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FEATURE EXTRACTION OF MULTISPECI'RAL DATA

R. B. Crane, T. Crimmins, J. F. Reyer

Environmental Research Institute of Michigan (ERIM)*
Ann Arbor, Michigan

I. ABSTRACT

A method is presented for feature extraction of multispectral
scanner data. Non-training data is used to demonstrate the re
duction in processing time that can be obtained by using feature
extraction rather than feature selection.

II. INTRODUCTION

The data gathered by a multispectral scanner must be processed before much of the USeful
:irU'ormation is available. The amount of data can be inconveniently large when the ground
area to be surveyed ~s large and many spectral channels of data are recorded. This is par
ticularly true when using general purpose, sequential computers. One method of circumventing
this problem, is to limit the number of spectra channels in the scanner itself,., This method
has the disadvantage of requiring that the spectral channels be chosen before or during the
gathering of the data. The choice of spectral regions is dependent on the atmospheric con
ditions and the state of the various ground covers. A problem with this approach is that the
factors needed to choose the spectral channels for' a particular mission may not be accurately
lmown in advance.

Another method of spectral band selection, now being used with most aircraft multispectral
scanners, is to record a reasonably large number of spectral channels of data, and determining
fran the training data during processing which subset of channels should be used. Previous
experience (Crane, 1972) has shown that 4 to 6 spectral channels provide aJmost as much recognition
information on test data as do all of the channels available.

The experiments that will be described in this paper were designed to show an alternative
method of data.reduction. Subsets of linear combinations of recorded channels (Crane, to be
published; Crane, 1972; Jegewski, 1973; Hsia, 1973; Quirein, 1972) rather than a subset of pure
channels, were tested to see if a fewer number of linear combinations of channels could be used
without sacrificing recognition accuracy. If the computation giving the linear combinations of
channels can be carried out in less time than the difference in time in using for recognition a
larger number of pure channels and a subset of linear combinations then a very practical advantage
is achieved for sequentially organized computers. The practical impact may be that many applica
tions may be reduced to using 2 or 3 channels (linear combinations) giving nearly the same re
cognition information as if all pure channels were used but requiring less time (cost) and
storage.

Of course a pure channel is a special type of linear combination, with the advantage that
the pure channel is available without additional processing. The additional processing required
to form the linear canbinations may be a problem. With analog data available, the linear combina
tions can be fonned at the time the data is digitized. For data in digital format, it may be con
venient to form the linear canbinations when the data is converted into a format suitable for re
cognition, or during the preprocessing operation.

tThis work was supported under NASA Contract NAS9-9784.
*Formerly Willow Run laboratories of 'lbe University of Michigan.
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A s imp Le example can illustrate the formation of linear canbinations and the performance
that is possible. Consider the problem of recognizing one of four possible classes using one
linear combinat~on of two channel data. The data channels are assumed to be independent each
with variance CJ. The location of the mean values for the four classes is shown in Fi~e 1.
The calculation of the average probability of misclassification for this geometry was made by
assuming that a linear decision rule would be used, that the data were normal and described by
the means and variance, (1. e. the covariance terms are zero) and that the a priori probabilities
of occurrence of each class are equal. The calculations were limited to pairwise evaluations,
whereby the probabilities of misclassification possible for each pair of classes were not affected
by the presence of the remaining class.

The calculation results are shown in Figure 2, Where the average probability of misclassifica
tion is shown as a function of the angle between the abcissa and projection line that determines
the linear canbination. The performance that would be obtained by using either pure channel is
found for angles of 0° and 90°. The lowest average probability of misclassification occurs for a
linear combination described by an angle of approximately 15°. Thus for this particular example,
a linear combination would be more desirable for recognition than a subset (i. e. a subset of
one) of pure channels.

A procedure for finding the best linear combination in this case might be to start with any
combination, and compute the average probability of misclassification. Then, repeat the calcula
tion for a linear combination described by an angle close to the first angle. This procedure
would then be repeated, alWays using an angle close to that angle which in the previous computa
tion had provided the ~owest average probability of misclassification, until a minimum was found.
For this example, where there are two minima, the lowest would be the one that would be found most
of the time.

A slight variation of the geometry previously described is shown in Figure 3. ~e only
difference is the change in the variance, CJ. Figure 4 depicts the calculated average probability
of misclassification. The averages are all lower than those shown previously, a result of the
reduced variance. In addition, there are now 5 minima, rather than 2, so that a mmtmm seeking
technique is more dependent on the starting linear combination. The number of easily detectable
minima can be reduced by artificially increasing the variance. This phenomena may lead to an
Impr-oved minimum seeking technique.

III. FORMING LINEAR COMBINATIONS

The problem of finding a good method of choosing linear combinations is primarily one of
finding a workable algoritlln in three distinct steps: (1) develop a measure of performance;
(2) develop a minimum seeking technique; and (3) find suitable ~tarting points for initiating
the minimum seeking technique. In addition, the algorithn should not require an excessive amount
of canputational time.

The performance measure used is similar to that employed to find a subset of pure channels
and is derived from the linear decision rule now used routinely in this laboratory. The measure
can be expressed as:

M l:
i,j

(1)

-

where the summation is for all signatures, the i-th class is distributed normally with mean
vector u and covariance matrix R

i,
and 4>(X) is the normal distribution function. The row

vectors ~f the mxn matrix A represent the linear combinations in question. (n is the number of
pure channels and m is the number of linear canbinations.) An advantage of Eq , (1) is that it
can be developed directly from the maxiII1UIIl likelihood decision rule, so the approximations used
can be enumerated and evaluated. In fact, Eq. (1) is approximately proportional to a constant
minus the average probability of misclassification that would be measured.

A method has been developed to find a local minimum of a function of several variables by
starting at a point and following a path of steepest descent by steps of variable but con
trollable size. Both the local gradient and the local curvature are used to estimatt; the path
of steepest descent. .
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Finding starting points, the third step, is more difficult. The following are suggested
starting points.

Best Subset of Channels Starting Point

Each individual channel can be thought of as a linear ccmbination of channels. (The vector
representing OOis ccmbination has a 1 in the appropriate coordinate and 0' s elsewhere.) There
fore, a subset of m channels can be thought of as a set of m linear combinations. Since there
can be a very large number of subsets of m channels, rather than check through all of them to find
the best one, we use a stepwise procedure to find a "good" one. Experience has shown that this
good subset is usually either the best or second best one. This stepwise procedure successively
adds the one channel which gives the lowest average probability of misclassification when used
with the channels alr-eady selected. The linear combinations represented by this subset are then
used as a starting point.

Norm Squared Starting Point

By replacing each covariance matrix by the average of all of them, the problem is reduced to
minimizing the function

M(P) = L <l>(1/21IPw.II)
i l

where the w. are a fixed set of vectors and P ranges over all orthogonal projections
The number ~f vectors w. is the total number of pairwise combinations of signatures.
jection P correspoinds in a simple fashion to a matrix A in the original formulation
The projection P which maximizes

is found analytically and the corresponding A is used as a starting point.

Principal Eigenvector Starting Point

(2)

of rank m,
Each pro

(see [lJ).

First calculate the average of all the covariance matrices. Then transform the data so that
the average covariance matrix is the identity matrix. Let N(~,R) be the distribution of all the
transformed data in the training area lumped together. This distribution can be calculat~from
the distributions of the various materials if we can estimate the frequency of occurrence of each
material. The starting point A is then taken as the matrix whose row vectors are the m orthogonal
eigenvectors correspoinding to the m largest eigenvalues of the cavariance rratrix R.

Clustered Starting Point

This method is based on the fact that if there are only two signatures and we are using
linear discrimination, then there always exists a single linear combination channel which dis
tinguishes exactly as well as all n chRnnels no rratter what the value of n. If there are many
signatures, then for each pair S., S. (i I j) let v .. be the unit vector corresponding to this

l J lJ
best single linear combination. In general, the number of vectors v.. , will be greater than rn,l,J
The v.. are then clustered into m clusters. For each cluster Ck, k=l, ... ,m, a weighted average,l,J
wk' of the v.. in that cluster is corrputed , The starting point A is formed from the wk as row

l,J
vectors. The weights can be rrade to reflect the sensitivity of the recognition accuracy to the
decision rule.

There is one additional problem concerning the determination of A that should be mentioned.
If A is an m x n matrix, there are mn components to be determined. This number of components can
be reduced to men - m) by the choice of a suitable canonical form for A. A canonical form is
possible because the value of Mobtained for any A is not changed if PA is substituted for A,
where P is any nonsingular matr-Lx . We actually use PA, where P is chosen to scale the average
covariance matrix and the mean vectors of the materials to our data f'ormat , The canonical form
we chose is:
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A = (4)

where 1m is the identity rmtrix with rank m, (For a specific example see Figure 1, where m = 3,

n = 10, and the 10 pure channels have been rearranged in order of the wavelength).

The canonical form with the ei j has two advantages. °The first is that, in general, a

minimum number of unknown scalars must be found. The second advantage is that the minimization
process can be acconplished by varying the ei j with a nearly uniform step size. It is not necessary

to have large jumps in the values of the unknown scalars, which occur if the tan eij are con

sidered to be the unknown scalars.

N. EXPERIMENTAL RESULTS

An experiment was devised to conpare subsets of linear combinations with subsets of pure
channels. The data used were one of the data sets previously employed to test our linear de
cision rule (Ref. 1). This particular set of data was chosen because of the difficulty we have
noticed in obtaining satisfactory recognition with it. We felt that with relatively poor re-

o cognition accuracy, the test results would represent greater statistical accuracy. If only a
few data points were incorrectly recognized, the test results would be too dependent on those
few points.

The test procedure we used was to first select data that corresponded to 20 training fields.
From these fields we developed statistics (means and covariance) for each of the 7 classes of
materials. °The statistics or signatures were then used to develop the decision rules which were
applied to data that corresponded to 23 test fields different from the training fields. We then
found the average correct recognition for each field, and then the average for each rmterial.
Finally we averaged recognition accuracies for the rmterials to obtain an average recognition
accuracy for the data set. The computer programs were merely functional, not optimized for
minimum computation time, so meaningful comparisons were not made.

The material classes consisted of bare soil and six vegetative species; alfalfa, barley,
lettuce, sugar, safflower, and rye. The bare soil data tended to be atypical, because three or
more pure channels of data provided almost perfect recognition, whereas all of the subsets of 3
linear combinations of': channels provided reduced accuracy. Note that the various subsets of
linear combinations were chosen to optimize over all the species, therefore it is not surprizing
that they did less well for one of them. There is some evidence that one infrared channel or
ratio of channels can be used to separate vegetative and non-vegetative mater-Lal,s . Thus for
scme applicati-ons of layered or sequential classifiers, bare soil may not be considered as a
class to be recognized when discriminating among vegetation types. However, for this study,
we retained bare soil as a class.

The test results are shown in Figure 5. The top line of each bar indicates the average
recognition accuracy obtained for the 7 classes. The next line indicates accuracies for the
6 vegetative classes. Note that the recognition accuracy for the subset of 3 linear combina
tions was better than that obtained when subsets of either 3 or 4 best pure channels were used.
In fact, the accuracy approached that obtained using all 10 pure channels, especially when only
the 6 vegetative materials are considered.

Figure 5 shows the average recognition accuracy obtained for one subset of 3 linear com
binations only. We actually tested three subsets of 3 linear combinations. '!'wo of the subsets
resulted frcm minimizing our measure function with two different starting points, (the first of
these was used for Figure 5) and the third subset was an unweighted addition of channels. We
obtained approxirmtely the same average recognition accuracy for each of the subsets of linear
cCillbinatiorts.

In Figure 6, the average recognition accuracies we obtained from the 3 subsets of 3 linear
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cc:mbinations are compared with each other and with subsets of pure channels. Note the
correspondence with the predicted accuracies, especially for subsets of pure channels without
the bare soil class.

The first subset of linear combinations is shown in Figure 7, each row represents one com
bination. This matrix is not determined uniquely, because premultiplication by any nonsingular
matrix result~ in a new set of linear combinations which would produce identical recognition
performance.

The starting point for this set was the subset of 3 pure channels that we used for com
parison.

The tentative conclusion that we drew from our test program was that the use of linear
cc:mbinations may be a feasible method of spectral feature extraction to reduce overall pro
cessing time. The tests should be extended to include more data sets and different starting
points.
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Figure 2. Calculated Recognition Accuracy for Different Projection
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Figure 3. Location of Means for Exanple with Small Variance
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Figure 5. Corrparison of Linear Combinations with Subsets of
Channels Test Fields
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Figure 6. Percentage Recognition Accuracy Obtained by Using
Linear Combinations, Subsets of Channels, and by
Analytic Prediction

Without Soil 66 66 64 51 59 68

With Soil 67 70 69 58 65 73

Predicted 71 75 51 62 70

LINEAR COMBINATIONS

No.1 No.2 No.3

SUBSETS

3 4 10
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1 .29 .45 -.74 -.42 -.06 .07 0 0 -.20

0 .23 .65 -.02 .60 .76 .82 1 0 -.01

0 .18 .57 -.34 .20 .31 .11 0 1 -.09

Figure 7. Matrix Describing 3 Linear Channels When the
Starting Point is the Best Subset of 3
Channels
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