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Abstract

Chatter is a cause of low surface quality and productivity in milling and crucial 

features need to be extracted for accurate chatter detection and suppression. This 

paper introduces a novel feature extraction approach for chatter detection by using 

image analysis of dominant frequency bands from the short-time Fourier transform 

(STFT) spectrograms. In order to remove the environmental noises and highlight 

chatter related characteristics, dominant frequency bands with high energy are 

identified by applying the squared energy operator to the synthesized fast Fourier 

transform (FFT) spectrum. The time-frequency spectrogram of the vibration signal is 

divided into a set of grayscale sub-images according to the dominant frequency bands. 

Statistical image features are extracted from those sub-images to describe the 

machining condition and assessed in terms of their separability capabilities. The 

proposed feature extraction method is verified by using dry milling tests of titanium 

alloy Ti6Al4V and compared with two existing feature extraction techniques. The 

results indicate the efficiency of the time-frequency image features from dominant 

frequency bands for chatter detection and their better performance than the time 

domain features and wavelet-based features in terms of their separability capabilities. 
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Nomenclature

ae Radial depth of cut
ap Axial depth of cut
d Pixel distance for gray levels (i, j)
f Frequency
ft Feed per tooth
F0 Feature threshold

, , , Mean, standard variance, skewness and kurtosisnF1
nF2

nF3
nF4

, , , Mean contrast, correlation, energy and homogeneitynF5
nF6

nF7
nF8

, , , Contrast, correlation, energy and homogeneity ranges
nF9

nF10
nF11

nF12

, , , Contrast, correlation, energy and homogeneityCon
dF ,

Cor
dF ,

E
dF ,

H
dF ,

G Gray level

Entry of gray level co-occurrence matrix at gray levels (i, j) ),(, jiGLCM n
d 

Intensity-level histogram for the nth sub-image)(ihn

i, j Gray levels
K Number of vibration signals 
m Time

M, N Sizes of the nth sub-image ),( fmSn

n Index for nth sub-image
np Spindle speed
Np Number of data samples for one spindle rotation

Second-order statistical probability at gray levels i and j ),(, jipn
d 

Probability density of occurrence of gray level i  )(ipn

p1(F), p2(F) Overlapping probability density functions of a feature F in 
classes 1 and 2

SEO Squared energy operator

Spectrogram of vibration signal),( fmS
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t Time

 Smoothing window function for SEO)(1 fw

w2(t-m) a window function centered at time m
xk(t) kth sample vibration signal

STFT of vibration signal),( fmX

y(f) Synthesized FFT spectrum

Squared energy )( fY

, Probabilities for wrong decisions concerning classes 1 and 2)( 0F )( 0F

the Kronecker delta function

θ Pixel angle gray levels (i, j)
1, 2 Class label

1 Introduction 

Current advances towards productivity improvement and cost saving require accurate 

condition monitoring of the manufacturing process in order to decrease the amount of 

the unplanned downtime. In fully automated or lightly staffed machining 

environments, a requirement of accurate detection of the machining condition is 

significantly necessary. Chatter which could damage tools, machines or workpieces is 

a cause of unplanned downtime in a machining environment. Many manufacturers 

deal with chatter by setting machining parameters low, instead of tool strength and 

spindle horsepower defining the metal removal rate. Therefore, chatter becomes a 

limiting factor that keeps the process from reaching its potential. An accurate and 

reliable machining condition monitoring system is expected to reduce downtime by 

allowing maintenance to be scheduled in advance, and increase a cutting speed by 10–

15% and save the cost by 10–40% [1]. 

In order to monitor the machining condition, crucial features are extracted from the 

physical signals, such as cutting forces [2], vibrations [3], sound [4] and acoustic 

emission [5, 6], etc. The extracted features play a key role in identifying the 

machining condition. Vela-Martinez et al. [7] applied the Hurst exponent to identify 
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the dynamical changes in milling operations. Two features, the energy ratio and the 

ratio of the mean and standard deviation, were proposed by Fu et al. [8] to describe 

the machining condition, and a Gaussian mixture model was applied to determine the 

thresholds of the two features for the stable and unstable tests. The above works 

adopted one or two feature(s) as scalar indicators to diagnose the machining 

condition. On the other hand, Chen et al. [5] obtained a better diagnosis in a high 

dimensional feature space from the frequency domain. It is noted that not all features 

can adequately reflect the dynamic changes in the machining conditions. A high 

dimensional space with irrelevant features affects the computation time. Salient 

features need to be selected from the original feature set. Separability capability 

ranking of features is a commonly-used technique for feature assessment and 

selection. Lamraoui et al. [9] adopted Kullback-Leibler distance to rank nine time-

domain features extracted from vibration signals and selected four top-ranked features 

to develop a time-effective monitoring system. Boashash et al. [10] applied the area 

under the receiver operating characteristics curve to assess the performance of 

different feature sets for EEG seizure detection.

Due to inherent complexity and variability of machining mechanisms, the 

characteristics of the signals obtained in machining can be very complex, showing 

non-stationarity and a variety of uncertainties [11]. The effectiveness of a naive signal 

processing technique in a single domain, either the time domain or frequency domain, 

is not sufficient to provide reliable results for practical applications. The time-

frequency methods can reflect the frequency variations of a non-stationary signal over 

time. Liu et al. [12] used a wavelet-based algorithm for chatter detection in grinding, 

and Li et al. [13] applied the wavelet packet transform to investigate chatter 

occurrence in the micro-milling process. Although wavelet-based methods perform 

well in detecting transitions of nonstationary data, they rely on the specified basis 

functions [14]. To overcome the dependence on the basis functions, Susanto et al. [3] 

used the Hilbert-Huang transform for chatter detection in end milling. Perez-Canales 

et al. [15] implemented a multi-scale approximate entropy analysis to identify the 
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randomness of the signals when chatter occurs. 

Although the time-frequency transform is powerful to process the non-stationary 

signals, it alone is unable to quantify the machining condition and cannot be directly 

processed by classification methods for intelligent chatter detection. Additional scalar 

indicators or features must be extracted from the time-frequency analysis for 

quantification. Scalar features are usually extracted from the decomposed components 

of the time-frequency analysis [16, 17]. Although the decomposed components have 

narrower frequency bands than the original signal, features from those components 

are still based on one-dimensional space and may not sufficiently provide enough 

information for efficient chatter detection. On the other hand, the time-frequency 

spectrum can be treated as a two-dimensional image. Features can be extracted to 

describe different image characteristics between the stable and unstable machining 

conditions. Statistical approaches are the common tools used to extract image 

features, and represent the image using statistics collected from the distributions and 

relationships between the gray levels of an image [18]. The most popular statistical 

image features are derived from the gray level co-occurrence matrix (GLCM). The 

GLCM assesses co-occurrence of gray levels of two pixels located at any given 

distance and angle in an image. Abnormalities that may be hidden in the traditional 

time domain can be discovered by the time-frequency image, and bring about 

variations of neighboring pixel distributions and relationships in the image. Thus, the 

GLCM that considers the relationships among pixels at different distances and angles 

is powerful to detect abnormalities in non-stationary signals [10]. The statistical 

image features have been used in the neurocomputing science [19] and scene 

segmentation [20]. In tool condition monitoring, Dutta et al. [21] employed statistical 

image features to machined surface images for on-machine tool prediction of flank 

wear. 

This paper applies time-frequency image features from dominant frequency bands for 

chatter detection in milling. The dominant frequency bands with high energy are 



6

identified to reduce the environmental noise. Image features from dominant frequency 

bands are applied to describe complex and non-stationary properties in STFT 

spectrograms. The area under the receiver operating characteristics curve is used for 

assessment, so that the most sensitive image features related to chatter can be 

identified. The proposed method is verified in milling and compared with two 

additional methods for chatter detection. 

2 Methodology 

2.1 Frequency band selection

The stability of milling operations highly depends on the dynamic behavior of the 

machine. When the milling process is unstable, dominant vibration frequencies or 

chatter frequencies with high energy are in most cases close to natural frequencies of 

the milling system [22]. Identification of dominant frequency bands related to natural 

frequencies can decrease the high level of environmental noises, and improve the 

sensitivities of features extracted from those bands. Lamraoui et al. [9] used resonance 

values of the frequency response function (FRF) to identify dominant frequency 

bands for chatter detection. The hammer impact test is a common approach to 

determine the FRF, but it requires additional sensors (e.g. hammer) for experiments. 

In order to avoid additional sensors, a synthesized FFT of vibration signals from all 

cases of machining conditions is defined in Eq. (1) to localize dominant frequency 

bands. Direct localization of dominant frequency bands from the synthesized FFT is 

difficult. Energy operators based on moving windows can smooth the synthesized 

FFT spectrum and magnify the local peaks, which help identification of dominant 

frequency bands. Candidate energy operators include Teager energy operator [23], 

nonlinear energy operator [24] and squared energy operator (SEO) [25], etc. This 

work uses the SEO that depends on only the window function, instead of the other 

two candidates that rely on both the window function and lag parameter. 

Sample training vibration signals  (k=1, 2… K) from each case of machining )}({ txk
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condition, either stable or unstable, are firstly analyzed by using FFT algorithm, and 

then summed up to obtain a synthesized FFT spectrum

(1)
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where y(f) is the synthesized FFT spectrum, f is the frequency and FFT[xk(t)] is the 

FFT of signal xk(t). The FFT algorithm is implemented using the function “fft” in 

Matlab [26]. In order to identify dominant frequency bands with high energy, the SEO 

is applied to process y(f)

(2))()())(()( 1
22 fwfyfyEfY 

where  is the convolution operator, and  is a smoothing window function.  )(1 fw

The smoothed and squared energy in Eq. (2) magnifies the local frequency 

components with high energy, as the non-dominant frequency band has a significantly 

smaller energy value. 

A better choice of window length can properly separate the dominant bands from non-

dominant ones in the synthesized FFT spectrum. A small window length cannot 

sufficiently smooth the synthesized FFT spectrum, and a large window length may 

combine two closely-located dominant frequency bands. Therefore, the length of the 

smoothing window should be selected carefully. The proposed procedure for 

identification of frequency bands is based on the work given by Attoui et al. [27]. 

Instead of the short-frequency energy defined by Attoui et al., a more widely-used 

squared energy operator is employed for frequency band selection in this study. It is 

noted that Attoui et al. did not state the method for determining the upper and lower 

limits of frequency bands. Therefore, the cut-off frequencies that are commonly used 

in filter design are introduced to determine the limits of each frequency band. The cut-

off frequencies are the frequencies where the squared energy  drops to  )( fY 2/1

of its local peak value. 
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2.2 Time-frequency image features

The time-frequency spectrogram by the STFT contains the information of the 

vibration signal in both time and frequency domains. The vibration signal is 

transformed by applying STFT

(3)
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where x(t) is a vibration signal, and w2(t-m) is a window function centered at time m. 

The spectrogram of x(t) is the squared magnitude of its STFT 
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Fig. 1. Spectrogram and its grayscale sub-images. 

The spectrogram is divided into several sub-images according to the dominant 

frequency bands, and converted to G gray-level sub-images, as shown in Fig. 1. 

Statistical approaches are used to extract the features from the grayscale sub-images. 

The first-order statistics are calculated from the gray-level histogram showing the 

number of pixels in each sub-image [18]. The gray-level histogram is defined as 

(5)1,,0)),,(()(  GiifmSih
f m

nn 

where i is a gray level,  is the Kronecker delta function, and  is nth  ),( fmSn

grayscale sub-image divided from the whole spectrogram S(m, f). The approximate 

probability density of occurrence of the intensity levels is obtained as 
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where M and N are the sizes of the sub-image . The first-order statistics used ),( fmSn
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are listed in Table 1.

Table 1. First-order statistical image features.

Feature Equation
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The first-order statistics ignore the pixel neighborhood relationships. On the other 

hand, the gray level co-occurrence matrix (GLCM) estimates image properties related 

to second-order statistics that consider the relationship between pixels. GLCM is an 

estimate of the joint probability distributions of two pixels, a distance d apart along a 

given direction θ having co-occurring gray values i and j [28]
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The matrix element  is an approximate second-order statistical probability ),(, jipn
d 

for changes between gray levels i and j at a particular pair (d, θ) 

(8)
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The second-order statistical features (i.e. contrast, correlation, energy, and 

homogeneity) can be extracted from the GLCM

Contrast:  (9) 
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Correlation: (10) 
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Homogeneity: (12) 
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Fig. 2. GLCM construction methods at different angles.

Table 2. Second-order statistical image features.

Feature Notation Feature Notation
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Due to the intensive nature of computations involved, often the distances d = 1 and 2 

pixels with angles  are considered as suggested by Haralick et al. }135,90,45,0|{ oooo
i

[29], as shown in Fig. 2. This study uses a distance d = 1 pixel, and the symmetric 

form of co-occurrence matrix. As four angles  are considered, }135,90,45,0|{ oooo
i

there are four sets of second-order statistical features. Instead of the whole four sets of 

second-order features, the mean and range of each type of a second-order feature are 
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used for chatter detection (Table 2).

2.3 Feature assessment

The first-order and second-order image features may differ in their ability to contain 

as much information to describe the machining condition. Thus, the receiver operating 

characteristics (ROC) curve and the area under this curve (AUC) are used to assess 

image features in terms of their separability capability [30]. Fig. 3(a) illustrates two 

overlapping probability density functions p1(F) and p(F) describing the distribution 

of a single feature F in two classes 1 and 2, together with a threshold F0. It is 

assumed that values on the left of the threshold belong to class 1 and values on the 

right belong to class 2. This results in two probabilities   and  of )( 0F )( 0F

reaching wrong decisions concerning class w1 and class w2, respectively

, (13)
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The ROC curve plots parametrically  versus   with F0 as the variable, )(1 0F )( 0F

as Fig. 3(b) demonstrates. If the two probability density functions have complete 

overlap,  equals  for any threshold. As the two distributions move )( 0F )(1 0F

apart, the corresponding ROC curve departs from the straight line , )(1)( 00 FF  

as shown in Fig. 3(b). 

The AUC is defined as the shaded area between the ROC and the straight line. This 

area varies between zero for complete overlap, and 1/2 for complete separation. It is a 

measure of the class separability capability of the specific feature [10]. A high AUC 

implies that a feature is good in discriminating between two classes, whereas a low 

AUC implies that a feature fails to discriminate. Thus, the time-frequency image 

features are ranked according to their corresponding AUCs. 
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Fig. 3. Feature assessment (a) overlapping probability density functions of the same 

feature in two classes and (b) the resulting ROC curve and AUC.

2.4 Proposed chatter detection method

The performance of a chatter detection method depends on crucial features extracted 

from the measured signals. Noise reduction is critical to extract the most informative 

features related to chatter. The extracted feature type determines its sensitivity to 

chatter. As the time-frequency method is powerful to reflect non-stationary properties, 

image features are employed to describe the properties revealed in time-frequency 

images. In order to increase the signal-to-noise ratio, this paper employs the SEO for 

localization of dominant frequency bands that are used to pre-process STFT time-

frequency images. Image analysis is used to extract features from time-frequency 

images, and the sensitivity of image features is assessed using the AUC. The 

procedure for the proposed method is summarized in Fig. 4.

Fig. 4. Proposed chatter detection method.
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3 Experimental results

3.1 Experimental setup

The proposed method was assessed in milling of titanium alloy Ti6Al4V under dry 

cutting conditions. The experimental setup and coordinate system of the vibration 

signals are shown in Fig. 5. The feed direction is the x direction. An accelerometer 

was mounted on the workpiece clamp to measure the vibration signals in the y 

direction. The sample rate for the tests was 20 kHz. Shoulder milling was performed 

throughout the tests. The cutter was a two-flute end mill with a diameter of 8 mm and 

a helix angle of 30o. The total number of experiments is 82 under spindle speeds np 

from 1100 to 7600 rpm, feed per tooth ft = 0.08, 0.1, 0.12 mm/tooth, axial depth of cut 

ap = 4, 8, 12 mm, and radial depth of cut ae = 0.5, 1, 1.5mm. 

X Y

Z

Tool

Accelerometer

Fig. 5. Milling experimental setup.

3.2 Feature extraction and assessment

A set of training samples that include four tests for each case of machining condition, 

either stable or unstable, are summed to localize the dominant frequency bands. Two 

of the tests used for selection of the dominant frequency bands are shown in Fig. 6. 

The vibration signal for the stable test has a small amplitude variation, whereas the 

signal for the unstable test shows a significant variation. The Hanning window 

function is used for w1 in Eq. (2). Fig. 7 shows the synthesized FFT spectrum and its 

squared energy under different window lengths. The squared energy for each window 

length is normalized using its maximum. A small window length (e.g. 50 and 200) 
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cannot clearly reveal the dominant frequency bands, whereas a large window length 

(e.g. 800 and 1,000) may combine two dominant frequency bands that are closely 

located. In this study, a window length between 300 and 700 is proper for localization 

of the dominant frequency bands. 

(a)

(b)

Fig. 6. Vibration signals (a) stable at np 2100 rpm, ap 12 mm, ft 0.1 mm/tooth and ae 

0.5 mm (b) unstable at np 1600 rpm, ap 8 mm, ft 0.1 mm/tooth and ae 1 mm. 

For further analysis, a window length of 400 is selected, and its corresponding 

normalized energy is shown in Fig. 8. Five dominant frequency bands are identified 

using the cut-off frequencies, which are located between 180 and 350 Hz, 1050 and 

1450 Hz, 1650 and 1900 Hz, 2800 and 3050 Hz and 4800 and 5200 Hz. Table 3 lists 

the natural frequencies that are obtained by hammer impact testing. Detailed 

experimental setup and results for the hammer impact test are given in Ref. [31]. 

Interestingly, except the first frequency band 180-350 Hz, the left four bands cover or 

close to multiple natural frequencies. The first frequency band may be formed by the 

high energy of the tooth passing frequencies of the selected tests. Because of such a 

relationship between the dominant frequency bands and natural frequencies, Lamraoui 

et al. [9] have used the FRF from hammer impact testing to identify the dominant 

frequency bands. The squared energy provides an alternative method to identify 

dominant frequency bands, and no hammer impact experiments are required. 
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Although the cut-off frequencies are determined by the half power method, the width 

of each frequency band can be narrowed or broadened, which do not significantly 

affect the AUCs of the most informative image features. 
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Fig. 7. Effect of window length (a) synthesized FFT spectrum (b) normalized squared 

energy with different window lengths.
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Fig. 8. Normalized squared energy with window length 400.

Table 3. Natural frequencies for the workpiece and tool [31].

Direction Natural frequency (Hz)
x 1107
y 1220

Workpiece

z 1111, 2945
x 1355, 1900, 2780, 4912Tool
y 1308, 1875, 2719, 5011
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Fig. 9. Spectrograms of tests in Fig. 6 (a) stable (b) unstable.

The spectrograms and sub-images for the tests in Fig. 6 are presented in Fig. 9. A 

sensitive study is conducted before determining the proper length for the window 

function w2. The investigated window length ranges from 27 to 210. A window length 

of 29 is finally selected as it balances the time and frequency resolutions of the STFT 

spectrograms and gives the largest AUCs for the top ranked features. The window 

function w2 for STFT has a length of 29. Sub-images are firstly extracted from the 

spectrograms according to the dominant frequency bands and then converted into 

grayscale sub-images. A sensitivity analysis is conducted to choose the total number 

G of gray levels. It is found that all the image feature values become stable when 

G >= 28. Thus, the total number G=28 is used to normalize each sub-image into a 

range from 0 to 28-1. As aforementioned, chatter is related to energy rise around 

specific natural frequencies. The fifth frequency band extracted from the synthesized 

FFT spectrum automatically covers two natural frequencies 4912 and 5011 Hz in the 

x and y directions, respectively. When the test becomes unstable, pixel intensities rise 

in the fifth band. This indicates that the two natural frequencies are important for 

chatter occurrence in the investigated milling system. 
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The image features are extracted from the grayscale sub-images, instead of the whole 

spectrograms. The AUC is used to rank the separability capability for each feature, as 

shown in Fig. 10. The results show large AUCs for most features from the fifth band. 

The two features from the fifth band, mean correlation  and correlation range 5
6F 5

10F

, have large AUCs of 0.45 and 0.42, respectively, and therefore high capabilities to 

separate the stable and unstable tests. Obviously, it is the big difference of the fifth 

band between the stable and unstable tests that results in large AUCs for image 

features from this band. Those results evidence the efficiency of image features to 

describe characteristics implied by time-frequency images. Separability capabilities of 

different features are compared in Fig. 11. In Fig. 11(a), the top two ranked features 

define a two-dimensional space and the location of each test in this space is fully 

determined by its feature values. Similarly, Fig. 11(b) gives the test distributions in 

the space defined by the last-two ranked features. The test distributions in the top two 

feature space show much less overlapping than those in the last two feature space. A 

less overlapping distribution usually implies better pattern recognition performance 

for intelligent chatter detection.
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Fig. 10. AUC for each image feature from sub-images.
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Fig. 11. Two-dimensional feature spaces (a) top two ranked features with high AUCs 

(b) last two features with low AUCs.

Table 4. Cutting parameters for selected six tests.

np ft ap aeTest 

#

Condition
rpm mm/tooth mm mm

1 Unstable 1600 0.1 8 1

2 Unstable 2100 0.1 8 1

3 Unstable 2600 0.1 8 1

4 Stable 6100 0.1 12 1

5 Stable 6600 0.1 12 1

6 Stable 7100 0.1 12 1

Six tests in Table 4 are used to examine the capacity of the proposed method to 

distinguish the forced vibration condition with high level of vibration in respect to 

chatter condition. The unstable tests 4-6 are with large spindle speeds and high level 

of vibration due to forced vibration. Fig. 12 compares the machined surfaces, time 

domain signals and spectrograms for tests 3 and 6. The stable test 6 had a high level 

of vibration and showed no chatter marks. The spectrogram for test 3 shows 

abnormalities in the fifth frequency band. The six tests are highlighted in Fig. 11(a). 

The three stable tests are represented with black “x”, and the three unstable tests with 

black “o”. Those stable and unstable tests are well separated in Fig. 11(a). As the sub-

images are normalized in the range from 0 to 28-1, features from the normalized sub-

images are little related with the absolute level of vibration, but depend on the time-

frequency image patterns or relative gray levels of pixels. Hence, the proposed 

method is efficient to distinguish forced vibration conditions from chatter conditions.
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Fig. 12. Machined surfaces, time signals and spectrograms for (a) test 3 (b) test 6 in 

Table 4.

Three typical tests in Table 5 are selected in order to further examine the top two 

features on qualification of the time-frequency images. The machined surfaces, 

vibration signals, spectrograms and grayscale sub-images are shown in Fig. 13. The 

amplitudes of the vibration signals increase and become chaotic, as the surface quality 

decreases from test 1 to test 3 or the severity of chatter increases. Different image 

patterns, especially in the fifth frequency band, are reflected on the spectrograms and 

sub-images. The top two features, mean correlation  and correlation range , 5
6F 5

10F

either decrease or increase with the increase of the severity of chatter, as listed in 

Table 6. As the correlation  defined in Eq.(10) is a measure of gray level linear Cor
dF ,

dependence between the neighboring pixels at the specified directions [28]. A large 

correlation means highly correlated neighboring pixels, and vice versa. The increase 

of the mean correlation  and the decrease of the correlation range  imply a 5
6F 5

10F

high correlation among the neighboring pixels over the four directions 

. In both Fig. 9 and Fig. 13, the pixel intensities of the fifth }135,90,45,0{ oooo

frequency band in the stable tests are relatively randomly distributed, whereas the 

high-intensity pixels of the fifth frequency band are gathered up due to chatter. This 
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explains why  increases and  decreases when chatter occurs. On the other 5
6F 5

10F

hand, the last two features, homogeneity range  and energy range , are not 1
12F 3

11F

proportional to the severity of chatter, which cannot fully quantifying the stability of 

machining operations.

Table 5. Cutting parameters for three typical tests.

np ft ap aeTest # Condition
rpm mm/tooth mm mm

1 Stable 1100 0.10 4 1.0
2 Unstable 2100 0.10 8 1.0
3 Unstable 2600 0.12 12 1.0
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Fig. 13. Machined surface, vibration signals, spectrograms and sub-images (a) test 1 
(b) test 2 (c) test 3 in Table 5.

Table 6. Top two and last two features for tests 1-3.

Top two features Last two features
Test #

5
6F 5

10F 1
12F 3

11F

1 0.13 1.03 0.05 3.28e-04
2 0.72 0.20 0.08 2.91e-05
3 0.76 0.12 0.02 6.33e-05
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Two additional tests in Fig. 14 are presented to investigate the capability of the mean 

correlation  and correlation range  as potential indices for online chatter 5
6F 5

10F

detection. A moving hanning window with a length of 5,000 is applied to the whole 

vibration signals to extract data samples for STFT, and each pair of successive 

windows has an overlap of 5,000-Np (Np is the number of data samples for one spindle 

rotation) data samples. The corresponding  and  are given in Fig. 14. It can be 5
6F 5

10F

seen that the unstable test has a larger mean correlation  than the stable one, and 5
6F

also a smaller correlation range . Zoomed views of the two tests are given in Fig. 5
10F

15. The vibration signal for the unstable test shows significant amplitude variations, 

implying a highly complex and non-stationary milling process. The features  and 5
6F

 sufficiently track the amplitude variations. As STFT is a relatively fast time-5
10F

frequency analysis method, the calculation of a single pair  and  over 5,000 5
6F 5

10F

data samples takes about 0.03 s using Matlab on a desktop computer with CPU 2.8 

GHz and RAM 8GB. Therefore, the pair of features can be used as chatter indices for 

real-time condition monitoring. The current discussion of image features for chatter 

detection is limited in a laboratory environment, and more efforts are required to 

explore them in practical applications. 
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Fig. 14. Vibration signals and corresponding mean correlation  and correlation range  5
6F 5

10F
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(a) stable at np 4600 rpm, ap 8 mm, ft 0.1 mm/tooth and ae 1 mm (b) unstable at np 2100 rpm, 

ap 12 mm, ft 0.1 mm/tooth and ae 1 mm.
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Fig. 15. Zoomed views of (a) stable test and (b) unstable test in Fig. 14.
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Fig. 16. Performance of image features from the whole spectrograms (a) AUCs for 

each feature (b) test distributions in the top two ranked feature space.

3.3 Effect of dominant frequency bands 

In order to further validate the proposed method, the image features from the sub-

images and from the whole spectrograms are compared using the same feature 

assessment method. The AUC for each feature from the whole spectrogram is shown 

in Fig. 16(a). For comparison, the largest AUC among the five sub-images or 

dominant frequency bands for each type of feature is also given in Fig. 16(a). The 
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feature, homogeneity range  from the whole spectrogram, has a maximum AUC 1
12F

of only 0.32, which is lower than the maximum AUC 0.45 for the mean correlation 

 from the sub-images. To further examine the separability capabilities of the 5
6F

image features from the whole spectrogram, Fig. 16(b) shows the stable and unstable 

tests in the space defined by the top two ranked features from the whole spectrogram. 

The stable and unstable tests show significant overlapping. 

3.4 Comparison 

The proposed feature extraction method is compared with the method proposed by 

Lamraoui et al. [9]. In Lamraoui’s approach, a set of multiband resonance filters 

based on the dominant frequency bands are designed to pre-process vibration signals. 

The time-domain (TD) features in Table 7 are extracted from the envelopes of the pre-

processed signals. Fig. 17(a) shows the AUC for each time-domain feature. The root 

mean square Ft3 has the maximum AUC of 0.43, which is lower than the maximum in 

Fig. 10 but higher than that in Fig. 17(a). Similar results can be observed in Fig. 17(b) 

that gives the test distributions in the top two ranked feature space, which also shows 

a relatively large overlapping area. 
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Fig. 17. Performance of time domain features (a) AUCs for each time domain feature 

(b) test distributions in the top two ranked feature space.
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Table 7. Time domain features used by Lamraoui et al. [9].

Feature Notation Feature Notation
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* is the envelope of a signal pre-processed by multiband filters.)(kx

A feature extraction method based on wavelet transform is also used for comparison. 

Yao et al. [16] extracted two wavelet-based features, standard variation (T1) and 

energy ratio (T2), from the most sensitive component obtained by using discrete 

wavelet and wavelet package decomposition, respectively. Similar to Yao’s work, 3-

level decomposition and wavelet db10 are used to decompose the signals. The 

sensitive component is selected according to the fifth frequency band (4800 and 5200 

Hz). The AUCs for T1 and T2 are 0.24 and 0.38, respectively, indicating their low 

separability capabilities. Hence, the stable and unstable tests show a significant 

overlap in Fig. 18. 
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Fig. 18. Test distributions in the space defined by wavelet-based features T1 and T2.

A significant overlap between the stable and unstable tests in the feature space usually 
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means a poor classification performance for intelligent chatter detection. Although 

both time domain features and wavelet-based features are extracted from components 

with frequency bandwidths narrower than the raw signal, the two types of features are 

still based on one-dimensional components. On the other hand, image features 

represent the relationships between neighboring pixels in the time-frequency image, 

and therefore have a better performance in discriminating the stable and unstable 

tests.

4 Conclusions 

This paper applies time-frequency image features from dominant frequency bands for 

chatter detection. The time-frequency analysis is powerful to discover the non-

stationary properties of vibration signals in milling. Scalar features are needed to 

directly quantify the properties revealed by the time-frequency analysis. This study 

treats STFT spectrograms as images and applies image features from those images for 

quantification of machining condition. The dominant frequency bands with high 

energy are identified by the SEO and used to pre-process the STFT spectrograms, 

which increases the signal-to-noise ratio and the sensitivity of generated image 

features to chatter. In order to identify the most sensitive image features, the 

separability capability for each feature is assessed using the AUC. 

The proposed feature extraction method is verified under various cutting parameters 

in milling. When chatter occurs, energy rises at chatter frequencies that are close to 

certain natural frequencies of the milling system. In this study, the fifth dominant 

frequency band that covers two natural frequencies 4912 and 5011 Hz in the x and y 

directions respectively shows a big difference in the energy distributions between the 

stable and unstable tests. Thus, most image features from the fifth dominant frequency 

band have large AUCs or high separability capabilities. The two features, mean 

correlation  and correlation range  from the fifth band, have the largest AUCs 5
6F 5

10F
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and high capabilities to separate the stable and unstable tests.  increases and  5
6F 5

10F

decreases with the severity of chatter, which imply an increasing correlation among 

the neighboring pixels over the considered four directions }135,90,45,0{ oooo  in the 

fifth band. Correspondingly, the pixel intensity in the fifth band changes from a 

relatively random to concentrated distribution when the test becomes unstable. 

Therefore, 5
6F  and 5

10F  can well quantify the stability of machining condition. For 

further validation, the proposed method is compared with two existing feature 

extraction methods. The results show that image features give a better performance 

than time domain features and wavelet-based features. This work indicates that the 

proposed method is efficient for discriminating between the stable and unstable tests, 

and will be further applied for intelligent chatter detection in the next paper. 
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