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Abstract: This research compares the facial expression recognition accuracy achieved using image
features extracted (a) manually through handcrafted methods and (b) automatically through convo-
lutional neural networks (CNNs) from different depths, with and without retraining. The Karolinska
Directed Emotional Faces, Japanese Female Facial Expression, and Radboud Faces Database databases
have been used, which differ in image number and characteristics. Local binary patterns and his-
togram of oriented gradients have been selected as handcrafted methods and the features extracted
are examined in terms of image and cell size. Five CNNs have been used, including three from the
residual architecture of increasing depth, Inception_v3, and EfficientNet-B0. The CNN-based features
are extracted from the pre-trained networks from the 25%, 50%, 75%, and 100% of their depths and,
after their retraining on the new databases. Each method is also evaluated in terms of calculation
time. CNN-based feature extraction has proved to be more efficient since the classification results are
superior and the computational time is shorter. The best performance is achieved when the features
are extracted from shallower layers of pre-trained CNNs (50% or 75% of their depth), achieving
high accuracy results with shorter computational time. CNN retraining is, in principle, beneficial in
terms of classification accuracy, mainly for the larger databases by an average of 8%, also increasing
the computational time by an average of 70%. Its contribution in terms of classification accuracy is
minimal when applied in smaller databases. Finally, the effect of two types of noise on the models is
examined, with ResNet50 appearing to be the most robust to noise.

Keywords: convolutional neural network; facial emotion recognition; feature extraction; histogram
of oriented gradients; local binary patterns; transfer learning

1. Introduction

Facial emotion recognition (FER) is part of the wider technology referred to as “affec-
tive computing” [1], a field of research on the interaction between humans and computers
based on artificial intelligence technologies. Recently, emotion recognition through facial
emotions has been proven to be an important aid and effective tool in fields of medicine [2,3],
health care surveillance systems [4], smart living [5], traffic safety [6], and can be leveraged
in many more applications.

Facial expressions are associated with possible facial muscle postures and match
their combinations with emotions. Most research has relied on the Facial Action Coding
System [7], in which specific action units analyze facial expressions.

Image feature extraction is a crucial step in the image classification process. The infor-
mation content of these features can determine classification accuracy. Feature extraction
can be achieved using either handcrafted or CNN-based methods. The former specifies the
transformation applied to the image, and the information extracted is defined and known
(e.g., texture analysis, edge and corners description). Handcrafted methods have been the
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de facto tool for extracting image features until recently, while the use of deep learning
techniques has significantly increased in the last decade. The usage of CNNs for feature
extraction poses questions (a) the layer from which the features are extracted and (b) the
need to train the CNN from scratch (which is resource-consuming and presupposes a large
training set) or the possibility of using already trained CNNs employing transfer learning.

The aspects of FER feature extraction formulate the research framework of this paper.
The research strategy includes (a) the selection of feature extraction methods, (b) the identifi-
cation of FER databases and selection of a representative subset, and (c) the evaluation of the
methods per database category investigating adaptation and customization possibilities.

Specifically, we evaluate the two types of feature extraction methods and evaluate the
aptness of the extracted features in terms of classification accuracy achieved. The meth-
ods used include two handcrafted (local binary patterns—LBP and histogram of orient
gradients—HOG) and five CNN-based, specifically, three networks of the Residual Net-
works (ResNet) family (ResNet18, ResNet50, and ResNet101), and two CNNs of different
architectures (Inception_v3 and EfficientNet-B0). The handcrafted methods are investigated
in terms of (a) the feature size they extract depending on their internal parameters and
(b) the classification accuracy they achieve. CNNs are employed for (a) the extraction of
features from different levels of their depth, (b) the extraction of features after transfer
learning, and (c) their classification accuracy. Both methods are evaluated for their robust-
ness to Gaussian and salt and pepper noise. Our goal has been to compare the performance
of each feature extraction method for FER applications in terms of classification accuracy
and computational time so that the appropriate choice of method can be made depending
on the requirements and resources. While a comparison between the two different types of
methods has been performed in other fields of image processing, we focus specifically on
FER, and to our knowledge, we perform the first systematic research on the extraction of
parameters from various depths of pre-trained networks for FER applications.

Three publicly available image databases are used: Karolinska Directed Emotional
Faces (KDEF), Japanese Female Facial Expression (JAFFE), and Radboud Faces Database
(RaFD), with images of different numbers and characteristics such as color, number of
classes, and poses in each class.

The research is structured as follows: Section 2.1 presents a review of the main hand-
crafted methods, and in Sections 2.2 and 2.3 are reported recent studies comparing hand-
crafted and CNN-based methods in various image categories classification and in FER
applications, respectively. Section 3 describes the design and implementation. Section 3.1
presents the databases used in this research and information about the number, quality,
and classes of images they contain. Section 3.2.1 analyzes the handcrafted methods as
well as their resulting feature size. Section 3.2.2 describes the different CNN architectures
employed, and Section 3.3 refers to the SVM classifier selected. Section 4 describes the set
of scenarios and relevant results. Specifically, Section 4.1 presents the classification results
with the handcrafted methods, and Section 4.2 with CNN-based feature extraction from
four different CNN depths, with and without retraining. Section 5 examines the effect of
Gaussian and salt and pepper noise on the test images. Finally, Section 6 summarizes the
conclusions of this research, and Section 7 reports on future research topics.

2. Related Work
2.1. Handcrafted Feature Extraction Methods

The Harris–Stephens algorithm (1988) [8] is based on Moravec’s corner detection and
considers the direction of the intensity change making the distinguishing between corners
and edges more accurate. While the Harris method was rotation-invariant, it was not
scale-invariant. The Scale-Invariant Feature Transform (SIFT, 2004) [9] has been scaling
tolerant by changing the window size depending on the scaling in the image. In 2005 the
Features from Accelerated Segment Test (FAST) [10] was proposed to deal with real-time
applications by applying a fast feature detection test. In this test, a feature is detected at a
pixel p if the pixels at the cardinal points of a 16-pixel radius circle with center the pixel
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p have all intensities above or below the intensity of p. The Speeded-Up Robust Feature
(SURF, 2006) [11], as its name implies, is the speeded-up (fast) version of SIFT. Here the
Laplacian of Gaussian filters is approximated with BisFilters, which can be calculated for
different scales simultaneously. SIFT and SURF have the disadvantage of large feature
vectors, which are detrimental in terms of memory. This problem is solved by the Binary
Robust Independent Elementary Features (BRIEF, 2010) [12] method, which gives binary
strings by comparing the intensities of pixel pairs. This method does not detect the features
but needs to be preceded by a detection algorithm. Oriented Fast and Rotated Binary Robust
Independent Elementary Features (ORB, 2011) [13] is a combination of the FAST, SIFT, and
SURF algorithms, freely available from the OpenCV Labs. The KAZE features (2012) [14]
confront Gaussian blurring by detecting and describing two-dimensional features in non-
linear scale space. Additive operator splitting techniques result in noise reduction while
simultaneously maintaining object boundaries. In addition, Local Binary Patterns (LBP,
1996) [15] and Histogram of Oriented Gradients (HOG, 2005) [16] are two practical and
widely used algorithms that we also employ in this research and analyze extensively in
next the section. Studies comparing the above methods have also been performed [17].

2.2. Handcrafted vs. CNN-Based for Image Classification

With their deep learning architecture, convolutional neural networks (CNNs) learn
from the data directly and deliver highly accurate recognition results. CNNs can extract,
and process features internally to perform tasks such as image classification, object detec-
tion, and recognition.

Comparisons of classification results using these methods (handcrafted and CNN-
based) have been studied. In [18], the handcrafted methods LBP and HOG are compared
with the deep features for the classification of histopathology images, with the LBP method
giving the best results. On the other hand, in [19], the classification accuracy obtained using
neural networks was 22% higher than that obtained using various manual methods for ear
recognition. In [20], the fusion of features derived from both methods seems to perform
better than each case separately for identifying the adequacy of contrast-enhanced magnetic
resonance liver images. In [21], eighteen datasets containing images from various categories,
ranging from medical and subcellular to butterfly species, materials, flora, smoke images,
paintings, etc., are classified using both deep learning-based and handcrafted features. The
former includes principal component analysis network (PCAN) and the compact binary
descriptor (CBD), as well as transfer learning methods. The latter includes the use of the
methods local binary pattern (LBP) and eight variants of it, local ternary pattern (LTP), and
local phase quantization (LPQ). Dimensionality reduction in the features extracted from
the CNNs was also carried out with the discrete cosine transform (DCT) and principal
component analysis (PCA) methods. The comparison between the handcrafted and non-
handcrafted features and their combination showed that the two feature extraction systems
provide different information, and therefore the fusion of handcrafted features with the
CNN-based outperforms the standard approaches. In our case study, the fusion of the
features of the two methods resulted in the classification accuracy taking an intermediate
value between the results of the two methods separately. Classification accuracy results
of the bag-of-visual-words (BoVW) model, CNN-based features, and transfer learning on
AlexNet are compared in [22], with the last one to outperform. The classification error rate
on fingerprint images for fingerprint liveness tasks with handcrafted and deep features
has been studied in [23]. The handcrafted features outperformed under the within-dataset
category, while on cross-sensor evaluation, deep features obtained higher accuracy but
handcrafted lower misclassification rate.

2.3. Handcrafted vs. CNN-Based in FER Applications

Specifically for FER applications, few comparisons have been made between the two
methods’ features. Authors in [24] provide an overview of recent advances in emotion
recognition using multimodal signals, where both ways of extracting features have been
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used to recognize emotion by facial expression. In [25], a combination of automatic features
learned from CNNs with the VGG architecture with handcrafted features computed by the
BoVW model succeeds with a classification accuracy of 75.42% on FER-2013 and 87.76% on
the FER+ datasets.

For FER applications, CNN-based methods dominate. In [26], the ResNet-50 network
infrastructure is used to extract features and recognize facial expressions, achieving a
classification accuracy of 95% in a dataset created by the authors, consisting of 700 images
and seven different categories of emotions. In [27], a method based on CNN and image
edge detection is proposed reaching an average recognition rate of 88.56% for the mixture
of the Facial Expression Recognition (FER-2013) and Labeled Faces in the Wild (LFW)
databases. In [28], CNN are used to recognize facial expression. The authors have created
a dataset collection of images from various sets to avoid bias in any set. Image augmen-
tation allowed a validation accuracy of 96.24%. The difficulty of recognizing emotions
from facial expressions depicted in images taken in a real-world environment is addressed
in [29] by using asymmetric pyramidal networks with multi-scale kernels and adopting
stochastic gradient descent with a gradient centralization optimizer. This method achieved
a classification accuracy of 74.1% for FER-13, 98.5% for CK+, and 99.8% for the JAFFE
database. In [30], face cropping, rotation strategies, and simplification of CNN are pro-
posed, achieving recognition accuracies of 97.38% and 97.18% on the CK+ and JAFFE
databases, respectively.

A fine-grained, scenario-based comparison of handcrafted and CNN-based feature
extraction methods based on criteria including (a) classification accuracy, (b) computational
resources (in terms of time needed), and (c) robustness (in terms of imposed noise) has not
been performed to our knowledge, and this is the main objective of our study.

3. Materials and Methods
3.1. Databases Selection and Description

The three publicly available databases used include photos collected under controlled
shooting conditions where the individuals posed with specific facial expressions. These are:

• KDEF consists of 4900 images divided equally into seven facial emotions viewed from
five shooting angles. The participants are males and females in equal parts, between
the ages of 20 and 30, who do not wear glasses and jewelry and do not have a beard or
mustache. The images are 567 × 762 pixels with 24-bit color values in jpeg format [31];

• JAFFE consists of 213 frontal faces of 10 females expressing seven different emo-
tions. The images are 256 × 256 pixels 8-bit grayscale in tiff format [32]. This
database was employed to examine how the algorithms perform in small sets and
low-resolution images;

• RaFD consists of 8040 images divided equally into eight facial emotions viewed from
five shooting angles. The individuals are Caucasian adults, both men (30%) and
women (28%), Caucasian children, both boys (6%) and girls (9%), and Moroccan
Dutch males (27%). The images are 681 × 1024 pixels with 24-bit color values in jpeg
format [33].

The KDEF and JAFFE databases contain the same seven facial emotions: anger, disgust,
fear, happy, neutral, sad, and surprise, while the Radboud Faces Database has one more
class, disgust. The details of each database are shown in Table 1:

Table 1. Databases number of files, classes, poses, colors, dimensions of images, and format.

Database Files Classes Poses Color Pixels
(Width × Height) Format

KDEF 4900 7 5 true color 562 × 762 jpeg
JAFFE 213 7 1 grayscale 256 × 256 tiff
RaFD 8040 8 5 true color 681 × 1024 jpeg
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The databases differ in terms of (a) number of images, (b) image characteristics (res-
olution, color depth, format), and (c) the number of classes (for RaFD). RaFD and KDEF
have a larger number of images, which supports models’ training, but the classification
is challenging due to the different shooting angles. Figure 1 shows a sample depicting
happiness from each database.
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Figure 1. Sample images from the three databases represent the emotion of happiness. Databases
KDEF (https://www.kdef.se/, accessed on 16 February 2022) and RaFD (https://rafd.socsci.ru.nl/
RaFD2/RaFD?p=main, accessed on 25 February 2022) have five poses, while JAFFE (https://zenodo.
org/record/3451524#.YvCEcehBxPY, accessed on 16 February 2022) has only one (frontal) pose.

3.2. Feature Extraction
3.2.1. Handcrafted Feature Extraction Methods

The features are identified with the feature detection algorithms, and their analysis
with vector values is performed with feature descriptor algorithms. Due to their widespread
use in facial recognition applications [34–36], we investigate the LBP and HOG feature
descriptor algorithms.

(A) Local Binary Patterns

LBP encodes the texture information of a grayscale image by comparing the difference
in the intensity of each pixel with its neighboring pixels. Initially, the image is converted
into grayscale. Then the image is divided into rectangular cells [k × k]. Each pixel i in
the cell is compared (in terms of intensity) to the neighboring pixels in a circle centered
on the i-pixel and radius r. In [15], the neighboring pixels are 8, and the radius is 1. By
setting the value of the central pixel as the threshold (ranging from 0 to 255), the adjacent
pixels get binary values: those with equal or greater values get a value of 1, and those with
lower values get a value of 0. These binary values are converted to decimal by multiplying
them with powers of 2 (keeping the same direction) and summing them up. The process
is repeated with each pixel belonging to 9 different 3 × 3 cells so it can take 28 different
values. The 256-bin histogram of the frequency of values taken by each pixel constitutes
the 256-dimensional feature vector.

The fact that some of the binary patterns appear more often than others led to an ad-
vanced rotation-invariant version of this algorithm named the uniform pattern version [37].
A pattern is uniform when it has at most two transitions 0→1 or 1→0. The histogram,
in this case, has one bin for every uniform pattern and one bin for all the non-uniform

https://www.kdef.se/
https://rafd.socsci.ru.nl/RaFD2/RaFD?p=main
https://rafd.socsci.ru.nl/RaFD2/RaFD?p=main
https://zenodo.org/record/3451524#.YvCEcehBxPY
https://zenodo.org/record/3451524#.YvCEcehBxPY
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patterns. The bins are equal to P(P− 1) + 3, where P is the number of the neighboring
pixels. For 8 neighboring pixels, the 28 = 256-dimension histogram is transformed to a
59-dimensional histogram leading to a 77% reduction in feature size. For an [M× N] image,
the feature size is given by (1):

Feature SizeLBP =

[
f loor

(
M
k

)
× f loor

(
N
k

)]
× [P(P− 1) + 3] (1)

(B) Histogram of Oriented Gradients

HOG technique describes the edges and corners of an object through the distribution
of local intensity gradients. For an [M× N] image, the gradients of each pixel in the polar
form are calculated. These values create the corresponding magnitude and angle matrices
with the same dimensions. These matrices are divided into rectangular cells [k× k]. For all
k2 values, a 9-point histogram is calculated, with each point having a width of 20 degrees,
ranging from 0 to 160 degrees. The positions in the histogram are selected based on the
angle of the gradient, and the values in each bin are derived from the percentage of the
corresponding magnitude. These 9-point histograms are grouped into blocks of four (2× 2),
creating a feature vector 36. The grouping is performed with overlapping of k pixels. So,
the size of the feature is given by (2):

FeatureSizeHOG =

[
f loor

(
M
k
− 1

)
× f loor

(
N
k
− 1

)]
× 36 (2)

3.2.2. CNN-Based Features

Neural networks generally consist of the input layer, multiple hidden layers, and the
output/classification layer. The hidden layers are of three types, the convolutional, the
pooling, and the fully connected layers. In the first, as its name implies, the mathematical
operation of the convolution between the pixel values and the kernel takes place. After the
filter has scanned the entire image, the feature or activation map is created. The pooling
layer also scans the whole image, and as the filter has no weights, it gives the maximum or
the average value leading to dimensionality reduction. Finally, the fully connected layer
performs the classification based on the features extracted from the previous layers. The
first hidden layer detects elementary elements of the image, such as edges, which are fed to
the next layer that detects more complex elements, such as texture. This process continues
with the deeper layer detecting the higher-level features.

Many architectures and techniques have been developed in the last decades resulting
in the development of many CNNs. In this research, we choose to employ the CNNs that
have applied different methods to improve the classification accuracy; the ResNet archi-
tecture, the inception architecture, and the efficient architecture. Specifically, we employ
three networks from the ResNet family, namely ResNet18, ResNet50, and ResNet101, to
investigate whether network depth affects classification accuracy. In addition, we use
Inception_v3 and EfficientNet-B0. We chose these three architectures because they rely on
three different tactics to improve classification accuracy. All selected CNNs have a depth of
up to about 100 layers and less than 45 million parameters.

• ResNets

The idea behind the development of the Residual Networks family architecture comes
from the intuition that the more layers added to a network, the more complex the problems
it can solve and the better accuracy it will achieve, which has been refuted. As the depth of
the CNNs increases by adding layers, the problem of vanishing/exploding the gradient
occurs, resulting in the saturation of the performance first and then its degradation [38]. The
ResNet architecture is based on shortcut connections with identity mapping. The output
of the shortcut is added to the output of the stacked layers so that if any layer degrades
the accuracy, it will be omitted. The CNNs of this family of architecture that are employed
in this study are ResNet18, ResNet50, and ResNet101, with the number indicating the
corresponding depth of layers.
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• Inception_v3

The fact that the object of interest may occupy an arbitrary part of the image led to
the Inception architecture. In Inception_v1, filters of different kernel sizes (1 × 1, 3 × 3,
and 5 × 5) are applied in the same layer, and their outputs are concatenated into a single
output (inception module), forming a network that is wider rather than deeper. Various
improvement techniques were applied (such as factorization of 5 × 5 convolution into two
3 × 3 convolutions and the usage of an auxiliary classifier) and led to the advanced version
of Inception_v2. The Inception_v3 is a 48 layers-deep network in which, in addition to
the techniques of Inception_v2, it applies the factorization of 7 × 7 convolution into three
3 × 3 asymmetric convolutions the batch normalization in the auxiliary classifiers, and the
label-smoothing regularization [39].

• EfficientNet

The intuition that the higher the resolution of an image, the greater the depth and the
width of the network should be so that the larger receptive fields can detect features of
more pixels led to the implementation of EfficientNets. In the architecture of EfficientNets,
instead of extending one of the dimensions of the networks (depth, width, or resolution),
the technique applied is the uniform scaling of all three dimensions with a set of fixed
scaling coefficients, the compound scaling method. The EfficientNet-B0, chosen in this
study, has a depth of 82 layers, which is comparable to the other CNNs of this study [40].

3.3. Model Classifier

Supervised machine learning includes two categories: traditional (i.e., non-CNN)
classification algorithms and neural networks. Traditional classification algorithms such as
support vector machines (SVM), linear discriminant analysis (LDA), k-nearest neighbors
(kNN), Naive Bayes, and many more have been widely used for years and have been
compared in terms of their performance in various classification applications [41,42]. In this
research, classification accuracy was initially tested with four different algorithms, SVM,
LDA, kNN, and random forest, using various combinations of depths and neural networks,
and it appeared that all yielded similar results, with SVM being slightly superior to the
others (+2% approximately). As a result, SVM with the “one-vs-one” technique has been
selected as the representative of the traditional classifiers [43].

4. Scenarios

The workflow of this research is depicted in Figure 2. Each of the databases has been
split into the training set containing the 80% of the files and the test set containing the
rest 20%. Following, the features are extracted with two methods: (A) handcrafted feature
extraction and (B) CNN-based extraction.

For the handcrafted feature extraction, we used the feature descriptors LBP and HOG
with the images of the databases with their original dimensions and downsized by two.
During the scenarios, maximum accuracy has been achieved with different feature sizes.
As the feature size is based on the image resolution, we have investigated the existence of
an analogy (ratio) between the image and the feature sizes. To this end, we have downsized
by two and by four to verify this ratio.

We apply three cell sizes to the images with their original sizes: 8× 8, 16× 16, and
32× 32. To the images downsized by two, we apply cell sizes that produce features of the
same size as the original sizes, i.e., 4× 4, 8× 8, and 16× 16. For each combination of image
size, descriptor, and cell size, the extracted features feed an SVM classifier to determine the
best combination in terms of classification accuracy for each database. We also apply two
types of noise, Gaussian and salt and pepper noises imposed on the test set files, in the best
combination to investigate the effect on the classification accuracy.

In the CNN-based feature extraction, we use two techniques: the CNNs (ResNet18,
ResNet50, ResNet101, Inception_v3, and EfficientNet-B0) as trained on ImageNet (http:
//www.image-net.org/, accessed on 1 February 2022) and the CNN retrained in the new

http://www.image-net.org/
http://www.image-net.org/
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data. For the originally trained CNN, feature extraction takes place from four different
depth levels, i.e., 25%, 50%, 75%, and 100% of its depth, and feeds the SVM classifier. For
retrained CNNs, the features are extracted from the last layer (as the intermediate depths
did not lead to improved results in terms of classification accuracy and computational time).
The extracted features feed the SVM classifier and the CNN’s fully connected layer (transfer
learning). No downsizing of the images has been used as the images are resized according
to the dimensions required by the CNNs. The comparison in terms of classification accuracy
gives the best combination. For this combination, we examine the effect of the two types of
noise imposed on the test set files.
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The algorithms were implemented with Matlab R2022a and were executed on a
desktop PC with 32 GB RAM, with Intel Core i7-10700K processor, eight cores up to
3.8 GHz, with the graphic card NVIDIA GeForce RTX 3060.

4.1. Extract Features with Handcrafted Methods

In this scenario, we extract the image features with the LBP and HOG methods and
feed the SVM classifier. In each method, we investigate the cell size and, therefore, the
corresponding feature size, which gives the highest classification accuracy for each database.
Both algorithms convert images to grayscale.

First, we export the features from the images at their original sizes. For these di-
mensions, we use square cells with dimensions of power of two, ranging from 2 × 2 to
64 × 64. Tables 2 and 3 show the results for the cell sizes 8× 8, 16× 16, and 32× 32 since
the results for cell sizes smaller or larger are inferior. The feature size in both cases results
from Formulas (1) and (2), respectively.

Table 2. Classification accuracy and feature size with LBP method applied to the original image
dimensions.

LBP KDEF JAFFE RaFD

Cell Size Feature Size CA (%) Feature Size CA (%) Feature Size CA (%)

8 × 8 392,352 68.84 60,416 78.57 641,920 88.50
16 × 16 97,055 73.65 15,104 76.16 158,592 92.66
32 × 32 23,069 72.32 3776 50.00 39,648 94.40
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Table 3. Classification accuracy and feature size with HOG method applied to the original image
dimensions.

HOG KDEF JAFFE RaFD

Cell Size Feature Size CA (%) Feature Size CA (%) Feature Size CA (%)

8 × 8 233,496 55.57 34,596 80.95 384,048 69.84
16 × 16 56,304 59.65 8100 80.95 92,988 74.63
32 × 32 12,672 56.49 1764 83.33 22,320 76.12

For KDEF and RaFD, the two methods give the maximum classification accuracy
for the same cell size (16× 16 for KDEF and 32× 32 for RaFD). The cell size should give
sufficient information with the smallest possible size of a feature vector. However, the
texture information method (LPB) yields significantly higher success rates, namely by 14%
and 18% for KDEF and RaFD, respectively, compared to the HOG method. JAFFE is an
exception to these observations by showing slightly better classification accuracy with HOG
features. While both methods use the gradient of the intensity (magnitude and direction) as
information around each pixel, the LBP method uses the eight neighboring pixels to detect
local patterns, while the HOG method uses one direction for each pixel. This difference
makes the LBP method more efficient on the databases with multiple face angles (KDEF
and RaFD), while the HOG method on the database with frontal pose images only (JAFFE).

We then divide the dimensions of the image by two, keeping the original aspect ratio
to check the role of the resolution in classification accuracy and the correlation between cell
size and image dimensions. According to Formulas (1) and (2), when the dimensions of the
images are subdivided, the same feature size is obtained for also subdivided cell size, i.e.,
the size of the feature with the original dimensions of the image for cell size, e.g., 8× 8 is
equal to that obtained for an image downsized by two for a cell size of 4× 4. Therefore,
to include the feature with the size that results with cell 8× 8, when we subdivide the
dimensions of the images, we include the cell size 4× 4 and omit the cell size 32× 32.
Table 4 contains classification accuracy results for both methods for downsized by two
images of the databases.

Table 4. Classification accuracy with LBP and HOG methods applied on the images downsized
by two.

KDEF JAFFE RaFD

Cell Size LBP HOG LBP HOG LBP HOG

4 × 4 70.07% 59.65% 78.57% 84.21% 85.76% 73.82%
8 × 8 78.47% 69.92% 77.57% 84.71% 92.16% 77.67%

16 × 16 76.20% 61.08% 76.19% 85.71% 94.40% 78.30%

The reduction in the images by two positively affects the classification accuracy for
KDEF images; it is increased by 6.3% with the LBP method and by 3.3% with the HOG
method on average. The same is true for the JAFFE, with a corresponding improvement of
3.1% and 9.5%. Reducing the images by two seems to increase the classification accuracy
by 3.1% on average only with the HOG method for the RaFD images, while with the LBP
method, we have a reduction in the classification accuracy by 1.1% on average.

The same results were also examined, with the images downsized by four. The
classification accuracy, in this case, appeared to be about 2% lower than in the case of
downsizing by two, so they are omitted. The observations from Tables 1 and 2 compared to
Table 3 are:

• LBP technique gives significantly improved classification accuracy compared to HOG
in all databases, except for the JAFFE database;

• The highest classification accuracy for each technique and database is achieved with
the same feature size;
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• The downsizing of the images and cells (so that the feature is the same size) improves
the classification accuracy up to downsizing by two for all databases. Specifically, the
image reduction by a factor of two resulted in improved classification results with the
HOG method for all databases. The results are improved only for KDEF and JAFFE
databases with the LBP method.

Figure 3 shows the highest classification accuracy achieved for each database with the
techniques applied so far. In every case, the images are downsized by two. LBP method
proved to be more efficient for KDEF and RaFD databases, while the HOG method for the
straight pose images of JAFFE. For KDEF, the optimal cell size is 8× 8 and for the JAFFE
and RaFD databases is 16× 16.
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4.2. Extract Features with CNNs

The same image files are used in the training and testing phases in order to compare
the methods.

4.2.1. Extract Features without Retraining

Depending on the depth of the layer, the CNNs extract features of different sizes and
spatial resolution. We extract features from four different depths of the CNNs, specifically
from 25%, 50%, 75%, and 100% of their depth, to identify whether the features extracted
from shallower levels are more appropriate than from the output layer.

Figure 4 depicts the results of the classification accuracy per set (blue bar for KDEF, red
bar for JAFFE, and green bar for RaFD), per network, and per depth. Extracting features
from the last and deepest layer of networks (i.e., from 100% of the depth) leads to the worst
results in terms of classification accuracy, with success levels being much lower than those
of the handcrafted methods. On the contrary, at 25%, 50%, and 75% of the depth of the
networks, the classification accuracy reaches or exceeds the classification accuracy of the
handcrafted methods depending on the network used.

At 25% of the depth, the largest in-depth network, ResNet101, performs better than
the other networks, giving better results in all three databases. At 50% of the depth, the
ResNet family technique performs better, and specifically, ResNet50 gives similar results to
those of ResNet101 at 25%, which was to be expected since the difference in the percentage
of depth combined with the total depth of the networks gives features of the same size. At
75% of the depth, the results are inferior to the previous ones except for the JAFFE dataset,
for which we have the highest performance with ResNet18. Table 5 summarizes the highest
classification accuracy per method and the corresponding computation time taken by the
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algorithms to extract the features and classify the test set. For the cases where we had the
same classification percentage with different networks and depths, the selection was made
based on the shortest time for exporting results.
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Table 5. Highest classification accuracy and the corresponding total time per method and database.

Handcrafted Methods CNNs
Database CA (%) Technique Time (s) CA (%) CNN and Depth Time (s)

KDEF 78.47 (LPB 8 × 8) 1623 81.21 (ResNet50, 50% depth) 1214
JAFFE 85.71 (HOG 16 × 16) 5 92.86 (ResNet18, 75% depth) 55
RaFD 94.40 (LPB 16 × 16) 3746 95.71 (ResNet50, 50% depth) 2988

Up to this point, extraction of features from ResNet50 without retraining in the new
databases from 50% of its depth performs better in comparison with the handcrafted
methods in terms of execution time and classification accuracy for the KDEF and RaFD
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databases. For the JAFFE database, classification accuracy is also significantly improved,
with a slight increase in the execution time required by the ResNet18 at 75% of its depth.

4.2.2. Extract Features with Retrained CNNs

The selection of CNN retraining hyper-parameters values can affect classification
accuracy. These hyper-parameters relate to calculating the weights to minimize the loss
function by taking corrective steps using back-propagation. The training set is divided by
the mini batch size. This quotient is the number of iterations processed by the model to
calculate the prediction error and update the weights accordingly. The validation set is used
during training to check the intermediate values and make the corresponding corrective
steps (learning rate) to select the appropriate weights. An epoch is a complete pass through
the entire training set. Validation patience is the number of iterations allowed without an
increase in validation accuracy. We consider the work in [44] and set the following values:

• Optimizer is set to the stochastic gradient descent with momentum (SGDM) algo-
rithm to minimize the loss function. In [45], SGDM appears to converge slower but
generalizes better than the adaptive moment estimation (Adam) algorithm;

• The learning rate is equal to 0.001, meaning that small correction steps occur in
each iteration;

• Since the JAFFE dataset is relatively small (213 images), the mini batch size was set
equal to 10, so there is a sufficient number of iterations for weight calculation. The
maximum number of epochs was set to 15 so that in combination with;

• The validation patience was set to 2 to check the intermediate values of epochs that are
sufficient for retraining. Especially for JAFFE, we did not apply the hyper-parameter
of validation patience as it is a small set, and we let the training be performed for all
15 epochs.

Furthermore, we applied additional augmentation operations, including reflections,
scaling, and translations, to avoid overfitting.

After retraining the CNNs, the classification of the images in the test set is performed
in two ways:

(A) By extracting the image features from the last (deepest) layer and feeding an SVM
classifier with them. In this way, we examine the features in terms of their classification
quality before and after retraining.

(B) By transfer learning. That is, after the fine-tuning of the last layers of each network
and the replacement of the outputs with the classes of each database, the classification
is performed by the network itself. This way, we compare the classifiers, i.e., SVM
and CNNs.

The new results are shown in Figure 5. The dashed lines mark the previous maximum
levels of classification accuracy achieved from CNNs without retraining.

The observations include:

• Regarding features, retraining makes sense in sets with numerous files. Especially
in KDEF, we observe a significant increase in classification accuracy, while in RaFD,
which was already high, it increased slightly. For JAFFE, a small database, we see that
network retraining is of no benefit as only the ResNets reach the previous maximum
(with SVM);

• Regarding networks and their respective architectures and methods, ResNets deliver
higher classification rates, and the deeper the network, the higher the classification
accuracy. The Inception_v3 technique follows with results similar to those of ResNet50
for the databases of KDEF and RaFD. Last, the EfficientNet-B0 is performing well
only with the most extensive database RaFD, whereas the smallest database, JAFFE,
remarks the lowest classification accuracy of all networks;

• As for the classifiers, in all cases, the SVM gives better results than the inbuilt classifier
of the CNN.
The computational time required for retraining is depicted in Table 6.
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Table 6. Total time needed (in seconds) for retraining with 80% of the files and extracting results in
20% of the files for all databases.

Database
Total Time (s)

ResNet18 ResNet50 ResNet101 Inception_v3 EfficientNet-B0

KDEF 2953 6642 8802 6764 19,808
JAFFE 131 327 683 638 1031
RaFD 3604 10,030 22,347 13,014 32,897

EfficientNet-B0, in addition to the similar or lower results in classification accuracy,
also requires the longest total time. ResNet101 follows with the longest time required,
which is expected given that it is also the largest of the networks. A comparison of
ResNet50 and Inception_v3 indicates that these two networks are comparable in terms
of computational time. Finally, the smaller ResNet18 network requires the shortest time,
while its classification accuracy results are close to those of ResNet50 and Inception_v3.
Overall, the choice of the network should be made among one of the ResNet architectures,
with ResNet50 being the middle ground.
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After the retraining of the networks, the maximum classification accuracy has been:

• For the KDEF database, the classification accuracy reached 94.59% with ReseNet101
(an improvement of 13.4%). ResNet50 and Inception_v3 also marked a significant
improvement in the classification rate, by 12.1% and 12.3%, respectively, in less time;

• For the JAFFE database, the retraining of the networks did not lead to higher results.
The classification rate reached the previous level of 92.86% but with the increased time
required for the retraining process;

• For the RaFD database, classification accuracy was increased by 3.17%, reaching
98.88%, with ResNet101 being the highest (in terms of classification accuracy) of
all networks.

5. Robustness to Noise

Different types of noise can affect the original images. We explore the robustness of
the above scenarios to two types of noise. Gaussian noise: occurs during the acquisition of
images due to the thermal noise of the sensor and the circuits connected to it. This noise is
additive, independent, and independent of each pixel intensity with a normal probability
density function and corrupts each pixel [46]. Salt and pepper noise: usually results from
bit errors in transmission and image digitizing. In this case of noise, bright (salt) or dark
(pepper) pixels are scattered throughout the image [47]. The strength of Gaussian noise is
measured with the mean and the variance, while the strength of salt and pepper noise is
measured with the rate of the noised pixels [48].

We set these values so that both noises have an average peak signal-to-noise ratio
(PSNR) of around 15 dB. Specifically, we examine the effect of noise on the highest success
rates achieved with handcrafted and automatic methods. Figure 6 shows the classification
performance in corrupted images with the two types of noise resulting from CNNs trained
in uncorrupted images, and the classification is performed with the SVM classifier.
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The observations that emerge from Figure 7 are:

1. All CNNs are more robust (i.e., their classification accuracy is less severely affected by
noise) in salt and pepper noise than in Gaussian noise.

2. The performance among the networks keeps the same trend in all cases of the databases.
3. Low-resolution grayscale JAFFE images appear more affected than KDEF and RaFD

color images. In addition, RaFD high-resolution images are less affected by noise.
4. The CNNs most affected by corrupted images are EfficientNet-B0 and Inception_v3,

with the former being the less robust.
5. The most robust network that is the one that, in all cases of the databases, the distance

of the results of the classification accuracy between clear and corrupted images is the
smallest is ResNet50.
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Research has been conducted on the robustness of networks to noise. Authors in [49]
investigate the performance of deep CNN-based approaches for face recognition applica-
tions under several image distortions, including Gaussian and salt and pepper noise. In
addition, in [50], it is pointed out that it cannot be predicted in advance how the CNN will
behave with noised data. Both the aforementioned studies suggest adding some noise to
the training set. We trained the CNNs with noised images, and the classification accuracy
resulted between those with clear training and test set and those with a clear training set
but a corrupted test set.

Table 7 shows the percentage deviations in classification accuracy recorded with
corrupted images with the classification accuracy with clean images in each database case
and with each CNN case.

A comparison of HOG and LBP robustness toward image distortions, including these
two types of noise, have been conducted in [51]. The results show that Gaussian noise has
a negative effect on both methods because the edge information is affected, and the sharp
gradient change may seem like a fake edge. For the salt and pepper noise, the high or low
impulses result in gradients with a larger magnitude, and the direction will point to these
noises. This study suggests further investigation on salt and pepper since the two datasets
employed gave opposite results.
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Table 7. Percentage deviation of classification accuracy with corrupted test images for each CNN
per database.

ResNet18 ResNet50 ResNet101 Inception_v3 EfficientNet-B0

Salt and
Pepper Gaussian Salt and

Pepper Gaussian Salt and
Pepper Gaussian Salt and

Pepper Gaussian Salt and
Pepper Gaussian

KDEF 5.46 8.47 4.28 7.12 5.30 8.65 10.27 15.51 27.75 41.91
JAFFE 27.03 37.84 23.08 33.34 23.08 33.34 49.99 52.77 69.70 75.75
RaFD 2.59 3.94 1.78 2.92 3.83 4.65 3.90 4.86 12.91 19.91

In our case, the effect of noise on the corresponding higher classification accuracy of
the handcrafted models is shown in Figure 7. The results shown are for the respective
methods (LBP for KDEF and RaFD databases and HOG for JAFFE database) and the cell
sizes that each database showed the highest accuracy classification (8× 8 for KDEF, 16× 16
for JAFFE, and RaFD).

Again, Gaussian noise downgrades the classification accuracy more than salt and
pepper. Finally, it is noteworthy that both types of noise have the most destructive effects
on the richer in terms of image quality and quantity database, i.e., RaFD. Table 8 shows the
corresponding deviations in the classification accuracy concerning uncorrupted test images.

Table 8. Percentage deviation of classification accuracy for each database, with corrupted test files,
for the handcrafted methods.

Database Salt and Pepper Noise Gaussian Noise

KDEF 55.22 67.72
JAFFE 55.55 66.67
RaFD 80.50 82.48

6. Conclusions

This research examined the classification accuracy and computation time for facial
emotional expressions with a) handcrafted feature extraction methods LBP and HOG and b)
CNN-based feature extraction. KDEF, RaFD, and JAFFE databases have been used. The use
of neural networks was two-fold. Initially, the features were exported without retraining
the networks to the new data, from 25%, 50%, 75%, and 100% of their depths. Extracting
features from shallower layers is significantly more efficient if the new images are different
from those in which the networks were trained initially (as has been the case in this work).
The second use of neural networks was to extract features after retraining them in the new
data (transfer learning method).

Table 9 summarizes the results of the three methods used for the three databases.
Regarding the handcrafted methods, LBP gives higher success rates on the high-resolution
images of the large databases (KDEF and RaFD), while, on the contrary, HOG on the lower-
resolution images of the straight pose of JAFFE. Classification results appear improved
by directly extracting features from shallow layers of residual architecture networks. In
addition, we observe a reduction in computational time for the large databases compared
to the handcrafted methods. Finally, the transfer learning method enhances the classi-
fication accuracy for large databases, significantly impacting computational time. The
classification accuracy was not improved in JAFFE (as it was a smaller set), with the highest
classification rate remaining at 92.86%. The SVM classifier performs better than the inbuilt
CNNs classifier.

According to these findings we could build a decision framework to support the
appropriate choice based on the specifications of each application. Such a framework is
presented in Table 10.

Overall, we could say that the handcrafted features implemented for decades do
not reach the performance of neural networks. The golden mean between classification
performance and computational time is the simplest and fastest method of passing images
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through CNNs and extracting their features from intermediate layers. If the application
requirements need the highest possible classification rate, then a large number of images is
necessary to retrain networks. Among the architectures examined, the Residual Networks
proved to be the more efficient. The effect of noise is more destructive in handcrafted
methods than in CNNs. Of the latter, ResNet50 proved to be the most robust in each case.

Table 9. Summary table of classification accuracy and total time results per method and database.

Database Method CA (%) Time (s)

KDEF
Handcrafted: LPB 78.47 1623

Direct Extraction from the 50% of ResNet50 81.21 1214
Transfer Learning on ResNet101 94.59 8802

JAFFE
Handcrafted: HOG 85.71 5

Direct Extraction from the 75% of ResNet18 92.86 55
Transfer Learning all ResNets 92.86 131,327,683

RaFD
Handcrafted: LPB 94.40 3746

Direct Extraction from the 50% ResNet50 95.71 2988
Transfer Learning on ResNet101 98.88 22,347

Table 10. Decision support framework.

Database Type Criterion Selection

Small Size
Low Quality

Straight Poses

High Classification Accuracy Direct extraction from 75% of
the depth of ResNet18

Short Computational Time HOG

Medium Size
High Quality

Multi-angle Images

High Classification Accuracy Transfer Learning in
ResNet101

Short Computational Time Direct extraction from 50% of
the depth of ResNet50

Large Size
High Quality

Multi-angle Images

High Classification Accuracy Transfer Learning in
ResNet101

Short Computational Time Direct extraction from 50% of
the depth of ResNet50

7. Future Work

With this research, we could evaluate existing methods of image feature extraction
related to the recognition of facial emotions in terms of classification performance with
the corresponding compensation in computational time. The images of three well-known
publicly available databases were used as provided by their creators and the respective
classification rates exceeded 92% in each database case with the retraining of the CNN.
Further image preprocessing techniques could improve the individual models’ success
rates and computational times. In addition, further investigation of the optimal values
of the retraining hyper-parameters could lead to a more complete fine-tuning of the pre-
trained models to the new data. Moreover, images in the wild accompanied by postures
and gestures could further contribute to the emotion recognition study.
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Abbreviations

The following abbreviations are used in this manuscript:

BoVW Bag-Of-Visual-Words
BRIEF Binary Robust Independent Elementary Features
CBD Compact Binary Descriptor
CNN Convolutional Neural Network
DCT Discrete Cosine Transform
FER Facial Expression Recognition
HOG Histogram of Orient Gradients
JAFFE Japanese Female Facial Expression
KDEF Karolinska Directed Emotional Faces
kNN k-Nearest Neighbors
LFW Labeled Faces in the Wild
LDA Linear Discriminant Analysis
LBP Local Binary Patterns
LPQ Local Phase Quantization
LTP Local Ternary Pattern
ORB Oriented Fast and Rotated Binary Robust Independent Elementary Features
PCA(N) Principal Component Analysis (Network)
RaFD Radboud Faces Database
ResNet Residual Network
SIFT Scale-Invariant Feature Transform
SURF Speeded-Up Robust Feature
SGDM Stochastic Gradient Descent with Momentum
SVM Support Vector Machines
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