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ABSTRACT

This paper presents a video summarization technique for
rushes that employs high-level feature fusion to identify seg-
ments for inclusion. It aims to capture distinct video events
using a variety of features: k-means based weighting, speech,
camera motion, significant differences in HSV colorspace,
and a dynamic time warping (DTW) based feature that sup-
presses repeated scenes. The feature functions are used to
drive a weighted k-means based clustering to identify visu-
ally distinct, important segments that constitute the final
summary. The optimal weights corresponding to the indi-
vidual features are obtained using a gradient descent algo-
rithm that maximizes the recall of ground truth events from
representative training videos. Analysis reveals a lengthy
computation time but high quality results (60% average re-
call over 42 test videos) as based on manually-judged inclu-
sion of distinct shots. The summaries were judged relatively
easy to view and had an average amount of redundancy.
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1. INTRODUCTION

Digital production now dominates the video industry from
amateur videos for the Internet captured on inexpensive dig-
ital cameras to professional television and motion picture
productions that are digitized for editing. This has created
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a database that is too large to manually evaluate, but can be
automatically evaluated by a computer. Retrieval can be fa-
cilitated immensely using compact video summaries instead
of the entire videos. Much work has been done with content-
based approaches [5] for creating summarizations for movies
[6] and other types of video such as sports[4] and news[10].
However, the task of creating such summaries for unedited
b-roll, or rush, films that contain many repeated director
takes of a scene is relatively new.

This paper focuses on the problem of creating a compact
video summary where visually dissimilar scenes are identi-
fied. Candidate segments containing salient camera motion,
a high level of speech activity, or rapidly changing visual
features are emphasized for inclusion, inspired by the user-
attention model described in [9]. Video redundancies (shot
retakes) and irrelevancies (color bars and objects like clap-
boards) are removed such that summaries contain objects
and events such as those described in the NIST-provided
ground truth annotations. This work does not attempt to
semantically label the distinct scenes, which provides scope
for future work if the summaries are to be used for browsing
results of a search query.

The video summarization algorithm was used to sum-
marize rushes from BBC programming as selected for the
TRECVID benchmarking collaboration [12]. The rushes
contain unedited footage of BBC dramas including shot setup
and retakes. The system is explained in section 2, followed
by results in section 3, and analysis in section 4.

2. SYSTEM WORKFLOW

The system incorporates high-level feature fusion of con-
cepts important for redundancy removal and distinct shot
inclusion. The features are fused as a weighted combina-
tion, where the weights are optimally estimated to maxi-
mize the recall of manually-annotated key events provided
by collaborators in the development videos. Irrelevant ob-
ject removal is performed on the sample frames to remove
known trivialities such as color bars, monochromatic frames,
and clapboards. A final k-means clustering selects visually
distinct frames to create the summarized video. Figure 1
depicts the system overview.

2.1 Preprocessing

A variety of preprocessing steps are performed to extract
frames, determine shot boundaries, and generate low-level
features characterizing the distinct frames. The rush data
were MPEG-1 encoded at 25 frames per second. Extraction
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Figure 1: System Flow Diagram. Final output sum-
maries are 4% of the original video length.

of high-quality video frames leads to a more pleasing final
video but decoding time increases by 10x. A subsampling
factor of five frames was used for these experiments.

2.2 Feature Extraction

Analysis of the ground truths provided for development
data revealed that the important sections to be included in
summarized video were of four types: shots containing cam-
era motion, shots of people entering or leaving a scene, shots
showing certain objects, and shots of distinct events. Since
high-level features can be indicators of the relative impor-
tance of a particular video segment [9], appropriate features
were extracted to capture these four types. Additionally,
repeated takes of the same scene are irrelevant and should
be excluded from the summary. Five high-level features are
extracted from the original video:

i) a k-means-based feature that weights distinct scenes,

ii) a camera feature that weights salient camera motions
such as panning and zooming,

iii) an acoustic feature that weights segments with speech,
iv) an adaptive sampling function that weights rapidly chang-
ing visual segments in the HSV colorspace, and

v) a DTW-based feature that weights unrepeated segments
and the longest of repeated segments.

Intuitively, feature (i) weights shots showing objects and
distinct backgrounds, (ii) weights shots with camera mo-
tion,(iv) weights shots of people entering or leaving a scene
and events.

2.2.1 K-Means Clustering

A repeated clustering technique is used to include visually
distinct portions of the video in the summary. The main
steps of the method are as follows.

1) The video is segmented based on a global 2D affine mo-
tion model [2]. Significant changes in the model parameters
between a pair of consecutive frames denote a shot bound-
ary. A low threshold is used to oversegment the video. Short
segments less than 40 frames long are merged. One keyframe
is extracted from the center of each segment.
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2) K-means is then employed on the HSV color features of
the keyframes. The number of clusters is set to two-thirds
of the number of input segments. The keyframe closest to
each cluster centroid is selected.

3) Selected keyframes are convolved with a 90-frame Ham-
ming window.

4) K-means clustering is repeated five times with different
initial centroid locations, and the smoothed selections are
summed.

5) After normalization, the result is a function that weights
areas often selected by clustering for inclusion in the final
summary.

2.2.2  Camera Motion (Pan/Zoom/Tilt)

The ground truth examples also included instances of cam-
era motion events such as panning and zooming. Affine mo-
tion based parameters (explained in detail in [2]) can identify
these camera motions. Pans, tilts, and zooms are identified
and smoothed with an 80-frame averaging filter to allevi-
ate the effect of sporadic false positives. The final result
is an output feature weights areas with panning, tilting,
and zooming for inclusion in the summary. The problem
of distinguishing between significant camera motions occur-
ring within a scene, and motion during camera setup and
shot reset is unresolved.

2.2.3 Speech Based Feature

For the TRECVID rushes task, which focused on sum-
marizing drama footage, audio segmentation can be helpful
in supplementing visual feature analysis. Speech segments
with high energy often occur when an actor is speaking on-
camera during a scene. Offscreen chatter may also be classi-
fied as speech, but it would presumably be at a lower level.
Therefore, the main use of speech to assist summarization
is to help remove segments in-between takes or black frames
and color bars.

The system uses three acoustic features outlined in [§]
to distinguish speech and non-speech segments: High Zero-
Crossing Rate Ratio (HZCRR), Low Short-Term Energy
Ratio (LSTER), and Spectrum Flux. The ones used here
can be calculated quickly for very large videos and can ad-
equately perform simple speech/non-speech classification.
Speech is characterized by intermittent silence and voiced
sounds with strong spectral components. Therefore it has
high HZCRR, LSTER, and spectrum flux, making it distin-
guishable from environment noise.

The system uses these acoustic features to discriminate
between environment, pure tone (often associated with color
bars) and speech. A training set was used to determine cen-
troids for nearest neighbor clustering. Using a similar test
set, approximately 78% of speech and 89% of environmen-
tal noise were correctly classified. In addition to classifica-
tion, RMS energy was calculated for each one-second win-
dow within a video. Only the “loudest” 30% of the speech
segments are kept. Thus, the output of the audio classifier,
as can be seen in Fig. 4(c), is a binary speech/no-speech
vector. In this way, high RMS speech was used to correlate
with “important” events within the rushes videos.

2.2.4 Adaptive Sampling in HSV Colorspace

The idea behind adaptive sampling is to sample more
frequently during scenes with more action or varied con-
tent. More keyframes are allocated to segments that change



quickly in the HSV colorspace. An Ly distance in 12 dimen-
sional HSV colorspace between adjacent frames is used as a
measure of scene change.

Since this raw difference exhibits significant noise, a 25-
point median filter was chosen to compensate. A median
filter also disregards abrupt cuts in the shot. A window
of 25 frames was chosen since it represents one second, the
subjective perceptual limit.

2.2.5 DTW-Based Redundancy Removal

Since many retakes are present in the rushes data set, the
task requires an effective redundancy removal system for
the summary. Once the sub-shot segment boundaries are
detected using the aforementioned motion-based detection,
the segments are enumerated into three types:

(a) unique and without repeat,
(b) repeated and the longest of all similar segments, and
(c) repeated but not the longest of all similar segments.

Ideally, (a) and (b) are to be retained, with the assump-
tion that (b) segments are more informative than (c) seg-
ments. This assumption is logical because (c¢) segments may
be missing parts of the scene if a shot is cut short due to
an actor or director mistake. An output feature scales these
segments higher or lower depending on whether they are to
be retained or discarded.

For comparing segments of dissimilar lengths for repeat
detection, the system uses an approach based on dynamic
time-warping (DTW) [13]. DTW is a time-normalization
method used for comparing sequences of dissimilar lengths.
For DTW-based distance computation, each frame is repre-
sented by a 1125-dimensional localized color histogram [3].
Figure 2 shows a matrix of the DTW-based distance between
hand-segmented shots in a video. Segments that reflect a re-
take of the same scene exhibit a low DTW-based distance,
while distinct shots maintain a high distance. A threshold
of 0.41 was empirically chosen to flag repeated scenes, us-
ing the receiver operating characteristic (ROC) depicted in
Figure 3.
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Figure 2: Pairwise DTW distance between manu-
ally segmented video shots. The video has 4 sets of
segment repeats: 1-7, 8-10, 11-13, and 14-16.

The DTW algorithm is as follows. Let there be M seg-
ments {s;}22, in the video, obtained after shot boundary
detection. After computation of the DTW-based distance
[13], we have an M x M inter-segment distance matrix. Let
d(si,s;) denote the DTW distance between the i*" and j**
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Figure 3: Receiver Operating Characteristic for

varying thresholds of DTW. Empirical threshold was
set at the elbow of 0.41.

segments. Often in videos the search space can be pruned
to adjacent segments, making it necessary to compute only
(M — 1) distances. However, in the general case distances
between all pairs of segments need to be computed. Two
segments, s; and s;, are considered similar if d(s;, s;) < ¢,
where d:, is a threshold in the localized color histogram
space.

An issue with the similarity between two segments is that
the following scenario can occur, d(s;, 5;) < 6n & d(sj, s1) <
Otp, but d(si,sk) > Otn. Thus, if we start off with s; and
find segments similar to it, we can end up with a different
group of similar segments than if we start off with s;, even
if d(ss, s;) < 0¢n holds.

Let segment s; be contained in L; groups of similar seg-
ments, where s; is similar to (L; — 1) other segments. The
cases where s; appears as the longest segment (b) and not-
the-longest segment (c) are scaled by 2 and 0.1, respectively.
For unique (a) segments, we scale by 1.5. These values
are empirically chosen. A higher weighting is given for the
longest segment (b) and a lower weighting for the shorter
segments (c) in order to appropriately emphasize or sup-
press segments. Case (b) segments are stronger candidates
to be included in the summary than unique (a) segments.
Let S;1 (and S;0) denote the number of times s; appears
as the longest (and not-the-longest) segment among the L;
groups, as in (1) . The weight of all the frames in segment
s, denoted by score(i), is computed as follows:

(Si,1><2+8i70><0.1)/Li L >1

score(i) = { 15 Li—1 (1)
These scores for each segment constitute the DTW-based
feature. Intuitively, the feature is high for unique segments

(a) and the longer length repeated segments (b).

2.3 Feature Fusion

A gradient descent approach is used to derive weights for
combining the various feature functions described in Sec. 2.2.
Let the values corresponding to k-means, camera, speech,
adaptive sampling, and DTW-based features for the n'"



frame (after subsampling) be denoted by fi[n],---, fs[n],
respectively. Thus, fiotai[n], the “importance” value for the
nt" frame, is given by:

5
ftotal[n] = Wo +Zwl X fl[n]

=1

(2)

A constant wo is included to provide a small value for frames
that do not take on a specific feature. The fiora: function
is optimally learned by adjusting the weights {wi}le such
that it peaks at the ground truth regions.

A gradient descent approach was used to derive feature
weights {w;}°_, based on maximizing the fraction of in-
cluded events (recall) over a set of videos annotated with
the corresponding ground truth. A ground truth event was
considered an inclusion if the summarized video contained at
least 15 overlapping frames. This descent technique was per-
formed several times starting from different initial weights,
as the scheme is vulnerable to local minima.

weighted fusion function: ftutal
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Figure 4: Weighted Fusion of (b)-(f) produces the
overall function fi,tq; which should correspond with
the ground truth, as in (a).

From the fiotar (2) function the next step is to select
candidate keyframes. These keyframes are selected by ad-
justing the sampling rate proportionately to the area under
the weighted importance function. Let the N. candidate
keyframe locations be denoted by {F;}N¢, (4). The total
“importance” of the video is found by summing over (2) for
all the N frames. The video is then divided into sections
of equal importance (Z) by finding adjacent, nonoverlap-
ping segments with boundaries {bi}f.v:co, with bp = 0 and
by, = N.

b;

3 N
ftotal[n] = thotal[n]/Nc, 1 S ) S Nc (3)

n=0

7=

n=b;_1

The algorithm, beginning with by = 0, sums the segment
importance until it reaches the value Z, as in (3), labeling
that location b;. This process is repeated for all 7 to de-
fine {b;}"°,. The candidate keyframes are selected at the
midpoints of these equal-importance segments.

bi—1+0b;

F= == 4)
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2.4 Postprocessing

The candidate keyframes selected after feature fusion still
contain irrelevancies that should be removed. Specifically,
postprocessing sought to remove color bars, monochromatic
frames, and clapboards, which were particular to the rush
videos being summarized. While it would be preferable to
remove these irrelevant frames at the start, computational
limits precluded their detection on the full video.

2.4.1 Color Bar and Monochromatic Frame Removal

Color bars were found to appear at the start of many
videos. Template matching between 1125-dimensional lo-
calized color histograms identifies color bars. A color bar
frame, with piecewise uniform intensity and without noise,
was selected for use as a template. The threshold for the
distance metric was determined empirically.

In addition, monochromatic frames are present in between
shot changes or at the end of the videos. The frames are
identified by measuring the entropy of their color histogram.
Since there is low intensity variation within each monochro-
matic frame, a coarse 20-bin histogram was sufficiently pre-
cise for identification. Frames having an entropy value less
than an empirical threshold are eliminated.

2.4.2  Irrelevant Object Removal

An attempt to recognize and subsequently remove clap-
boards, often occurring between shots, is made using a bag-
of-features distance metric with scale-invariant feature trans-
forms (SIFT). These descriptors are shown to be relatively
robust to changes in size, rotation, and perspective [7]. Specif-
ically, the Caltech-101 image set was used to create a SIFT
vocabulary tree that was then used to classify frames using
an algorithm based on the work of Nister and Stewenius [11]
and derived from an implementation provided by Vedaldi
[1]. Each image is characterized by a signature that gives
the number of descriptors that go through each node in the
vocabulary tree. The distance between a test image and
a database image is performed as a weighted L; distance
between each of these node frequencies.

On unseen development data, testing showed a true pos-
itive rate around 90% and a false positive rate less than
2%. False negatives occur because of blurred frames, objects
seen at extreme angles, or objects that are dominated by the
background. Blurred frames can be addressed by applying
a “smoothing” filter where object recognition is performed
over a window around the candidate keyframe. Computa-
tional limits with the current setup precluded such smooth-
ing, though on certain focus development sets smoothing
improved true positive rates by up to 10%.

2.5 Final Clustering

After observing output summary examples it became clear
that many still contained a high proportion of redundant
shots. Therefore, a final k-means clustering is performed
on the candidate keyframes {F;}N¢, (4) selected from the
function fiotar (2) after irrelevant objects are removed. The
number of clusters is set such that the final summaries are
4% of the total video length, and keyframes closest to the
centroids are selected and then padded with 15 frames on
each side to build the final summary. The 15 frame padding
was chosen because shots less than 1 second in duration have
been found to be perceptually frustrating. The rush videos
were 25 frames per second. The relatively “most important”



4% of the video is kept in the final summary. The final
output summaries did not include any audio.

3. RESULTS

The frames at which the annotated ground truth events
occurred for 20 development videos were labeled in order to
find the fusion weights that maximized recall. The weights
(0.09,0.49,0.55,1.00,1.00,0.55) for (constant,speech,camera,k-
means,retake suppression,adaptive sampling) were found us-
ing the gradient descent algorithm. By our own scoring
method, we found these combined weights to improve recall
by 6% compared to a baseline method that created sum-
maries by uniform sampling.

Quantitative results are difficult to create for a subjec-
tive task such as evaluating video summarization. Judges
viewing the collaborating team summaries indicated that
the videos generated by this system performed well as far
as inclusion of ground truth key events and were addition-
ally easy to view. Using these weights our summaries were
found to include on average over the test videos a fraction
of 0.6 of ground truth events, an 8.6% improvement over the
CMU baseline uniform summarizations after normalization
for average summary length. Table 1 compares our results
for the fraction of inclusion metric.

Using NIST scores, the system performance relative to
other comparable systems produced summaries that:

1) had an above average inclusion of key events,

were easy to interpret,

contained an average amount of redundant inclusions, and
were longer in duration than other summaries.

The system run-time, in an unoptimized framework, was
rather high. For example, a video (MRS025913) of length
25.42 mins took approximately 3.5 hours to summarize when
run on a Pentium IV 2.3GHz, 8 GB RAM machine. The
biggest slow-downs occurred with feature extraction, DTW
distance computation and generation of the high-quality video
frames used for the summary.

2)
3)
4)

Table 1: The names of the top 5 teams are
listed w.r.t fraction of inclusion of ground truths -
both before (Rjrqc(unnorm)) and after normalization
(Rfrac(norm)) by the summary length. We provide
the average inclusion fractions and our own results
for comparison.

School | R¢rac(unnorm) || School | R¢rac(norm)

nii 0.6800 hut 0.0173
lip6 0.6700 cityu 0.0156
cityu 0.6400 hkpu 0.0128
cmu 0.6000 thu_icrc 0.0127
ucal 0.6000 eurecom 0.0126
avg. 0.4795 avg. 0.0100
ucal 0.6000 ucal 0.0103

4. ANALYSIS AND CONCLUSIONS

While visual examination and NIST scores reveal a high
degree of accuracy as regards inclusion of important video
elements, the method described is highly computationally
intensive. The greatest slowdown occurs during low-level
feature extraction, both for HSV descriptors and SIFT de-
scriptors. The SIFT descriptors are used only for object
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recognition, and unless such object recognition is highly im-
portant the costs outweigh the algorithm’s ability to accu-
rately perform recognition. Future work could focus on find-
ing an alternate cutoff point for inclusion in the summary,
such as absolute importance or a break in the importance
distribution frotar[n] (2).

Empirically a big change was seen when a second-pass at
k-means was used for clustering. A second pass for redun-
dancy removal provides scope for further improvement. Af-
ter the candidate keyframes are selected, a similar/duplicate
frame detection scheme can be run to further detect repeats
in the summary, alleviating reliance on the final k-means
clustering step.
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