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Abstract— This paper presents a geometrical feature detection
system to use with conventional 2D laser rangefinders. This
system consists of three main modules: data acquisition and
pre-processing, rupture and breakpoint detection and feature
extraction. The novelty of this system is a new efficient approach
for natural feature extraction based on curvature estimation.
This approach permits to extract and characterise line segments,
corners and curve segments from the laser scan. Experimental
results show that the proposed approach is very fast and permit
to verify its effectiveness in indoor and outdoor environments.

I. INTRODUCTION

Localisation is a fundamental competence for autonomous

mobile robot navigation systems. The idea behind most of

the current localisation sytems operating in a known indoor

environment is that the robot carries sensors to perceive the

environment and match the obtained data with the expected

data available in a map. The robot uses this operation to

update its pose and correct the localisation error due to

odometry slippage. In addition, sensor information can be

used to simultaneously localise the robot and build the map

of the environment along the robot’s trajectory. The difficulty

of the simultaneous localisation and map building (SLAM)

problem lies in the fact that an accurate estimation of the

robot trajectory is required to obtain a good map, and for

reducing the unbounded growing odometry errors requires to

associate sensor measurements with a precise map [14]. In

order to increase the efficiency and robustness of the process,

sensor data have to be transformed in a more compact form

before attempting to compare them to the ones presented

on a map or store them in a currently built map. In either

case, the choosen map representation heavily determines the

precision and reliability of the whole task [13]. Typical choices

for the map representation include cell-based [6], topological

[7], feature-based models [14] and sequential Monte Carlo

methods [15]. In this paper, we adopt a feature-based approach

for the map representation. This one allows the use of multiple

models to describe the measurement process for different

parts of the environment and it avoids the data smearing

effect [14]. However, the success of this representation is

conditioned on i) the existence of accurate sensors capable of

discriminating between similar features and ii) the availability

of fast and reliable algorithms capable of extracting features

from a large set of noisy and uncertain data. Respect to

the first question, sonar or laser range sensors or vision-

based systems can be employed. Sonar sensors suffer from

frequent specular reflections and a significant spread of energy

(beamwidth). Applying vision to feature extraction leads to

increase CPU usage due to the complexity of the algorithms

required. If we assume that the structural features commonly

found in the environment are invariant to height (e.g. walls,

corners, columns), a planar representation would be adequate

for feature extraction. A laser range scanner is capable of

collecting such high quality range data and it suffers from very

small number of specular reflections. The angular uncertainty

of the laser sensor is very small and, therefore, it can provide a

very fine description of the surroundings to the robot. Finally,

although from the perspective of cost, laser scanners are more

expensive than sonar sensors, it can be appreciatted that it is

an affordable device for most robotic systems.

On the other hand, pattern recognition concepts and algo-

rithms can be applied to extract features from sensor data.

Thus, simple methods have been broadly used to support

mobile robot operation using line or point features extracted

from range images [16][5]. Although these methods are very

fast, they have problems to deal with adverse phenomena such

as false measurements on surface limits [4]. Besides, they do

not consider sensor motion. More robust methods that take

into account sensor motion have been also proposed [2][10].

These methods are based on more elaborate concepts, like the

Hough Transform [2], the fuzzy clustering [4] or the Kalman

Filter [13]. The main disadvantage of the majority of these

methods is that they only look for one type of feature (e.g,

line segment). Therefore, they are limited to find this feature

in the measurement.

In this paper, the laser scan is analysed to detect rupture

points and breakpoints [4] and three features of interest: line

segments, corners and curve segments. Such items collect

information about the environment as follows (see Fig. 1):

� Rupture points are scan measurements associated to

discontinuities due to the absence of obstacles in the

scanning direction.

� Breakpoints are scan discontinuities due to change of

surface being scanned by the laser sensor.

� Line segments result from the scan of planar surfaces

(e.g. walls).

� Corners are due to change of surface being scanned or to

change in the orientation of the scanned surface. Corners

are not associated to laser scan discontinuities.



Fig. 1. Sensor information obtained from a single laser scan using a 180�

SICK laser scanner.

� Curve segments result from the scan of curve surfaces

(e.g. trees or cylindrical columns).

In what follows, we describe a geometrical feature detection

framework for use with conventional 2D laser sensors. The

framework is composed of three procedures: data acquisition

and pre-processing, breakpoint detection and feature extrac-

tion. This scheme has been inspired from [5][4]. For data

pre-processing and breakpoint detection, the motion correction

algorithm proposed by Arras et al [2] and the adaptive algo-

rithm proposed by Borges and Aldon [4] are respectively em-

ployed. The contribution of this paper is the feature extraction

algorithm, which is based on adaptive curvature estimation.

This algorithm uses the laser scan measurements between two

consecutive breakpoints (or rupture points) like an open con-

tour, and it permits to obtain line segments, corners and curve

segments in a fast and robuts way. The adaptive mechanism

for curvature estimation avoids to employ a initially fixed

threshold that may be problematic when different parts of the

laser scan are analysed.

This paper has been organised as follows: Section 2 de-

scribes the characteristics of the laser sensor and the data pre-

processing. Section 3 briefly presents the adaptive breakpoint

detection method proposed by Borges and Aldon [4]. Section 4

describes the proposed algorithm for feature extraction based

on curvature estimation. The adaptively estimated curvature

function is introduced and its applications for line segment,

corner and curve segment extraction is analysed. Section 5

presents experimental results and, finally, Section 6 sum-

marises conclusions and future work.

II. LASER SCAN DATA ACQUISITION AND

PRE-PROCESSING

The information provided by laser sensors in a single scan

is usually quite dense and has good angular precision. Range

images provided by laser rangefinders are typically in the form

���� ����� � �������, on which ��� ��� are the polar coordi-

nates of the �-th range reading (� � is the measured distance

of an obstacle to the sensor rotating axis at direction � �). The

scan measurements are acquired by the laser rangefinder with

a given angular resolution �� � �������. The distance �� is

perturbed by a systematic error, ��, and a statistical error, ��,

usually assumed to follow a Gaussian distribution with zero

mean and variance ��
� . Then, if �� is the measured distance

and �� the true obstacle distance, it can be considered that they

are related by

�� � �� � ������ � �� (1)

Our laser rangefinder is a SICK Laser Measurement System

(LMS) 200, and the experiments have been done with the

LMS doing planar range scans with scanning angle of 180 �

operating at frecuencies of about 60 Hz. In these conditions,

the SICK LMS200 laser sensor exhibes a systematic error of

�15 mm and a statistical error (��) of 5 mm. Taken several

values of �� for �� � ����� 	℄ m, the systematic error ������
can be easily approximated by a sixth-order polynomial which

fits the differences �� � �� in the least-squares sense [4].

This polynomial is used for compensating the systematic error

according to the model (1). The residual noise after systematic

error correction is compatible with the value ��=0.005 m

provided by the laser rangefinder manufacturer.

When range images are taken with the robot in motion,

they may be deformed given the scanning time. In such cases,

a compensation algorithm based on estimates of the robot

motion should be applied. In our system, the motion correction

algorithm described in [2] is employed. Basically, this algo-

rithm compensates for the vehicle displacement during a scan

by transforming each range reading acquired at instant time 	 �
to the desired reference time 	�. Let ��
� ����� � ������� be

the cartesian representation of the range images, where 
 � �
��

��� and �� � �������, and �� � �
�� ��� ���� the sensor

absolute position when the �-th range reading is acquired. At

the �-th range reading acquisition, the local coordinate frame

has been displaced ��� � ����� from the start of range reading

acquisition. In order to recover the coordinates of the �-th
range reading when the sensor is on ��, �
�� � �

�
� �, the sensor

displacement is taken into account as

�

��
���

�
�

�


���� ������
������� 

����

�
�

�

� � 
��
�� � ���

�
(2)

Thus, it is not necessary to know the sensor absolute pose

at each ��	 point, but its relative displacement. In our experi-

ments, it is assumed that odometry can provide a good estima-

tion of this displacement. In fact, the operating frequency of

the laser rangefinder is very high and the sensor displacement

��� is interpolated by a linear relation between ��� and �
�� .

These values can be derived from odometry.

Finally, at the same time that the systematic error and

the motion are corrected, rupture points can be detected. A

rupture point is defined as a discontinuity during the laser

measurement. SICK LMS200 returns a special binary data to

indicate this occurrence.



III. BREAKPOINTS DETECTION

Segmentation is a process of aiming to classify each scan

data into several groups, each of which possibly associates

with different structures of the environment. The segmentation

criterion is based on the distance between two consecutive

points ��� ����� and ��� ���. Range readings belong to the

same segment while the distance between them is less than a

given threshold. Isolated range readings are rejected. In order

to determine the segment boundaries, we use the adaptive

breakpoint detector developed by Borges and Aldon [4]. In this

algorithm, two consecutive range readings belong to different

segments if

����� ��� � ��� ������� � ���� �
�����

���������
� ��� (3)

where �� is the laser angular resolution, � is an auxiliary

constant parameter and �� the residual variance. In our ex-

periments, the parameter values are ��=0.005 m and �=10�

[4].

IV. FEATURE EXTRACTION BASED ON ADAPTIVELY

ESTIMATED CURVATURE FUNCTION

Curvature functions basically describe how much a curve

bends at each point. The peaks of a curvature function corre-

spond to the corners of the represented curve and their height

depends on the angle at these corners. Flat segments whose

average value is larger than zero are related to curve segments

and those whose average value is equal to zero are related to

straight line segments. Fig. 2a presents a curve yielding two

corners (points 2 and 3) and a curve segment (from point 3 to

4). Peaks corresponding to 2 and 3 can be appreciatted in its

curvature function (Fig. 2b). It also shows that segment 3-4

has an average value larger than zero, but it is not flat due to

noise. Nevertheless, peaks in that segment are too low to be

considered corners of the curve. Finally, segments 1-2 and 2-3

present a curvature average value near to zero, as expected in

line segments.

In order to calculate the curvature of a shape, Mokharian and

Mackworth [9] employes a formula involving the first and sec-

ond order directional derivatives of the shape coordinates, once

the shape has been previously filtered with a one-dimensional

Gaussian filter to remove noise. Agam and Dinstein [1] define

the curvature at a given point as the difference between the

slopes of the curve segments on the right and left side of

the point, where slopes are taken from a look-up table. Liu

and Srinath [8] calculate the curvature function by estimating

the edge gradient at each shape point, which is equal to the

arctangent of its Sobel difference in a 3�3 neighbourhood.

Arrebola et al [3] define the curvature at a given point as the

correlation of the forward and backward histograms in the �-

vicinity of the point, where the resulting value is modified

to include concavity and convexity information. It can be

appreciatted that most algorithms implicitly or explicitly filter

the curve descriptor at a fixed cut frequency to remove noise

and provide a more robust estimation of the curvature at

each shape point. However, features appear at different natural

Fig. 2. a) Segment of a single laser scan (�-breakpoints,o-detected corners);
and b)curvature function associated to a).

scales and, since most methods filter the curve descriptor at a

fixed cut frequency, only features unaffected by such a filtering

process may be detected. Thus, algorithms described above

basically consist of comparing segments of �-points at both

sides of a given point to estimate its curvature. Therefore, the

value of � determines the cut frequency of the curve filtering.

In these methods, it is not easy to choose a correct � value:

when � is small, the obtained curvature is very noisy and,

when � is large, corners which are closer than � points are

missed. To avoid this problem, some methods propose iterative

feature detection for different cut frequencies, but they are

slow and, in any case, they must choose the cut frequencies

for each iteration.

In this work, we employ a curvature function that overcomes

the aforementioned problems. Instead of choosing a constant

� for the whole function, � is adaptively changed according

to the distance between possible corners. Thus, the curve is

filtered in an adaptive way depending on its local nature. In this

case, noise is removed, but features are nevertheless detected

despite their natural scale. The proposed method for adaptive

curvature estimation in laser scan data is a modified version of

[11] and, for each range reading � of a laser scan, it consists

of the following steps:

1) Calculation of the maximum length of laser scan pre-

senting no discontinuities on the right and left sides of

the working range reading �: �� ��℄ and ����℄, respec-

tively. �� ��℄ is the largest value that satisfies



Fig. 3. �� and �� values associated to the range readings of the laser scan
in Fig. 2a.

���� ���� ��℄� � ���� ���� ��℄�� �
 (4)

being �
 a constant value that depends on the noise level

tolerated by the detector, ����� ���� ��℄� is the Euclidean

distance from range reading � to its �� ��℄�	� neighbour

and ����� ���� ��℄��) is the real length of the laser scan

between both range readings. Both distances tend to be

equal in absence of corners.

����℄ is also set according to Eq. (4), but using � �
����℄ instead of ���� ��℄. The correct selection of the

�
 value is very important. Thus, if the value of �
 is

large, ������℄ tends to be large and some corners may be

missed and if it is small, ������℄ is always very small and

the resulting function is noisy. However, it is quite easy

to fix a suitable �
[11]. In our case, it has been proven

that �
=1.0 works correctly in all our experiments. Fig.

3 presents an example of the �� ��℄ and ����℄ values

associated to the range readings in Fig. 2a. It can be

noted that the �� ��℄ and ����℄ values associate to range

readings � located near to corner are reduced in order to

accomodate them to the laser scan contour.

2) Calculation of the local vectors ��� and ��� associated to

each range reading �. These vectors present the variation

in the 
 and � axis between range readings � and

� � �� ��℄, and between � and � �����℄. If �
�� ��� are

the coordinates of the range reading �, the local vectors

associated to � are defined as

��� � �
���� ��℄ � 
�� ����� ��℄ � ��� � ���� � ����
��� � �
������℄ � 
�� �������℄ � ��� � ���� � ����

(5)

3) Calculation of the angle associated to each range reading

of the laser scan. According to the works of Rosenfeld

and Johnston [12], the angle at range reading � can be

estimated by using the equation:

�� � ��


�

�
��� � ���

����� � �����

�
(6)

4) Detection of line segments over ����. Line segments

result from the scan of planar surfaces. Therefore, they

are those sets of consecutive range readings which: i)

are under a minimum angle (in our experiments, this

minimum curvature height, ����, has been fixed at

0.05); and ii) have a size greather than a minimum length

value (����=10 range readings).

5) Detection of curve segments over �� ��. Curve segments

result from the scan of curve surfaces. Contrary to the

curvature values associated to a line segment, it can be

appreciated that the curvature function associated to a

curve segment presents a consecutive set of local peaks,

some of them could be wrongly considered as corners.

To avoid this error, the algorithm associates a cornerity

index to each set of consecutive range readings whose

����℄ values are over ���� or under ����� and have

a size greather than ����. This cornerity index, 
�, is

defined as


� �
�

�����

���
����

��

��
��������	����
(7)

where �� and �� are the range readings that bound the

possible curve segment. These values are selected using

a very low threshold in the curvature function. If 
� is

close to one, the mean curvature of the segment and

its maximum value are similar, and the segment can be

considered as a curve segment. If 
� is low, the mean

curvature of the segment is lower than its maximum

value. Then, the segment cannot be considered as a

curve segment. Therefore, curve segments are those sets

of consecutive range readings which do not define a

line segment and have a cornerity index greater than

a given threshold �
 (�
 has been fixed at 0.5 in

all experiments). Curve segments are characterised by

its centre of curvature. In order to obtain it, we must

previously obtain the radius of curvature  .

 �
�

� �
�����

���
����

���

(8)

where 
 is a constant that relates curvature values

and centimetres. From  , we can obtain the centre of

curvature associated,



 � 
�� �  

��� � !"
�
�
 � ��� �  ����� � !"
�

(9)

where � �
���

��� �� is the accumulated angle at point

�
��� ���� and the sign of (9) is plus if the curve segment

is concave and minor if it is convex.

6) Detection of corners over ����. Although the corner

value is a single curvature point, it is not defined in

the curvature function as a Dirac delta function. Thus,

the corner is always defined by a value associated to

a local peak of the curvature function, and a region

bounded by two range readings, �� and ��. Therefore,

it can be characterised by a cornerity index, 
�. Taken

this into account, corners are those range readings which



do not belong to any line or curve segments and satisfy

the following conditions: i) they are local peaks of the

curvature function; ii) their ���� values are over the min-

imum angle required to be considered a corner instead

of a spurious peak due to remaining noise (����); iii)

they are located between two segments which have been

marked as line or curve segments, these two segments

determine the region of the corner, ���� ���; and iv) their

cornerity indexes are lower than �
.

The advantage of estimating the curvature in an adaptive way

can be appreciated in Fig. 4. Fig. 4a shows a single laser

scan between two breakpoints. The laser scan presents three

corners, that have been marked with circles over the laser scan.

It also consists of two line segments and a curve segment.

Fig. 4b presents the curvature function associated to Fig. 4a

obtained by the proposed algorithm. It can be noted that all

features have been correctly detected. The limits that define

each feature and the cornerity indexes of the curve segment

and corners have been marked on the figure. Fig. 4c shows two

curvature functions associated to Fig. 4a obtained by using two

constant � values. It can be appreciated that when a low �
value is used (�=5), the curvature function is too noisy and

false corner detections occur. On the contrary, if a high �
value is used (�=15), the laser scan is excessively filtered,

and laser scan details might be lost.

V. EXPERIMENTAL RESULTS

The feature extraction system has been implemented on

two different mobile robots, an ActivMedia Pioneer2-AT that

operates outdoors and a Nomadics Tech. Nomad200 that

operates in an office-like indoor environment. Besides, during

the experiments, people were walking around making the

feature detection task even more challenging. To illustrate the

accuracy of our method, two representative examples of its

performance are shown in Fig. 5. Figs. 5a and 5b present two

scan data collected in an indoor environment (our experiments

in outdoors environment obtain a similar results). The laser

scan range readings have been represented over the real layout.

It can be appreciated that to acquire these two laser scans, the

robot has been stopped, being the difference between laser

scans due to there are two moving persons in front of it.

Figs. 5c and 5d show the detected line segments, corners and

curve segments associated to Figs. 5a and 5b, respectively.

These indoor examples show the capability of the algorithm

to correctly detect line and curve segments and corners and

also the stability of these detections. The presence of the

moving persons could be detected by analizing the obtained

results (segments 8 and 3 in Fig. 5d). Fig. 5e presents the

curvature functions associated to the laser scan in Fig. 5b. The

different curvature functions are bounded by breakpoints or

rupture points. All features have been correctly detected, and

it can be noted that several peaks presented in the curvature

functions have been discarded as corners because they are not

bounded by line or curve segments. Finally, the total time

neccesary to process the scan data is very reduced (less than

12 ms in a 400 MHz PC). Compared to other feature extraction

Fig. 4. a) Segment of a single laser scan (�-breakpoints, o-detected corners);
b)curvature function associated to a) obtained by using an adaptive � value;
c) curvature functions associated to a) obtained by using a constant � value
(�=5 and �=15).

algorithms, the proposed method permits to extract several

features with very low computational requirements. In contrast

to other algorithms that require iterative processing of the same

laser scan [13], the described algorithm adaptively filters the

laser scan depending on the natural scale of the contour range

readings and determines easily the parameters of the features.

VI. CONCLUSIONS AND FUTURE WORK

In this paper a new algorithm for feature extraction from

laser scan data is presented. This algorithm can provide

line segments, corners and curve segments to the mapping

and localisation modules thus reducing the time required

for a mobile robot to succesfully localise itself. The main

advantages of using an adaptive noise removal are that: i)

features are detected at a wide range of scales for a constant

set of detection parameters; and ii) estimated curvature is

better defined. The accuracy and robustness of the proposed



Fig. 5. a) Segmentation of the laser scan #1 (�-breakpoints, o-detected corners); b) Segmentation of the laser scan #2 (�-breakpoints, o-detected corners);
c) line segments, corners and curve segments from a); d) line segments, corners and curve segments from b);and e) curvature functions associated to b).

method was demonstrated in a real world environment while

meeting real-time requirements. Future work includes the

development of an algorithm for robot localisation based on

the extracted features and to test it in dynamics environments.

This algorithm must be capable to differentiate static and

dynamic parts of the environment and therefore, to represent

only these static parts on a map. The union of the static map

and the moving objects could provide a complete description

of the environment.
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