was set to O.lmm in all 

measurements. However, the clearance adjustment was carried out in each data acquisition using a feeler 

gauge. This measurement method led to variability in actual conditions related to Gap and Ll. Four­

hundred numerical runs were then created using sampled parameter sets (Gap, Ll). The same 



Mahalanobis distance comparison procedure was carried out as that used in the damping parameters 

validation study. Even though some response features that were expected to be sensitive to the impact 

event; such as skewness, kurtosis, and time-series model parameters, the Mahalanobis distances from the 

most accurate numerical runs (as assess by RMSE) never distributed in the same order of the 

experimental baseline distribution. One main reason for these results was that the two parameters; Gap 

and Ll, were strongly correlated and response features that could have sensitivity to each of two 

parameters independently had to be used . Figure 8 is the parameter set plot, which indicates all 

parameter sets sampled in the creation of numerical runs. In this figure , the red dots are accurate 

numerical runs, which show low RMSE values, and the green dots indicate inaccurate numerical runs. 

Although the gap was set to O. tmm in the experiment, the runs calculated using smaller Gap but with 

large Ll are also recognized as accurate outputs; i.e., two parameters are correlated. This observation 

indicates that the correlation of uncertain parameters in the numerical model also is a significant issue 

for the feature selection process. If such correlation cannot be prevented in the numerical model 

construction, it will require using response features that are independently sensitive to the validity of 

each uncertain parameter. Moreover, results here then confirmed that the Mahalanobis distance 

comparison method could be effectively applied to the statistical model validation only by using 

appropriate response features . 

r : ~ E: t ~ ~ 
5.5 57 5.9 6 1 6 3 65 55 5 7 5 9 6 1 6.3 6.5 
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(a) Accurate numerical run (b) Inaccurate numerical run 

Fig.7. Overlays of numerical (Red) and experimental (Blue) time-histories from nonlinear system 
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Fig.8 . Map of sampled parameter sets with indicating correlation between Gap and Ll 

5. Conclusions 
- When selecting features for the model validation, issues that must be considered are not only 

dimension of the feature vector and type of response, but also the difference in sources of variability 

between experimental and numerical outputs. When using some features that require a fitting 

procedure, this variability can influence the feature's sensitivity to the parameters of interest. 



- It was shown that the Mahalanobis distance comparison method was useful for the statistical model 

validation based on multivariate feature vectors. 

- Correlation of uncertain parameters in the numerical model greatly influences the success of 

Mahalanobis distance comparison . This issue should be considered both in the construction of a 

numerical model and in the response feature selection. 

The first and third issues should be advanced in the future works. They will become important 

considerations to realize more generalized structural dynamics model validation strategy and accurate 

uncertainty quantifications. 
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