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University Hospital, Örebro, Sweden; 4Department of Internal Medicine, County Hospital Ryhov, Jönköping, Sweden;
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Abstract—Heart murmurs are often the first signs of path-
ological changes of the heart valves, and they are usually
found during auscultation in the primary health care.
Distinguishing a pathological murmur from a physiological
murmur is however difficult, why an ‘‘intelligent stetho-
scope’’ with decision support abilities would be of great
value. Phonocardiographic signals were acquired from 36
patients with aortic valve stenosis, mitral insufficiency or
physiological murmurs, and the data were analyzed with the
aim to find a suitable feature subset for automatic classifi-
cation of heart murmurs. Techniques such as Shannon
energy, wavelets, fractal dimensions and recurrence quanti-
fication analysis were used to extract 207 features. 157 of
these features have not previously been used in heart murmur
classification. A multi-domain subset consisting of 14, both
old and new, features was derived using Pudil�s sequential
floating forward selection (SFFS) method. This subset was
compared with several single domain feature sets. Using
neural network classification, the selected multi-domain
subset gave the best results; 86% correct classifications
compared to 68% for the first runner-up. In conclusion, the
derived feature set was superior to the comparative sets, and
seems rather robust to noisy data.

Keywords—Auscultation, Bioacoustics, Feature selection,

Heart sounds, Valvular disease.

INTRODUCTION

Cardiac murmurs are often the first sign of patho-

logical changes in the heart valves. Doppler-echocar-

diography and magnetic resonance imaging are today

well established tools in the diagnosis of heart valve

disorders, while the classic techniques of auscultation

and phonocardiography are playing a diminishing role

in modern specialist care. However, in primary or

home health care, when deciding who requires special

care, auscultation still plays a very important role. For

these situations, an ‘‘intelligent stethoscope’’ with

decision support abilities would be of great value.

Heart murmurs are caused by turbulent blood flow

or jet flow impinging on and causing vibration of sur-

rounding tissue. Pathological murmurs are caused by

flow through stenosed valves, regurgitant flow through

incompetent valves or flow through septal defects. Since

diastolic murmurs are mostly pathological, only systolic

murmurs are considered in this study.

The research on signal processing of heart sound

(HS) recordings has been extensive.4 Several authors

have investigated the possibility to automatically clas-

sify cardiac murmurs.2,3,8,9,14,15,21,26,31–33,38,41. Com-

mon for all classification tasks is the importance of

appropriate data representations (features). These fea-

tures should retain similarities within classes while

revealing differences between classes. HS are charac-

terized by their timing, morphology and frequency.37

Suitable features for classification of systolic mur-

murs should hence be able to describe information in

these domains. The feature sets used in previous

works often assumes linearity and ranges from

time domain characteristics2,26,32 via spectral char-

acteristics3,33,41 and frequency representations with time

resolution8,14,15,24,38,41 to parametric modeling.22,35

The assumption of linearity basically requires all

significant information to be contained in the fre-

quency spectrum. From a stochastic process perspec-

tive, power spectral information is described by first

and second order statistics. However, heart sounds

contain non-linear and non-Gaussian information that

is not revealed in the frequency spectra.5,9,21 Higher

order statistics (HOS) is thus motivated. Taking a

deterministic viewpoint, dynamical systems theory can

be used to describe nonlinear behaviour. A topological

equivalent to a systems true state space can be recon-

structed with the method of delays.11 Features derived
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from HOS and from the reconstructed state space will

here be investigated for heart murmur classification.

The aims of this study are to:

(a) Develop new features, mostly inspired by

research in speech processing and in dynami-

cal systems and chaos theory.

(b) Present a set of features, based on a combi-

nation of old and new features, suitable for

classification of systolic heart murmurs.

(c) Compare the classification performance of

different feature sets.

METHODOLOGY

This section provides a short description of the data,

the acquisition method and the patients. This is fol-

lowed by a survey of different feature extraction

methods, reviewing previously used features and

introducing new ones.

Data Acquisition and Patients

HS data were recorded at the Dept. of Internal

Medicine at Ryhov County Hospital, Jönköping,

Sweden and at the Department of Clinical Physiology,

University Hospital, Örebro, Sweden. This study was

approved by the ethical committee at Linköping Uni-

versity Hospital and all patients enrolled gave their

informed consent.

Patients with probable valvular heart disease (as

detected with auscultation) were asked to participate in

the study. The patients underwent an echocardiographic

examination, where diagnosis and severity of valve

lesions were determined by experienced echocardiogra-

phers according to clinical routine and recommended

standards.30 HS were acquired in association with this

examination. In total, 36 patients (19 male, 17 female,

ages 69±14 years, all with native heart valves) were

enrolled in the study. Based on the results from the

clinical echocardiographic examination, an independent

physician re-evaluated the echocardiographic reports.

According to the two physicians� evaluations, who

agreed for all diagnoses, the patients were divided into

three groups (6 patients with moderate to severe mitral

insufficiency (MI), 23 patients with mild to severe

aortic stenosis (AS) and 7 patients with physiological

murmurs (PM).

An electronic stethoscope (theStethoscope, Medi-

tron AS, Oslo, Norway) was used to acquire the HS

and a standard 3-lead ECG (Analyzer ECG, Meditron

AS, Oslo, Norway) was recorded in parallel as a

time reference. Both signals were digitized at 44.1 kHz

with 16-bits per sample using a sound card (Analyzer,

Meditron AS). HS data were recorded successively for

15 s from the four traditional areas of auscultation.37

Based on signal quality, one of the four signals was

selected after visual and auditive inspection. The

diagnosis of the patient was not known during the

selection process. All processing of the signals was

performed in MATLAB (The MathWorks, Inc.,

Natick, MA, USA).

Features

Automatic extraction of features depends on accu-

rate knowledge about the timing of the heart cycles.

Segmentation into the first heart sound (S1), systole,

the second heart sound (S2) and diastole is thus nee-

ded. A reliable way to do this is by ECG gating, i.e., to

look for S1 in a certain time window after the R-peak

and for S2 in a time window after the T-wave of the

ECG. The local maximum of the HS signal�s envelope

(calculated by Shannon energy16) within each time

window was determined as S1 and S2, respectively. The

first local minima before and after S1 and S2 was used

to determine the boundaries of the heart sounds. The

region of interest in this study, focusing on the systolic

period, was defined as the start of S1 to the end of S2.

The Pan-Tompkins algorithm was employed to find

the R-peaks of the ECG, and a simple threshold was

used to find the T-wave in each heart cycle.25 All time

instances were checked and corrected manually to

avoid timing errors at this stage.

The HS signal will be denoted s(n), where n = 1,

2,..., N and N is the number of samples in the time

period from the start of S1 to the end of S2 (with one

exception in the calculation of the Gaussian mixture

model features, where N is the number of samples in

one patient). An example HS signal from a patient

with AS can be found in Fig. 1a.

The feature extraction process extracts 207 scalar

values per heart cycle (again with one exception in the

calculation of the Gaussian mixture model features).

Each of these was averaged over all available heart

cycles, resulting in 207 features per patient. All features

were also normalized to zero mean and unit standard

deviation. The calculations behind each feature

are explained in detail below and a summary of the

features is given in Table 1.

Time Domain Features

The envelope of s(n) was extracted with the nor-

malized average Shannon energy,16 see Eq. (1). The HS

signal was divided into short overlapping segments of

40 ms duration (20 ms overlap), and the Shannon

energy was calculated in each segment to obtain time

resolution.
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EShannon ¼ � 1

Nseg

X

Nseg

n¼1

s2 nð Þ � log s2 nð Þ ð1Þ

where Nseg is the number of samples in the 40 ms

segment. Nine envelope values (denoted Shannon

energy 1–9) were selected as features; at times before

S1, peak S1, after S1, ¼ into systole, ½ into systole, 3
4

into systole, before S2, peak S2 and finally after S2.

The systolic features were chosen equidistantly

between the end of S1 and the start of S2, and the

features related to S1 and S2 were selected as local

minima and maxima, see Fig. 1b. Similar time domain

features have previously been used in other stud-

ies.17,26,32

Time Frequency Representation (TFR) Based Features

The wavelet transform (WT) and the S-transform34

(ST) were used to extract features describing how the

frequency content of the signal varied over time. WT

and ST are defined as:

WT m; kð Þ ¼ 1
ffiffiffiffiffiffi

kj j
p

X

N

n¼1

s nð Þw n�m

k

� �

ð2Þ

ST m; kð Þ ¼ kj j
ffiffiffiffiffiffi

2p
p

X

N

n¼1

s nð Þe�
n�mð Þ2k2

2 e�2pikn
N ð3Þ

where m is the translation parameter, k is the scale

(WT) or frequency (ST) parameter and w is the mother

wavelet. The resulting TFR matrices are of consider-

able size, so data reduction is required to obtain

manageable feature sets. Reduction into 16 features

was achieved by limiting the frequency content of the

S-transform to 150 Hz and down-sampling the result

into a 4� 4 matrix,14 see Fig. 2. About 150 Hz was

chosen as a compromise between the gains in using

higher frequencies versus keeping the number of fea-

tures low. These features were denoted ST map 1–16.

Furthermore, one of the wavelet details was down-

sampled into a number of features.8,24 Here the 6th

wavelet detail of a level 10 Daubechies 2 wavelet

decomposition was discretized into nine features (WT

detail 1–9) by taking the absolute sum over equidis-

tantly spaced intervals spanning the systolic period, see

Fig. 1c (the 6th detail roughly corresponds to the

pseudo-frequency 1 kHz). The entropy of the wavelet

approximation and of each wavelet detail, still from

the level 10 Daubechies 2 wavelet, were also used as

features, WT entropy 1–11.

A perhaps more refined method for data reduction

of TFR matrices use singular value decomposition,

TFR ¼ URVT. U and V are generally called left and

right eigenvectors, or in this particular case eigentime

and eigenfrequency, respectively. To create a compact

representation, a distribution function was extracted

for eigentimes and eigenfrequencies corresponding to

the two largest eigenvalues (since eigenvectors are

orthonormal, their squared elements can be considered

as density functions10). A histogram (10 bins) was

computed for each distribution function leading to 40

new features (Eigenfrequency 1 1–10, Eigenfrequency 2

1–10, Eigentime 1 1–10 and Eigentime 2 1–10). The first

eight eigenvalues were also used as features (Eigenvalue

1–8). In the singular value decomposition calculations,

the TFR was derived using the S-transform. The TFR,

the eigenvalues, the eigenvectors, the probability dis-

tribution functions and the histograms are illustrated

in Fig. 3. These features can be interpreted as the main

components of the TFR matrix. For example, the

minima of the first eigentime in Fig. 3i correspond to

S1, S2 and the murmur.

(a)

(b)

(c)

(d)

FIGURE 1. An example of a HS signal from a patient with
aortic stenosis is shown in (a). In (b) the signal�s envelope has
been extracted (Shannon energy), and 9 envelope values are
chosen as features, Shannon energy 1–9. The 6th wavelet
detail is illustrated in (c), where the vertical lines are time
markers equidistantly distributed over the region of interest.
The absolute sum between each marker constituted the fea-
ture values, WT detail 1–9. In (d) the variance fractal dimen-
sion trajectory is plotted together with seven of the fractal
dimension features, VFD 1–7. The material explaining (c, d)
will be covered in following sections. All units are arbitrary.
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Nonlinear and Chaos Based Features

A statistical approach commonly used to analyze

nonlinear signals is HOS, while a deterministic view-

point often leads to the method of delays (a tool to

reconstruct the state-space geometry of a dynamic

system using only the observations of a single com-

ponent). The method of delays provides a foundation

for many analysis methods, ranging from graphical

representations to the calculation of numerical char-

acteristics.

Higher Order Statistics

Higher order statistics preserve the phase character

of signals, and can be used to describe nonlinear or

non-Gaussian processes.9 For truly Gaussian pro-

cesses, all cumulant spectra of order greater than two
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FIGURE 2. Time frequency representation (calculatedwith theS-transform) of oneheart cycle fromapatientwith aortic stenosis (a),
S1 can be seen at 5.3 s and S2 at 5.8 s. The greyscale represent intensity where darker shades represent higher intensities. In (b) the
same data has been discretized into a 4�4 map of features, where the numbers represent the features denoted ST map 1–16.

TABLE 1. Summary of all features.

Time domain features Shannon energy 1–9 9 Envelope values derived from the normalized Shannon energy

Time frequency

relation based features

WT entropy 1–11 11* The Shannon entropy of each wavelet detail and the wavelet

approximation using a level 10 decomposition with the Daubechies 2

wavelet

WT detail 1–9 9 The 6th wavelet detail of a level 10 Daubechies 2 wavelet discretized

into 9 bins

ST map 1–16 16 TFR (calculated with the S-transform) in the frequency range

0–150 Hz discretized into a 4� 4-matrix

Eigenvalue 1–8 8* The eight first eigenvalues from a singular value decomposition of an

S-transform TFR

Eigenfrequency 1 1–10,

Eigenfrequency 2 1–10,

Eigentime 1 1–10,

igentime 2 1–10

40* Two left eigenvectors and two right eigenvectors transformed into

distribution functions whose histograms (10 bins) are used as fea-

tures

Nonlinear and

chaos based features

HOS 1–16 16* First non-redundant region of the bispectrum (frequency range

0–300 Hz) discretized into 16 equally sized triangles

GMMx cycle 1–8 40* Gaussian mixture Model (GMM) of the reconstructed state space of

the systolic period (including HS). x = 1, 2,..., 5 represents the

mixtures and 1–8 represents four coordinates and four eigenvalues

GMMx murmur 1–8 40* GMM of the reconstructed state space of the systolic period

(excluding HS). Notation as above

VFD 1–8 8* Variance fractal dimension values

RQA 1–10 10* Recurrence Quantification Analysis

Column one through four represents the category of the extraction method, the feature names, the number of features and a short description

of the extraction technique, respectively.

*Features not previously used for heart murmur classification.
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are zero. HS data have a non-zero bispectrum (the

Fourier transform of the third order cumulant), and

this information may be used for classification. The

bispectrum is defined as:

C k1; k2ð Þ ¼
X

N

n1¼1

X

N

n2¼1

E s nð Þs nþ n1ð Þs nþ n2ð Þf g

� e�2pi
k1n1þk2n2

N

ð4Þ

where n1 and n2 are two lag variables, k1 and k2 are the

frequency variables and E is the expectation operator.

For computational reasons, each heart cycle was

downsampled with a variable factor of about twelve so

the number of samples ended up below 2000 points

(this corresponds to a sampling frequency of about

3500 Hz, thus leaving most of the information in the

phonocardiography data intact). The downsampled

signal was zero-padded to 2048 samples, partly for

(a)

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

5.3 5.4 5.5 5.6 5.7 5.8
0

50

100

150

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

Eigen value number

E
ig

e
n
 v

a
lu

e

(b)

0 50 100
–1

–0.8
–0.6
–0.4
–0.2

A
m

p
lit

u
d
e

Freq (Hz)

(c)

0 50 100

 0.5

0

–0.5

–1

A
m

p
lit

u
d
e

Freq (Hz)

(e)

5.3 5.4 5.5 5.6 5.7 5.8
 –1

 –0.5

A
m

p
lit

u
d
e

Time (s)

(g)

5.3 5.4 5.5 5.6 5.7 5.8
 –1

 –0.5

0

0.5

A
m

p
lit

u
d
e

Time (s)

(i)

1 2 3 4 5 6 7 8 9 10
0

10

20

N
o
 o

f 
fr

e
q

Eigenfrequency 1

(d)

1 2 3 4 5 6 7 8 9 10
0

10

20

N
o
 o

f 
fr

e
q

Eigenfrequency 2

(f)

1 2 3 4 5 6 7 8 9 10
0

5000

10000

N
o
 o

f 
ti
m

e
s

Eigentime 1

(h)

1 2 3 4 5 6 7 8 9 10
0

5000

10000

N
o
 o

f 
ti
m

e
s

Eigentime 2

(j)

FIGURE 3. The TFR from Fig. 2 is shown in (a) and Eigenvalue 1–8 in (b). Part (c) and (e) of the figure illustrates the 1st and 2nd
eigenfrequencies. To the right of the respective figures are the histograms of the probability distributions belonging to the
eigenfrequencies, Eigenfrequency 1 1–10 and Eigenfrequency 2 1–10 (d, f). ‘‘No of frequencies’’ is a measure of how significant
various parts of the distribution functions are. Parts (g-j) of the figure show corresponding plots for the 1st and 2nd eigentimes
(with the features Eigentime 1 1–10 and Eigentime 2 1–10). All units are arbitrary unless stated otherwise.
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computational efficiency in the FFT calculations, but

also for simplicity since all matrices ended up with the

same size (2048� 2048 values). The bispectral esti-

mates were averaged across records, giving one output

bispectrum per patient. Due to symmetry, see Fig. 4,

only the first non-redundant region was used for fea-

ture extraction (HOS 1–16). Bispectra have previously

been used to visualize and analyze HS data5,9 and the

feature extraction approach was inspired by Xiang and

Tso,42 who used it to classify flaws in concrete struc-

tures. The HOSA Toolbox was used for the calculation

of bispectra.

State Space

An observed signal is only a projection of a systems

multivariate state space onto a one-dimensional time-

series. However, the state space can be reconstructed,

at least to a topological equivalent, with Takens� delay

embedding theorem11:

a nð Þ ¼ s nð Þ; s nþ sð Þ; s nþ 2sð Þ; :::; s nþ d� 1ð Þsð Þf g
ð5Þ

The embedding parameters, d and s, was estimated

using Cao�s1 method and the average mutual informa-

tion technique11, respectively. The embedding dimen-

sion was determined as d = 4, see the clearly defined

knee in Fig. 5b. The time delay was set to 150 since

roughly half of the patients had a minimum in the

vicinity of s = 150. The other half lacked minima in

the range s ¼ 1; 2; :::; 400f g samples.

In the reconstructed state space, a vector connects

the states, thus creating a trajectory describing how the

system evolves over time. In this study an estimate of

the distribution of the trajectory was used to describe

its behaviour. A Gaussian mixture model (GMM) with

five mixtures, see Fig. 6, was fitted to the reconstructed

4D state space using the Expectation-Maximization

(EM) algorithm. The centres of the mixtures and the

eigenvalues of the covariance matrices constituted 40

new features (4 coordinates and 4 eigenvalues for each

of the five mixtures). Data from all heart cycles for

each patient were used to reconstruct the state space,

and two sets of features were calculated based on data

ranging from either the beginning of S1 to the end of

S2 (GMMx cycle 1–8) or from the end of S1 to the

beginning of S2 (GMMx murmur 1–8). x = 1, 2,..., 5

represents the five mixtures and 1–8 represents the four

coordinates (1–4) and the four eigenvalues (5–8). This

approach is based on a speech classification algo-

rithm.28 The nonlinear time series analysis was per-

formed with TSTool20 and the GMM of the embedded

state space was calculated with the TKDE toolbox.28

Fractal Dimension

A signal�s complexity, in terms of morphology,

entropy, spectrum and variance, can be described by its

fractal dimension.12 Comparing HS, murmurs and

background noise, HS have a certain structure while

murmurs are more complex and noise has no structure

at all.23 This is all reflected in the fractal dimension. The

variance fractal dimension (VFD) was used to estimate

the fractal dimension. The VFD for a 1D time series is

calculated via the Hurst exponent as VFD = 2)H,

where H is defined as:

H ¼ lim
n2�n1ð Þ!0

log Var s n2 � n1ð Þð Þ½ �
2 � log n2 � n1½ �

� �

ð6Þ

In practise, a log-log plot is created for a series of

dyadic time increments, n2)n1, and the slope of

the regression line determines H. The HS signal was
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FIGURE 4. Example of bispectrum from a patient with aortic stenosis. The different regions of the bispectrum are plotted in (a)
where the bold triangle shows the non-redundant information. In (b) the region of interest is highlighted. The smaller triangles
indicate the features HOS 1–16.
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divided into short overlapping segments of 40 ms

duration (20 ms overlap), and the VFD was calculated

in each segment to obtain time resolution, thus creat-

ing a VFD trajectory, see Fig. 1d. More details about

VFD trajectories can be found in Kinsner12,13. Seven

VFD values along the trajectory were selected as

features, VFD 1–7. These were chosen at S1, after S1,

¼ into systole, ½ into systole, 3
4
into systole, before S2

and at S2. The systolic features were chosen equidis-

tantly between the end of S1 and the start of S2, and

the features related to S1 and S2 were selected as local

minima and maxima, see Fig. 1d. The quotient

between the minima of S1 and S2 and the minima of

the five systolic VFD values was also used as a feature,

VFD 8. Fractal dimension trajectories have previously

been used to locate S1 and S2,7,23 but to our knowledge

not to classify heart murmurs.

Recurrence Quantification Analysis

A recurrence plot (RP) is a binary N � N matrix

representing the recurrence of states of a system (i.e.,

how often a small region in state space is visited). If

two states on the trajectory, a(i) and a(j), are close to

each other, a black dot is placed at position (i,j) in the

RP matrix according to:

RP i; jð Þ ¼ H e� a ið Þ � a jð Þk kð Þ ð7Þ

where i,j = 1,...,N, � is a cutoff distance, iÆi is the

Euclidian norm and Q(Æ) is the Heaviside function. In

this study, � was set to 0.1. An example RP is shown in

Fig. 7. RPs can be quantified with recurrence quanti-

fication analysis (RQA), and the results from such an

analysis were used as features. Recurrence plots and

RQA have, to our knowledge, not previously been
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FIGURE 5. The average mutual information, I(s), calculated for each patient is shown in (a), revealing a delay parameter of about
s = 150. Cao�s method was used to calculate the E1 measure for each patient in order to determine the embedding dimension to
d = 4 (b). I is measured in bits and E1 is measured in arbitrary units.
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same sound, reconstructed with d = 2, is shown together with the derived Gaussian mixture model (GMMx murmur 1–8).
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used to classify heart murmurs. The RQA analysis was

performed with the CRP toolbox.19 In this study, the

following ten measures were used as features:6,19,40

RQA1 Recurrence rate, the percentage of the RP

that is filled with recurrence points. This measure

corresponds to the correlation sum.

RQA2 Determinism, the percentage of the recurrence

points forming diagonal lines (diagonal lines are

associated with deterministic patterns in the

dynamics).

RQA3 The average length of the diagonal lines, which

is related to the predictability of the dynamical

system.

RQA4 The length of the longest diagonal line (which is

inversely proportional to the largest Lyapunov

exponent which describes how fast trajectories

diverge in the reconstructed state space).

RQA5 Entropy, the Shannon entropy of the distribu-

tion of the diagonal line lengths (measures the

complexity of the deterministic structure in the

system).

RQA6 Laminarity, the percentage of recurrence points

that forms vertical lines. Laminarity relates to the

amount of laminar states in the system.

RQA7 Trapping time, the average length of the verti-

cal lines. The trapping time contains information

about the frequency of the laminar states and their

lengths.

RQA8 The length of the longest vertical line (reveals

information about the time duration of the laminar

states).

RQA9 Recurrence time of the first kind, relates to the

information dimension.

RQA10 Recurrence time of the second kind, relates to

the information dimension.

Feature Selection

A large number of features have been described in

previous sections. However, too many features often

result in higher computational complexity, mutually

correlated features and classifiers with low generality.36

In our study, Pudil�s sequential floating forward

selection (SFFS) method was used to reduce the

number of features.29 Inclusion or rejection of features

was based on the error estimate of a 1-nearest neigh-

bour leave-one-out classifier where the estimation error

was used as performance criterion. The resulting subset

of features was denoted the SFFS subset.

Classification Performance

A neural network was adopted to measure the

performance of the SFFS subset. For comparison, each

methodology was also tested separately, i.e., the

eleven feature subsets constituted by Shannon Energy

1–9, WT entropy 1–11, WT detail 1–9, ST map 1–16,

Eigenvalue 1–8, Eigentime + Eigenfrequency, HOS

1–16, GMMx cycle 1–8, GMMx murmur 1–8, VFD 1–8

and RQA 1–10. Each neural network was a fully

FIGURE 7. An example showing the systolic period in a pa-
tient with aortic stenosis (a). The recurrence plot, from where
the 10 recurrence statistics are calculated, is shown in (b).

FIGURE 8. The evolution of Pudil�s sequential floating for-
ward selection algorithm. The solid line indicates classifica-
tion performance while the dotted line indicates the number of
features in the present feature subset. The feature set with as
few features as possible is chosen under the condition that
the performance criterion is maximized.
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connected feed-forward network, with logarithmic sig-

moid transfer functions and biased values throughout.

The number of input units was set to the nearest larger

integer of the square root of the number of features in

the set, the number of units in the hidden layer was set to

three and the number of output units was set to two. The

target values were 00 (MI), 01 (AS) or 10 (PM). Each

output from the network was thresholded at 0.5 and

compared to the results from the clinical echocardiog-

raphy investigation. A leave-one-out approach was

used for training and testing due to the limited amount

of patients.

RESULTS

The studied material consisted of 445 heart cycles

from 36 patients, or 12.4±4.0 (SD) heart cycles per

patient.

The number of features in the subset, when maxi-

mizing the performance criterion while keeping the

number of features low, was 14, see Fig. 8. Nine of

these 14 features have not previously been used to

classify HS. Table 2 presents the SSFS subset.

Confusion matrices showing classification results

for the twelve tested subsets are presented in Table 3.

The percentage of correct classifications is summarized

in Fig. 9 together with the number of patients with

valve pathology that were erroneously classified as

physiological. The SFFS subset gives the best classifi-

cation results while the VFD technique provides the

best single-domain subset.

DISCUSSION

The main tasks for the intelligent stethoscope are to

detect abnormal events (such as the third heart sound

or the reverse splitting of S2) and, regarding decision

support, to classify different heart valve diseases and

distinguish between pathological and physiological

murmurs. A feature set making use of HS characteris-

tics from several signal domains has been derived. The

presented feature set is able to differentiate betweenMI,

AS and PM with 86% correct classifications. The

derived feature set aims at facilitating the classification

step by providing relevant information to the classifier.

Since diastolic murmurs are mostly pathological,35 this

study was limited to systolic murmurs.

The non-linear features used in this study are not easy

to interpret. When leaving the well-known concepts of

time and frequency, the obtained features become hard

to explain in terms of physiological events. Another

complicating issue is that the reconstructed state space is

four-dimensional, making it impossible to visualize. A

most welcome exception is the fractal dimension mea-

surements since HS, murmurs and background noise

can be described by various degrees of complexity (HS

have a certain structure while murmurs are more

complex and noise has no structure at all). Both RQA

TABLE 2. The 14 features of the SFFS subset selected with
Pudil�s sequential floating forward selection method.

1.WT detail 7 2. VFD 8*

3. Shannon energy 5 4. Shannon energy 6

5. GMM1 cycle 5* 6. Shannon energy 4

7. GMM1 murmur 5* 8. Eigenfrequency-1 2*

9. WT entropy 10* 10. GMM4 cycle 6*

11. Eigenfrequency-1 1* 12. Shannon energy 8

13. VFD 2* 14. HOS 1*

The features are ordered in correspondence to classification per-

formance. Features previously not used for murmur classification

are denoted with stars.

TABLE 3. Confusion matrices showing the classification results from the different feature subsets.

Shannon Energy WT entropy WT detail ST map

AS MI PM AS MI PM AS MI PM AS MI PM

AS 17 3 3 14 7 2 15 6 2 14 8 1

MI 4 2 0 3 2 1 5 0 1 4 1 1

PM 4 1 2 5 1 1 2 4 1 3 0 4

Eigenvalue Eigentime & freq HOS GMMx cycle

AS MI PM AS MI PM AS MI PM AS MI PM

AS 15 2 6 18 4 1 14 8 1 13 3 7

MI 4 0 2 6 0 0 4 1 1 5 1 0

PM 3 1 3 3 2 2 4 1 2 4 1 2

GMMx murmur VFD RQA SFFS

AS MI PM AS MI PM AS MI PM AS MI PM

AS 15 7 1 20 2 1 8 8 7 19 2 2

MI 3 2 1 4 2 0 3 1 2 1 5 0

PM 6 0 1 5 0 2 0 3 4 0 0 7

Target groups are presented horizontally while the predicted groups are presented vertically.
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and the GMM of the reconstructed state space aims at

quantifying the amount of structure in the signal. The

techniques are potentially useful for HS studies but,

because of the pure data-analysis character of the

methods, they do not allow for any physiological

speculation as such. The selected SFFS subset does

however include very reasonable features. WT detail 7

is located at the end of systole and is thus able to

separate the holosystolic MI from diamond-shaped AS

and PM. Shannon energy 4–6 are located in mid systole

and describes the shape of the murmur in the time

domain. VFD 8 describes the complexity of the mur-

mur in relation to the heart sounds and could partly be

explained as the intensity of the murmur. VFD 2 is

located at S1, which is known to decrease in intensity

during MI. GMM1 cycle 5 and GMMmurmur 5 belong

to the largest mixture model, probably located in their

respective state spaces where the murmur lives. The

selected features of the GMM (the first eigenvalue),

describes the size or width of the Gaussian distribu-

tion, and the two features should hence relate the size

of the murmur to the size of the heart sounds. Eigen-

frequency-1 1&2 contains the low frequency content of

the main frequency component, which gives good

coverage of the low frequency content of the signal.

Some of the subsets chosen for comparison are very

similar to feature sets used in other studies. Wavelet

detail 1–9 was adopted from Gupta et al.8 and Olmez

et al.24 and ST map 1–16 was adopted from Leung

et al.14. Shannon energy 1–9 was included since these

features give a very appealing time domain interpre-

tation. When including features already known from

the literature, a nearly full coverage was aimed at.

Adaptations of the previously used methods were

however necessary. In Gupta et al.8 and Olmez et al.24,

a level 6 Daubechies wavelet was used, but to account

for the higher sampling frequency in this study, a level

10 wavelet decomposition was used instead. We also

used 9 features spread evenly over systole instead of

the 32 features spread over the whole heart cycle. A

common remark when using WT is that the link to

local frequency is lost (why the term scale is preferred

instead of frequency). The ST is a similar but phase

corrected transform, able to maintain the notion of

frequency. In the calculation of the 4� 4 map of the

TFR, the ST was used instead of WT as in Leung

et al.14 and the frequency content was limited to

150 Hz compared to 62 Hz. The ST has previously

been used for visual analysis of HS signals.18,39

There is a tendency in several methods to classify

MI and PM as AS. The total number of MI + PM

patients is 13, and out of these patients, 9 are classified

incorrectly as AS using VFD, GMMx cycle, GMMx

murmur and Eigentime/freq, 8 are classified incorrectly

as AS using Shannon energy, WT entropy and HOS

while 7 are classified incorrectly as AS using ST map,

WT detail, and Eigenvalue. Many of the features

within each feature set are similar despite being derived

from different diseases, while only a few of the features

within the feature set contain the information needed

to distinguish the different diseases. It is thus easy to

confuse the classifier with the obscure content of non-

significant features. In the SFFS subset, only the most

descriptive features are used, and it is not surprising

that the error rates decreases.

All time domain features used in the literature could

not be used. For example, the splitting parameter of

the second HS used in Liang et al.15 could not be

automatically extracted using the described wavelet

method. A considerably more complex transient chirp

model has been used to perform the same task27

(extracting the aortic and pulmonary components of

S2), but despite the more advanced methodology, the

authors needed multiple sensors to obtain robust

results. Since only one sensor was used in our study,

this approach was not considered. Using multiple

sensors to record simultaneous HS at several locations

is however an interesting idea. The magnitude of

different components in the phonocardiographic signal

varies with the measurement location. For instance,

FIGURE 9. Bar graph showing the number of correct clas-
sifications for each feature subset when used as input vari-
ables to the neural network. Also presented is the number of
cases where pathological murmurs are erroneously classified
as physiological. The number attached to each bar represent
the exact height of the bar in percent.
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listening over the apex, S1 is louder than S2. Also, the

location where a heart murmur is best heard often

indicates its origin. By using multiple sensors in

parallel, this difference in intensity could be used as a

parameter in a classification system. Incorporating

such information in the classification system is left for

future studies.

If too many features are used, the performance of

the classifier will decrease with respect to execution

time (due to the measurement cost) as well as recog-

nition rate (due to overfitting). The reason lies in the

existence of many different solutions that are consis-

tent with the training examples, but disagree on unseen

(test) examples. This is probably what happens in

Fig. 8, where the performance starts going down when

more than about 150 features are added.

Previous studies present excellent classification

results well above 95 % when classifying a number of

different heart abnormalities.2,3,8,14,24,26,32,33,38,41 In

this study the number of successful classifications was

at best 86% when classifying MI, AS and PM. The

most likely reason for this deterioration in perfor-

mance is that actual clinical data was used in this

study. In practice this means that the recordings con-

tained noise such as friction rubs, rumbling sounds

from the stomach, breathing sounds from the lungs

and background noise from the clinical environment.

In many other studies, the data is either provided from

teaching tapes,2,26 or from specially selected heart

cycles of very high quality and with typical morphol-

ogy.3,26,41 Another reason could be the rather straight

forward choice of parameters used when designing the

feed-forward network, or, for that matter, the choice

of the classifier. The choice of an optimal classifier was

however not the aim of this paper.

The number of patients in the three groupswas rather

uneven, but this distribution reflects the actual patient

population in a Swedish hospital-based echocardio-

graphic laboratory (considering patients in the range

middle-aged to elderly). A need for more data is how-

ever evident for clinical validation. More patients are

also needed since a rule of thumb is to use 10 times as

many cases as there are connections in the neural net-

work, which is far from reached in the present set-up.

A weakness with the present system when consid-

ering implementation into the intelligent stethoscope is

that an ECG is necessary for HS segmentation.

Automatic segmentation of the HS signal was tried out

on the material without success. When using Shannon

energy,16 the influence of noise and heart murmurs

obscured the output signal, even when using wavelet

denoising.17 Automatic segmentation of noisy HS sig-

nals still seems to be an open question, and is hereby

left for future studies. Another implementation issue

is that some of the feature extraction methods are

non-causal, which prevents real time implementations.

However, all necessary results can be presented to the

physician within consultation time using a common

computer system.

In conclusion, the results clearly motivate the use of

nonlinear features for HS classification. The derived

multi-domain SFFS feature subset gives excellent

results when compared to single-domain feature sets,

and seems rather robust to the noisy data used in this

study. It is very interesting that the SFFS subset

combines good features from several individual com-

ponents. For instance, VFD by itself is very good at

detecting AS, while it is very poor at detecting MI and

PM. ST map and RQA have the best performance

detecting PM. The SFFS subset seems to combine

good features of all methods presented. Future work

includes the design of an optimal classifier and careful

clinical tests.
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