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Abstract. Most classification algorithms receive as input a set of attributes of the classified objects. In many
cases, however, the supplied set of attributes is not sufficient for creating an accurate, succinct and comprehensible
representation of the target concept. To overcome this problem, researchers have proposed algorithms for automatic
construction of features. The majority of these algorithms use a limited predefined set of operators for building
new features. In this paper we propose a generalized and flexible framework that is capable of generating features
from any given set of constructor functions. These can be domain-independent functions such as arithmetic and
logic operators, or domain-dependent operators that rely on partial knowledge on the part of the user. The paper
describes an algorithm which receives as input a set of classified objects, a set of attributes, and a specification for a
set of constructor functions that contains their domains, ranges and properties. The algorithm produces as output a
set of generated features that can be used by standard concept learners to create improved classifiers. The algorithm
maintains a set of its best generated features and improves this set iteratively. During each iteration, the algorithm
performs a beam search over its defined feature space and constructs new features by applying constructor functions
to the members of its current feature set. The search is guided by general heuristic measures that are not confined to
a specific feature representation. The algorithm was applied to a variety of classification problems and was able
to generate features that were strongly related to the underlying target concepts. These features also significantly
improved the accuracy achieved by standard concept learners, for a variety of classification problems.
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1. Introduction

Research and practice have shown that the performance of standard concept learning algo-
rithms, such as C4.5 (Quinlan, 1993), CN2 (Clark & Niblett, 1989) and IBL (Aha, Kibler,
& Albert, 1991), degrades when supplied with data attributes that are not directly and in-
dependently relevant to the learned concept (John, Kohavi & Pfleger, 1994; Ragavan &
Rendell, 1993). Two related problems have been discerned: feature irrelevance and feature
interaction. The problem of feature irrelevance was addressed by designing algorithms that
perform feature selection (Kira & Rendell, 1992; John, Kohavi, & Pfleger, 1994; Kohavi &
Dan, 1995; Sangiovanni-Vincentelli, 1992; Caruana & Freitag, 1994; Salzberg, 1993). The
problem of feature interaction was addressed by constructing new features from the basic
feature set. This technique is called feature construction. The new generated features may
lead to the creation of more concise and accurate classifiers. In addition, the discovery of
meaningful features contributes to better comprehensibility of the produced classifier, and
better understanding of the learned concept.
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The conclusive majority of feature construction algorithms have been specifically de-
signed to generate features of a rigidly predefined representation. Among the popular
representations are simple Boolean expressions, M-of-N expressions, hyperplanes, logi-
cal rules and bit strings. Most construction algorithms employ special-purpose construction
methods and heuristics that are especially suited to their underlying representation. Each of
these representations was shown to be beneficial in specific classes of problems. For exam-
ple, it was shown that M-of-N expressions are particularly useful for medical classification
problems where expert systems make use of “criteria tables” that are essentially M-of-N
concepts (Murphy & Pazzani, 1991).

There are, however, several problems with the above scheme:

1. Given a new classification problem, it is not obvious which of the various representations
and associated algorithms should be selected.

2. It is possible that none of the existing schemes is the right one for the problem at hand. In
many real-world classification problems, the target concept is best expressed by features
constructed using domain-specific knowledge. The above algorithms, with their strict
constructor set, cannot exploit such knowledge.

3. The rigidity of the existing algorithms does not allow for easy altering of the represen-
tation. For example, even when we decide to use logical constructors, there is no easy
way to alter the existing constructor set.

4. Some classification problems may require a combination of several representation
schemes. This is difficult to do with existing feature construction algorithms.

In this paper we propose a methodology for feature generation which is general enough
to address the above problems. The framework consists of two main elements:

• A grammar which describes a language for feature construction specifications. Such
specifications are written by the user, based on its partial knowledge of the domain. The
specification is then used to define the space of constructed features.

• A feature construction algorithm that performs a heuristic search over the space of con-
structed features defined by the user-supplied specification.

The formulation and use of existing background knowledge often plays a prominent role
in successful concept learning. Classification algorithms are frequently employed by people
who may not know the problem concept, but do have some knowledge of the problem do-
main. Using our framework, background knowledge about potentially significant relations
and functions, as well as their properties, can be exploited to construct structured features.

The framework was designed for a flexible and general form of feature generation, where
the representation language can be supplied as part of the problem definition. Our framework
treats feature generation as a search over the dynamic space of constructed features. We start
by defining this space, and continue with the definition of the general search operators that
allow us to traverse it. We then describe our general FICUS algorithm for feature generation.
FICUS is based on an iterative activation of a decision-tree concept learner which is used
to define the local context of feature generation. For each node in the tree, a search in the
feature space is performed, using the defined search operators to combine highly evaluated
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features into new ones. The search is guided by general heuristic functions that are uniformly
applied to features, regardless of their representational form. The search heuristics employ
data-driven as well as hypothesis-driven construction strategies.

Our framework was experimentally evaluated in a variety of problem domains. The gen-
erated features were evaluated by comparing classifiers that were produced using the new
features to classifiers that were produced using only basic features. The generated fea-
tures significantly improved the comprehensibility of the produced classifiers by capturing
important elements of the underlying target concept. The new features also significantly
improved the accuracy of the resulting classifiers, as well as reduced their complexity.

Section 2 describes related work. Section 3 describes the framework for function-based
feature generation. Section 4 defines a language for formulating specifications of feature rep-
resentation. Section 5 defines the search space of constructed features derived from a given
FSS. Section 6 presents the FICUS algorithm. Section 7 describes the experimental evaluation
of the algorithm. Section 8 compares FICUS with related algorithms and concludes.

2. Related work

The problem of automatic feature generation has received significant attention during the
last decade. A variety of algorithms have been developed to improve concept learning by
using different methods of feature construction. These algorithms differ in their form of
feature representation, construction techniques and output format.

Several special-purpose algorithms were designed for specific problem domains (Hirsh
& Japkowicz, 1994; Sutton & Matheus, 1991). These algorithms construct special-purpose
features using domain-specific background knowledge. Such an example is the bootstrap-
ping algorithm (Hirsh & Japkowicz, 1994), designed especially for the domain of molecular
biology. The algorithm represents features as nucleotides sequences whose legal syntax
structure is determined by existing background knowledge. The algorithm starts with an
initial set of feature sequences, produced by human experts, and uses a special set of op-
erators to alter them into new sequence features. Such special-purpose algorithms may be
effectively tailored for a given domain, but may be hard to generalize to other domains and
problems.

More general construction algorithms use a form of feature representation that can be
employed for different domains and problems using a fixed set of construction operators.
Many algorithms, such as FRINGE (Pagallo & Haussler, 1990), CITRE (Matheus & Rendell,
1989), IB3-CI (Aha, 1991), LFC (Ragavan et al., 1993) and GALA (Hu & Kibler, 1996), use
a minimal set of logical operators (such as {¬, ∧}) to express existing Boolean relations
between data attributes. FRINGE, LFC and GALA (Hu & Kibler, 1996) operate in the frame-
work of decision tree learning, which is used to define their context of feature construction.
Although these algorithms use an identical representational language and rely on the same
learning technique, their construction approaches differ.

The LFC algorithm performs feature construction throughout the course of building a
decision tree classifier. New features are constructed at each created tree node by performing
a branch and bound search in feature space. The search is performed by iteratively combining
the feature having the highest InfoGain value with an original basic feature that meets a
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certain filter criterion. The constructed features may be used in the generated tree classifier,
which is returned as the final output of the algorithm.

The GALA (Hu & Kibler, 1996) construction algorithm resembles LFC in its Boolean
operator set. However, its produced output is a feature set rather than a classifier.

The FRINGE (Pagallo & Haussler, 1990) algorithm and its descendants (Yang, Rendell,
& Blix, 1991) perform feature construction by combining sibling leaves of a generated
decision tree. FRINGE operates iteratively. At each iteration, the generated features are used
to build the tree of the next iteration. As opposed to GALA and LFC, where construction
is guided by data-driven measures such as InfoGain, FRINGE follows a hypothesis-driven
construction approach where new features are constructed based on the previously generated
hypothesis decision tree.

Another algorithm that creates Boolean features using decision-tree concept learning is
CITRE, which was presented in an inspiring paper on constructive induction (Matheus &
Rendell, 1989). The CITRE construction algorithm (Matheus & Rendell, 1989) was presented
as part of a framework which did not confine itself to a specific feature representation. The
CITRE algorithm itself, however, was designed to employ an operator set containing only
one member—{And}. CITRE employs an additional meta operator for feature generalization.
This operator, however, is suited only for nominal type attributes, and for concept problems
of an appropriate bias. Like the FRINGE (Pagallo & Haussler, 1990) algorithm, CITRE also
performs hypothesis-driven construction. The CITRE algorithm iteratively builds a decision
tree, and performs feature construction using patterns that appear in the generated tree.
Unlike FRINGE, CITRE searches for patterns in the entire tree, and not just in its leaves. The
CITRE algorithm was tested mainly on the tic-tac-toe problem. It employed background
knowledge of the tic-tac-toe domain and measured its utility. This knowledge, however,
was not added as part of the feature representation; rather it was inserted into the algorithm
itself. Another drawback in the employed background knowledge was that it required a
deep understanding of the tic-tac-toe problem rather than limited partial knowledge.

Aha’s IB3-CI (1991) algorithm, inspired by CITRE, is another construction algorithm that
generates Boolean features based on the conjunction operator. IB3-CI integrates instance-
based learning performed by the IB3 (Aha, Kibler, & Albert, 1991) algorithm with incre-
mental feature construction performed by the STAGGER (Schlimner, 1987) algorithm. In the
course of its activation, IB3-CI generates conjuncts of existing features which match positive
instances and mismatch negative ones. IB3-CI exercised some of the ideas presented in CITRE,
such as feature generalization and background knowledge, and performed experiments on
the tic-tac-toe endgame domain analogous to those performed by CITRE.

The minimal operator sets used by the previously presented algorithms are sufficient but
not always adequate and efficient for the induction and representation of complex Boolean
functions.

Several algorithms have been developed to use a predefined set of complex Boolean
relations. The ID2-OF-3 (Murphy & Pazzani, 1991) and X-OF-N (Zheng, 1996) algorithms
employ a more versatile form of representation for expressing Boolean relations by con-
structing M-of-N and X-of-N concept features respectively. An M-of-N feature is specified
by a set of N features and a number M ≤ N . The feature is satisfied for a particular exam-
ple if at least M features of the set are true. The motivation for the construction of M-of-N



FEATURE GENERATION USING GENERAL CONSTRUCTOR FUNCTIONS 63

concepts is the belief in their relevance for the acquisition of naturally occurring concepts,
particularly in medical domains, where expert systems make use of “criteria tables” that
are essentially M-of-N concepts (Murphy & Pazzani, 1991). The ID2-OF-3 and X-OF-N al-
gorithms perform a greedy search in their constructed feature space, guided by operators
that generalize or specialize existing features mainly by addition or removal of a single
attribute-value pair. The MRP algorithm (Perez & Rendell, 1995) uses relational projection
features that are able to describe complex Boolean concepts.

In spite of their relevance to a variety of classification problems, Boolean relations cover
only a part of the potential interaction between data attributes. In addition, Boolean relations,
at least simple ones like AND and OR, are often inherently represented in the decision tree
structure.

A different form of feature representation, especially suited for continuous attributes, is
hyperplanes. A hyperplane is a linear plane that splits the domain space into two separate
subspaces. Hyperplanes can be axis parallel, as in C4.5 (Quinlan, 1993), or multivariate as in
LMDT (Utgoff & Brodley, 1991), SADT (Heath, Kasif, & Salzberg, 1993) and CART (Breiman
et al., 1984). Such multivariate hyperplanes are induced by methods of linear regression
and weights adjustment. An extension to the hyperplane representation was performed in
the NDT (Ittner & Schlosser, 1996) algorithm, which generates non-linear splits in the form
of curved hypersurfaces.

As in the previously described algorithms, LMDT (Utgoff & Brodley, 1991) performs
feature construction in the course of building a decision-tree classifier. At each created tree
node, the algorithm constructs a hyperplane feature by training a thermal linear machine.
The construction procedure is aimed at generating concise hyperplanes that are based on
relevant data attributes. When LMDT detects that a linear machine is near its final set of
boundaries, it eliminates the variable which least contributes to discriminating between
elements of the two classes in the current set of instances. Afterwards, it continues training
the linear machine. Finally, the most accurate linear machine with the minimum number of
variables is chosen.

The SADT (Heath, Kasif, & Salzberg, 1993) algorithm uses the same framework as LMDT,
but employs a random construction technique that is based on simulated annealing. The
idea underlying this method is that the locally best split of a tree node might not be the
globally optimal one, and thus it may be preferable to generate a set of alternative trees
which may produce good approximate solutions.

A related study was conducted by Sutton (1991), who designed an algorithm for learning
high-order polynomial functions. The algorithm works by iteratively performing linear
regression, combined with feature construction. The algorithm constructs a new feature by
forming a product of the two existing features that most effectively predict the square error
of its current hypothesis function.

Hyperplane representation may be suitable for problems of an appropriate bias; however,
it is a fixed representation that can not be adapted to include background knowledge of the
problem domain. In addition, it may suffer from poor comprehensibility.

Although not directly related to the work presented in this paper, some of the rule-based
systems that perform feature construction in the context of supervised learning deserve
mention. Algorithms such as STRUCT (Watanabe & Rendell, 1991), AQ17-HCI (Wenk &
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Michalski, 1994) and PRAX (Bala, Michalski, & Wenk, 1992) employ rules as their feature
representation. New rules are created from existing rules by using an operator set to alter
them. Rules can be specialized by adding terms to the rule’s conditions, or generalized by
deleting terms or replacing them with variables. The rule’s representation is usually limited
to clause form. Michalski’s AQ17-HCI (Wenk & Michalski, 1994) construction algorithm
bases its operation on the AQ15 learning system. The algorithm iteratively applies AQ15
to induce a rule set which best covers its positive examples. The induced rule set is ana-
lyzed, modified accordingly, and then used for the next iteration of the algorithm. Feature
construction is also performed in genetic algorithms, such as GABIL (De Jong, Spears, &
Gordon, 1992) and GA-SMART (Kira & Rendell, 1992). Such algorithms employ a bit-string
representation of features and generate new features as a result of genetic operations such
as crossover and mutation. However the bit-string representation does not express feature
structure, a drawback which may lead to the generation of meaningless and illegal features.

Regarding the use of grammars as part of concept learning systems, the work of
Todorovski and Dzeroski (1997) in the context of equation discovery should be mentioned.
The discovery system LAGRAMGE attempts to find an equation that describes a given set of
measured data. LAGRAMGE uses a context-free grammar to define and restrict its equation hy-
pothesis space. The grammar enables the use of mathematical operators as well as functions
representing domain-specific knowledge. The discovery system was successfully applied to
a number of problems of equation discovery that relate to the behavior of dynamic systems.

To conclude, there are numerous algorithms and representation schemes for feature con-
struction, each having its strengths and weaknesses, and each is appropriate for different
types of problems. The work presented in this paper offers a framework that was designed
to support a general and flexible representational form. The specification language offered
by our framework is strong enough to allow the definition of many of the representational
forms employed by the previously described algorithms, such as recursive Boolean features,
M-of-N concepts, and simple hyperplanes. In addition, it enables the definition of any other
logical, mathematical, or domain-specific function that can be formulated by the user based
on domain background knowledge.

3. A framework for function-based feature generation

In this section we present a general framework for describing feature generation algorithms.
A supervised concept learner receives as input a set of basic features and a set of examples for
which it produces a classifier. In our framework, a feature construction algorithm receives,
in addition, a set of constructor functions. The feature generation algorithm produces a set
of constructed features which are added to the set of features supplied to the concept learner.
Our generation framework broadens the classic framework of supervised concept learning
by introducing new basic elements called constructor functions. These functions, which can
be mathematical, logical or domain-specific, are used as the basis for feature generation.
The framework is illustrated in figure 1. In Section 6 we describe the architecture for the
FICUS algorithm, which is based on this framework.

The set of constructor functions define the space of constructed features. Before we
describe this space, we define a supervised concept learner as follows:
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Figure 1. The generation framework.

Definition 1. Let E be a finite instance set. Let C be a finite set of categories. A classified
example is a pair 〈e, c〉, where e ∈ E and c ∈ C . A feature is defined as a function over
E . A classifier is a function s : E → C . Let S be the set of all possible classifiers from E
to C . A supervised concept learner is defined as an algorithm that given a set of classified
instances EC , and a set of initial basic features Fb, produces a classifier s ∈ S.

A set of constructor functions U defines the space of possible constructed features FC ,
over the set of basic features Fb, and the set of constants. Note that constants are not features
since they are not functions over E .

Definition 2. Let E be the instance space. Let Fb be a set of basic features. Let U be a set
of constructor functions. Let C f be the set of constant features in the union of ranges of Fb

and U . The space of constructed features, FC , is then defined as follows:

1. Fb ⊆ FC

2. Let u : d1 × · · ·× dk → range(u) be a function of arity k in U . Let f1, . . . , fk be a finite
sequence of features in {FC ∪ C f }, such that for 1 ≤ i ≤ k : range( fi ) ⊆ di . Let f be a
feature defined as ∀e ∈ E, f (e) = u( f1(e), . . . , fk(e)). Then f ∈ FC .

The above definition allows us to define a feature construction algorithm:

Definition 3. A feature construction algorithm is an algorithm that receives as input a set
of basic features Fb, a set of classified examples EC and a set of constructor functions U ,
and produces a set of constructed features Fout ⊆ FC .

The utility of a feature construction algorithm is measured by the utility of its produced
feature set, which in turn is measured by comparing a classifier that was produced using
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it to a classifier that was produced using the original basic feature set. The classifiers are
compared by criteria such as accuracy, comprehensibility and complexity.

Definition 4. Let EC , Fb, S and U be defined as above. An evaluation criterion is a real-
valued function v : S → � that is used to evaluate classifiers. Let l be a concept learner.
The utility of a feature set F with respect to Fb, EC , l, and v can be defined as:

Util(F) = v(l(EC , F)) − v(l(EC , Fb)).

The utility of a construction algorithm ϕ, with respect to Fb, U, EC , l, and v, is measured
by the utility of its produced feature set:

Util(ϕ) = v(l(EC , ϕ(EC , Fb, U ))) − v(l(EC , Fb)).

The purpose of this work is to design a general feature construction algorithm that
generates high utility feature sets for a variety of classification problems.

4. A specification language for defining feature representation

In the introduction we set a goal of developing a methodology for feature generation, where
the representation is not predefined as part of the generation algorithm, but is rather supplied
as input by the user. In this section we define a language for formulating specifications of
representation schemes. Such a specification defines the space of the constructed features
which will be searched by the generation algorithm.

More specifically, we define a language that allows us to specify the following:

1. The set of basic features.
2. The set of constructor functions.
3. The domain and range of each constructor function.
4. A set of constraints over the application of the constructor functions.

The description of these items written in the specification language is called feature space
specification (FSS). Figure 2 presents a grammar that defines a language for writing FSS. The
definition of an FSS is based on a set of types for the domains and ranges of the constructor
functions and basic features.

An FSS specifies a hierarchy of types used to define the domains and ranges of basic
features and constructor functions. The leaves of the hierarchy are atomic types, and the
types at the intermediate nodes are supersets of their children. The types in the hierarchy
are either nominal, ordered-nominal, or continuous. Ordered-nominal types are specified
by enumerating the type elements together with associated ordinals. Continuous types are
specified by their boundaries. Basic features are defined by their ID and type. Constructor
functions are defined by their ID, return type and the specification of their input arguments.
An argument specification denoted as arg-spec is composed of an argument type and a
constraint set.
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Figure 2. The FSS grammar defines a language for writing feature space specifications. Sets of elements are
denoted by {. . .}, while sequences are denoted by 〈. . .〉.

This scheme allows us to specify how to compose new constructed features with a
predefined finite set of arguments. Many functions, however, such as min, max,

∑
,
∏

,
etc., may be applied to a variable number of arguments. Due to their associative nature, it
is possible to represent such functions as binary functions, which can effectively operate
on an unlimited number of arguments by means of recursive activation. This solution,
however, is not adequate for nonassociative functions, such as Average, which calculates its
arguments average, > which tests whether its arguments are sorted, = which tests whether
its arguments are equal, or Count which returns the number of its positive arguments. Such
nonassociative functions, which may operate on an unlimited number of arguments, could
only be represented by an infinite series of finite arity functions. To overcome this difficulty,
we have defined our constructor functions to be able to also receive sets and sequences of
features, as individual arguments. In this way a function such as Average could be defined
as receiving a single argument of type set, rather than being defined by an infinite series of
finite arity functions. Sequences are used for constructors that are order-dependent, such
as >. An argument type, denoted as arg-type, is therefore defined either as a type, a set of
type, or a sequence of type.

An argument constraint set is a set of Boolean constraint functions that receive an ar-
gument and test whether it complies to a given constraint. The FICUS system, described in
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Figure 3. An FSS for the tic-tac-toe domain.

Section 6, supplies a built-in set of constraint functions that enable the user to forbid or
enforce the use of constants, to restrict the size of sets and sequences, and to forbid dupli-
cations in sequences. In addition to the built-in constraint functions, the user may supply
constraint functions which represent domain background knowledge.

Figure 3 shows an example FSS for feature generation in the domain of tic-tac-toe end
games. The type set of the FSS consists of three types: Boolean, Float and Slot. The Slot
type represents the value of a board slot and is inherited from the ordered-nominal type.
Its range consists of the ordered nominal values “O”, “B” (for blank) and “X”. The basic
feature set of the FSS consists of 9 features of type “Slot”, representing the 9 board positions
{S11, . . . , S33}. To represent a larger-problem game board such as 4 × 4, it is only required
to change the basic feature set of the current FSS to the 16 features {s11, . . . , S44}.

The FSS defines five constructor functions, each consisting of a return type and arguments
specification. The definition makes use of three argument constraint functions: NoConst,
forbidding constant features, Const, enforcing constant features, and Unique, forbidding
identical elements.
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5. Feature generation as search

In general, feature generation can be viewed as a search conducted in a defined feature
space. In this section we define the search space of constructed features derived from a
given FSS.

5.1. The search space

In order to formulate the definition of the searched feature space, as well as the operators that
are used to traverse it, we first define when an argument placement is legal. This definition
is based on type compatibility.

Definition 5. Let T1 and T2 be types of constructor function arguments. T1 is compatible
with T2 (denoted by CmpType(T1, T2)) if and only if

((T1 = t1, T2 = t2 | t1, t2 ∈ types(FSS)) ∧
(t1identical to or inherited from t2)) ∨
((T1 = set of t1, T2 = set of t2) ∧
CmpType(t1, t2)) ∨
((T1 = sequence of t1, T2 = sequence of t2) ∧
CmpType(t1, t2)).

We can now define the legality of argument placements.

Definition 6. Let u be a constructor function and i an argument index. Let A be a construc-
tor function argument (a feature, a set of features or a sequence of features). The placement
of A as the i’th argument of u is defined to be legal (denoted by LegalArg(u, i, A)) if and
only if

(CmpType(type(A), type(argsi (u)))

∧∀ fc ∈ constraints(argsi (u)), ( fc(A))).

Given an input FSS, the space of legal constructed features is defined as the set of all legal
compositions that combine basic features into constructed features.

Definition 7. Let E be the instance space. Let T be the type set of the FSS. Let C f be the set
of all constant features in the union of ranges of types in T . Let Fb be the basic feature set
of the FSS. Let U be the constructor function set of the FSS. The space of legal constructed
features, F , is defined as follows:

1. Fb ⊆ F .
2. Let u be a constructor function of arity k in U . Let A1, . . . , Ak be a set in which each

element is either a feature, a finite set of features or a finite sequence of features, in the
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Figure 4. A tree representation of the constructed feature > (〈Max({Slot11, Slot12}), Avg({Slot23, Slot33})〉).

range {F ∪ C f }, such that ∀i, 1 ≤ i ≤ k : LegalArg(u, i, Ai ). Let f be a feature defined
as ∀e ∈ E, f (e) = u(A1(e), . . . , Ak(e)). Then f ∈ F .

The structure of features in F is a tree structure whose intermediate nodes contain construc-
tor functions and whose leaves contain basic features and constants. A set is represented
by a node, labeled { }, with a subtree for each of its members. Sequences are similarly
represented by a node labeled 〈 〉.

Figure 4 illustrates a tree representation of the constructed feature > (〈Max({Slot11,

Slot12}), Avg({Slot23, Slot33})〉), defined over the FSS describing the tic-tac-toe domain
shown in figure 3.

5.2. The search operators

In order to traverse a space F , derived from a given FSS, we have defined four types of
general search operators. These operators receive either one or two existing features, from
which they produce a set of newly constructed features. Although the presented operators
do not express every possible method for combining existing features, it is easy to show
that, given an FSS, they are sufficient for generating its defined legal feature space, F .

We briefly outline the four types of operators, and then define each of them more precisely.
We also give an example for each operator, using the FSS describing the tic-tac-toe domain,
shown in figure 3.

1. Compose receives one or two features from which it composes new features using all
the suitable constructor functions of the FSS.
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2. Insert receives two features and creates new ones by inserting one feature into the other.
3. Replace receives two features and creates new features by replacing components of one

feature with the other feature itself.
4. Interval receives a feature and creates new features that test whether it lies within a

specified range.

Note that we have introduced a seemingly strong assumption—that the constructor func-
tions are either binary or unary. This is not as restrictive as it sounds, since each of the
arguments can be a set or a sequence. It is also possible to extend the definition to k-ary
constructor functions. Such an extension, however, will increase the branching factor of the
search graph.

We now give the precise definitions of the four operators.

5.2.1. The Compose operator. Let f1, f2 ∈ F then

Compose( f1, f2) = {u(A1, A2) | (u ∈ U ) ∧ (|args(u)| = 2) ∧
(A1 ∈ { f1, { f1}, 〈 f1〉}) ∧
(A2 ∈ { f2, { f2}, 〈 f2〉}) ∧
LegalArg(u, 1, A1) ∧ LegalArg(u, 2, A2)}1 ∪
{u(A1) | (u ∈ U ) ∧ (|args(u)| = 1) ∧
(A1 ∈ {{ f1, f2}, 〈 f1, f2〉, 〈 f2, f1〉}) ∧
LegalArg(u, 1, A1)}.

For example, given the features f1 = Slot11 and f2 = Slot12, Compose will return the
following 4 constructed features:

Compose( f1, f2) = {Max({Slot11, Slot12}), Avg({Slot11, Slot12}),
> (〈Slot11, Slot12〉), > (〈Slot12, Slot11〉)}.

The following example uses constructed features as arguments. Given the Boolean fea-
tures f1 = I s(Slot11, “X”) and f2 = Is(Slot12, “X”), Compose will return two new con-
structed features that use constructors with Boolean arguments:

Compose( f1, f2) = {And(Is(Slot11, “X”), Is(Slot12, “X”)),

Or(Is(Slot11, “X”), Is(Slot12, “X”))}

The unary version of Compose is defined as follows:

Compose( f1) = {u(A1) | (u ∈ U ) ∧ (|args(u)| = 1) ∧
(A1 ∈ { f1, { f1}, 〈 f1〉}) ∧
LegalArg(u, 1, A1)}.



72 S. MARKOVITCH AND D. ROSENSTEIN

5.2.2. The Insert operator. Let f1, f2 ∈ F . Let f2 be denoted as u(A1, . . . , Ak), where u
is an FSS constructor function, and A1 · · · Ak its input arguments. Then

Insert( f1, f2) = {u(A′
1, . . . , A′

k) | (1 ≤ i ≤ k) ∧
(∀ j �= i A′

j = A j ) ∧
(A′

i ∈ Ins( f1, Ai )) ∧ LegalArg(u, i, A′
i )},

where

Ins( f, A)=




{ } A is of simple type

{{ f1, . . . , fn, f }} A = { f1, . . . , fn}
{〈 f ′

1, . . . , f ′
n+1〉 | A = 〈 f1, . . . , fn〉

(1 ≤ i ≤ n + 1) ∧ ( f ′
i = f ) ∧

(∀ j < i, f ′
j = f j ) ∧ (∀ j > i, f ′

j = f j−1)}

.

For example, given the features f1 = Avg({Slot11, Slot12}) and f2 = Slot13, Insert will
return only one new constructed feature, since there is only one way of adding a member
to a set.

Insert( f1, f2) = {Avg ({Slot11, Slot12, Slot13})} .

Should it be an operator that receives a sequence, Insert would have returned 3 constructed
features.

5.2.3. The Replace operator. Let f1, f2 ∈ F . Let f2 be denoted as u(A1, . . . , Ak), where
u is an FSS constructor function, and A1 . . . Ak , its input arguments. Then

Replace( f1, f2) = {u(A′
1, . . . , A′

k) | (1 ≤ i ≤ k) ∧
(∀ j �= i A′

j = A j ) ∧
(A′

i ∈ Rep( f1, Ai )) ∧ LegalArg(u, i, A′
i )},

where

Rep( f, A) =




{ f } A is of simple type

{{ f ′
1, . . . , f ′

i , . . . , f ′
n}| A = { f1, . . . , fn}

(1 ≤ i ≤ n)∧
( f ′

i = f ) ∧ (∀ j �= i, f ′
j = f j )}

{〈 f ′
1, . . . , f ′

i , . . . , f ′
n〉 | A = 〈 f1, . . . , fn〉

(1 ≤ i ≤ n) ∧
( f ′

i = f ) ∧ (∀ j �= i, f ′
j = f j )}.

For example, given the features f1 = And(Is(Slot11, “X”), Is(Slot12, “X”)) and f2 =
Is(Slot13, “O”), Replace will return the following two constructed features:

Replace( f1, f2) = {And(Is(Slot13, “O”), Is(Slot12, “X”)),

And(Is(Slot11, “X”), Is(Slot13, “O”))}.
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In the following example, members of the single set argument are replaced. Given the fea-
tures f1 = Avg ({Slot11, Slot12, Slot33}) and f2 = Slot13, Replace will return the following
3 constructed features:

Replace( f1, f2) = {Avg({Slot13, Slot12, Slot33}),
Avg ({Slot11, Slot13, Slot33}), Avg ({Slot11, Slot12, Slot13})}.

5.2.4. The Interval operator. Let f1 ∈ F . We distinguish between two cases:

• f1 is nominal or ordered-nominal. Interval( f1) = {Is( f1, {Ci }) | Ci ∈ Range( f1)} where
the builtin constructor Is is defined as Is( f1, Ci ) = TRUE ⇔ f1 = Ci .

• f1 is continuous. Let {C1, C2 · · · Cn} be a discretization of Range( f1). (We use the
dynamic discretization algorithm by Fayyad and Irani (1993).) Then Interval( f1) =
{InRange( f1, {Ci , Ci+1}) | 1 ≤ i < n}, where the builtin constructor function InRange is
defined as InRange( f1, {Ci , Ci+1}) = TRUE ⇔ Ci ≤ f1 ≤ Ci+1.

For example, given the nominal feature f1 = Slot11, Interval will return the following 3
constructed features:

Interval( f1) = {Is(Slot11, “X”), Is(Slot11, “O”), Is(Slot11, “B”)}.

Should f1 have been a continuous feature, Interval would have returned InRange constructed
features according to the second definition.

6. The FICUS algorithm

In this section we present a feature construction algorithm, named FICUS.1 FICUS receives as
input an FSS defined by the grammar presented in figure 2 and a set of classified instances.
FICUS searches the feature space, F , defined by its input FSS, using the presented search
operators. It then returns a utile set of generated features.

6.1. Architecture

The general framework of FICUS is described in figure 5. FICUS receives as input a set of
basic features, a set of classified objects, and an FSS which defines a set of constructor
functions. The output of FICUS is a set of constructed features that can be used by any
supervised concept learner to produce a corresponding classifier. The algorithm consists of
three major modules. The feature generator generates new features. The feature selector
selects a utile subset of generated features. The concept learner defines the local context
for feature generation. Our current framework employs a decision tree learner (DT), which
uses information gain to split nodes and does not prune, for this purpose. Note that the
concept learner is used as an internal module of the FICUS algorithm and is independent of
the external concept learners that will eventually use the constructed feature set.
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Figure 5. General scheme of FICUS.

The algorithm maintains a set of constructed features initialized to the basic feature set.
The algorithm iterates as long as computation resources are available. During each iteration,
it builds a classification tree using its input examples and its current set of constructed
features. In the course of building the tree, the feature generator is activated for each new
node using its local instance set. Based on the current constructed feature set, and on the
global FSS definition, the generator generates new features that can successfully discriminate
between the members of the two classes in its input instance set. The new generated features
are then used as additional candidates for splitting the node according to the splitting criterion
of the tree concept learner. After the tree is built, the feature selection procedure selects a
subset of the newly generated features that appear in the tree. The selected feature subset,
together with the basic features, constitutes the new constructed feature set that is used in
the next iteration. The algorithm terminates after a specified number of iterations, or as a
result of an interactive user request, and returns its current feature set as output. Therefore,
FICUS can be regarded as an anytime algorithm (Boddy, 1991; Boddy & Dean, 1994) that
is able to return its updated result at any point in time.
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Figure 6. FICUS—pseudo-code (1).

The generation strategy of FICUS is based on an evolutionary approach by which new
features are continuously composed from highly-evaluated existing ones. This strategy is
implemented at two levels: first, at the local level of each tree node by the activated feature
generator, and second, at a global level, by gathering different features of the tree into one
integrated set, (the constructed feature set), which is used to generate new features in the
next iteration.

In the following subsections we present the components of the FICUS algorithm. The
entire algorithm is listed in pseudo-code in figures 6 and 7.

6.2. The feature generator

The feature generator is activated during the construction of each node of the decision-
tree concept learner. The generator receives as input the currently employed constructed
feature set, the tree node instances, and the FSS. The generator produces a set of features
that are then used by the concept learner as candidates for splitting its current tree node.
The generator searches the constructed feature space, F , looking for features which best
discriminate between members of the two classes in its input set of data instances. The
architecture of the feature generator is illustrated in figure 8.
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Figure 7. FICUS—pseudo-code (2).

6.2.1. The search procedure. In general, feature generation can be viewed as a search
that is conducted in a defined feature space. For FICUS, this space is defined by its supplied
FSS. Since constructor functions may be activated in a hierarchical and recursive fashion,
the defined feature space F can be very large or even infinite, making exhaustive search
impractical. To efficiently search F , a suitable search strategy is required, as well as an
appropriate heuristic to guide it. The feature generator of FICUS employs a search strategy
that is a variant of beam search. The generator maintains two fixed-size sets of features:
A set of building blocks for the construction of new features, and a target set of generated
features which is the eventual output of the search procedure. The target set is initialized to
include the members of the input constructed feature set (the output of the previous iteration
of the FICUS algorithm). The set of building features is initialized to the union of

• the input constructed feature set;
• the features from which the input constructed features are composed. These features were

added to introduce a form of one-level backtracking.

The search algorithm uses two different evaluation criteria to order the two feature sets and
trim them to their fixed sizes.
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Figure 8. The feature generator.

The search operates iteratively, where at each iteration new features are generated and
added to the two maintained sets. The new features are generated by iteratively applying
the search operators, defined in Section 5.2, to selected pairs of building blocks. The same
feature may be selected for both pair elements, allowing for the application of the unary
operators. The selection of building blocks from within the building block set is performed
according to their associated evaluation criterion value.

Given a selected pair of features, f1 and f2, the algorithm uses the search operators to
get a new set of constructed features, called Expand( f1, f2):

Expand( f1, f2) =



Compose( f1, f2) ∪ Insert( f1, f2) ∪ Insert( f2, f1) f 1 �= f 2
∪ Replace( f1, f2) ∪ Replace( f2, f1)

Compose( f1) ∪ Interval( f1) f 1 = f 2

At each search iteration, the search procedure iteratively expands selected building block
pairs, until a fixed number of new features has been generated, or until all the existing pairs
have been expanded. The new features are merged into the maintained target and building
block sets, and a new iteration begins. The search algorithm maintains a record of previously
generated features, to avoid their regeneration, as well as a record of previously expanded
building block pairs, to avoid their recurrent expansion. In addition, a filter is used to remove
features whose target evaluation criterion is not sufficiently higher than that of their parents.
The pseudo code of the generator is presented in figure 7.
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6.2.2. Feature evaluation criteria. The generator employs two different evaluation crite-
ria: one for the target set and another for the building block set (as defined in the previous
section). The evaluation criterion used for ordering the target feature set, denoted by hE

f ,
is supplied by the concept learner and is dependent on its current local instance set. In
the current version of FICUS, which uses a decision-tree concept learner, hE

f is the splitting
criterion (e.g. information gain) used to split tree nodes.

The evaluation function applied to the set of building blocks, denoted by hb, tries to predict
their potential constructive utility, i.e., their utility as building blocks of new features. We
propose two alternative functions for evaluating constructive utility: a data driven utility
function, hd

b , and a hypothesis driven utility function, hh
b .

The data driven function considers three criteria for evaluating a feature: its target eval-
uation function, hE

f , its complexity, Comp, computed by the size of its representative tree
structure, and its relative improvement compared to its parent building blocks. The function
directs the search process to prefer features with low complexity, following the Occam’s
razor principle. This function is defined as

hd
b( f ) = α

[
hE

f ( f )

Comp( f )

]
norm

+ (1 − α)




hE
f ( f )

Comp( f )

maxp∈parents( f )

(
hE

f (p)

Comp(p)

)



norm

,

where the left term represents the target value of f normalized by its complexity. The right
term measures the improvement of this normalized value of f with respect to that of its
parents. [X ]norm denotes a normalization of X to [0, 1]. α controls the weights given to the
two components.

A possible problem with the data-driven approach is its disregard of feature interaction.
It is quite possible that a feature poorly estimated by hd

b will produce a highly valued feature
due to its interaction with another feature. We therefore propose an alternative hypothesis-
driven evaluation criterion which can detect existing feature interactions.

The hypothesis-driven function evaluates the constructive utility of features from the
building block set, by using them to build a decision-tree hypothesis, and then evaluating
each feature by its contribution to it. A feature contributes to a tree by serving as a splitting
feature of a node or by participating in an argument of another splitting feature. let Eni be
the set of examples at node ni . Let fni be the splitting feature of node ni . The node-utility
of feature f is defined as

u( f, ni ) =




∣∣Eni

∣∣
|E | InfoGain

(
fni , Eni

)
fni = f∣∣Eni

∣∣
|E |

InfoGain
(

fni , Eni

)
∑k

j = 1 |A j |
γ fni = f ′(A1 . . . , Ak) ∧

f ∈ A j |1 ≤ j ≤ k

0 otherwise.

When f serves as a splitting feature, it is credited with its weighted information gain in
that node. When it serves as part of an argument of a splitting feature, it is credited with



FEATURE GENERATION USING GENERAL CONSTRUCTOR FUNCTIONS 79

the weighted Info-gain of the splitting feature, divided by the total number of features in its
arguments and discounted by γ . γ expresses the fact that the utility of a constructed feature
should not be credited entirely to its building blocks. The utility of f with respect to the
whole tree is measured by the sum of its node utilities:

hh
b( f, T ) =

∑
ni ∈T

u( f, ni ).

One drawback of hypothesis-driven evaluation is that it may lead to a narrow search in
the feature space. Out of an entire feature set, only a small number of features are used
extensively in the generated classifier. These features tend to overshadow other relevant
features that were not included or rarely used in the classifier. This problem intensifies as the
number of features increases, especially when the classifier is induced by a greedy algorithm.
In our experiments, we found that a hybrid strategy which employs an hypothesis-driven
evaluation in the first search phase, (in which the building block feature set is relatively
small) and a data-driven evaluation in the following phases, combines the advantages of
both approaches.

6.3. Feature selection

FICUS maintains a fixed-size feature set, which is the basis for its decision-tree learning and
feature generation. The feature set consists of a fixed part, which contains the basic feature
set, and of constructed features, which are updated at each iteration of the algorithm. At
each iteration, FICUS induces a decision tree containing generated features, and then applies
feature selection to choose a subset of them to replace the constructed features of its current
feature set. The updated feature set is then used in the next iteration of the algorithm.

To perform feature selection, it is possible to use algorithms such as those proposed by
Kohavi (1994, 1995), Salzberg (1993), and Rich (1994), which conduct a search in the space
of feature subsets. However, to reduce the computational effort of the algorithm, we perform
a selection that is based on an analysis of the generated decision tree. The criterion, by which
generated features are selected, is their direct contribution to the generated decision tree

∑
ni ∈T, fni = f

∣∣Eni

∣∣
|E | InfoGain

(
fni , Eni

)
.

All the basic features are included in the feature set regardless of their utility in the tree.
This guarantees the completeness of the searched feature space.

6.4. The complexity of FICUS

During each iteration of the FICUS algorithm, a classification tree is built, and the feature
generator is called for each of its nodes. Therefore, the complexity of the algorithm is the
number of iterations times the complexity of building a tree. This complexity is dominated
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by the number of nodes times the complexity of feature generation per node. The feature
generator performs several phases. During each phase it generates and evaluates new fea-
tures, whose number is limited by a given parameter. The cost of evaluation depends on
the evaluation methods used. The following analysis assumes a data-driven evaluation of
building blocks.

Let Nphase be the fixed number of generation phases (the internal loop of the generator).
Let Nnew be the fixed number of features generated and evaluated at each search phase.
The evaluation of each feature involves the calculation of its Info-Gain value, which, in the
worst case of a continuous feature, is equal to the complexity of sorting the instance set of
the generator. Let n be a node of a decision tree being built and let En be its local instance
set. The complexity of the feature generator when activated for node n is

OG(En) = |En| log2 |En|Nnew Nphase, (1)

where |En| log2 |En| is a bound on the complexity of calculating the Info-Gain value of a
single feature, and Nnew · Nphase is the total number of evaluated features.

The complexity of one iteration of the algorithm is measured by summing the value of
Eq. (1) over all the nodes of the produced tree. Let E be the set of examples given to the
FICUS algorithm. The total size of the local instance sets of nodes at each level of the decision
tree is bounded by E . Therefore, the complexity of generating features in each complete
level i of the decision tree T can be bounded as follows:

Oi
T (E) =

∑
n∈T,level(n)=i

OG(En)

= Nphase Nnew

∑
n∈T,level(n)=i

|En| log2 |En|

≤ Nphase Nnew|E | log2 |E |. (2)

The above bound should be multiplied by the tree depth, which is bounded by |E |, and by
the number of iterations of the main loop. Therefore, the complexity of FICUS is bounded
by

Niterations Nphase Nnew|E |2 log2 |E |. (3)

The bound |E | on the tree depth is for an extreme case. In practice we have received much
shallower trees.

When using the hybrid evaluation strategy, we must add to the cost of generation the cost
of producing the hypothesis tree. This cost is

OG(En) ≤ |En| log2 |En|Nnew Nphase + |En|2 log2 |En||F |,

where F is the set of building block features. The complexity of the FICUS algorithm is then
bounded by

Niterations Nphase Nnew|E |2 log2 |E | + Niterations|F ||E |3 log2 |E |, (4)
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where the second additional item represents the operational complexity of producing the
hypothesis decision tree in the first generation phase. In practice we found that using the
hybrid strategy increases the computation time by at most factor of 2.

7. Experiments

A variety of experiments were conducted to test the performance and behavior of the FICUS

algorithm. We start with a description of the methodology used for the experimentation and
continue with the description of the experiment results.

7.1. Experimental methodology

The performance of FICUS was evaluated by the utility of its returned set of generated
features. The utility was measured by comparing the performance of classifiers produced
by a standard concept learner that used the set of generated features to the performance of
classifiers produced by the same learner, using only the original basic features. In our basic
experiments we chose the basic DT concept learner. We decided to avoid pruning in order
to better isolate the effects of feature generation and reduce the effects of additional factors
that do not have a direct bearing on this research. In addition, we tested the features with
perceptron, back propagation, nearest neighbor, and k-nearest neighbor algorithms.

Each experiment was conducted by averaging the results of 10-fold cross-validation,
except for 3 domains with a small number of examples where we performed 2 × 5-fold
cross-validation.

7.1.1. Dependent variables. The following dependent variables measure various aspects
of the feature generation process.

• General feature set quality. The quality of the features generated by FICUS is measured
by the quality of the resulting classifiers:

– Classification accuracy. The portion of the test set that was correctly classified. For
each of the accuracy results we report confidence intervals with p = 0.95.

– Accuracy difference. To test the significance of adding the features generated by FICUS,
we report the difference between the accuracy with and without the constructed features
and the confidence intervals. This is equivalent to the paired t test.

• Feature set quality for decision trees. When used for DT, the following features of the
decision tree are used as additional quality measurements:

– Tree size. One of the motivations for using feature generation is to produce more
succinct hypotheses. We measure the complexity of the produced tree by the number
of its nodes.

– Weighted tree size. Since the produced tree classifiers contain generated features with
higher complexity than the basic features, we also compute the weighted tree size,
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which takes into account the feature size. In Section 5.1 we define the tree represen-
tation of a constructed feature. Each internal node stands for a constructor symbol,
sequence symbol or set symbol. Each leaf stands for a basic feature or a constant. We
define the complexity of a constructed feature to be the total number of nodes (internal
nodes and leaves) of its representative tree. The weighted size of a decision tree is the
sum of the feature complexity of its nodes.

– Comprehensibility. Another motivation for using generated features is to make the
produced classifier more comprehensible to a human by introducing features that are
related to the target concept. It is difficult to devise a computational method for mea-
suring comprehensibility. Nonetheless we believe that it is important to evaluate this
aspect of the produced classifiers. Therefore, we show for each domain its promi-
nent features—features that appear in most produced classifiers. Note that this is an
informal and intuitive method for testing another aspect of the algorithm.

• Feature generation resources. FICUS is a quite complex algorithm that performs search
over the space of constructed features. It is therefore interesting to measure the resources
consumed during the generation process.

– Evaluated features. The number of times the feature evaluation function is called
during generation.

– Estimated complexity. The estimated complexity of FICUS based on Eq. (4).
– CPU seconds. For completeness we also report the CPU time of the whole generation

process. Note that CPU time is not a good measurement due to a large variance in
hardware and software quality. The CPU times reported here were achieved with an
old generation PC. A modern machine should have yielded results that are faster by a
factor of 5–10.

7.1.2. Independent variables. The performance of FICUS is influenced by the following
independent variables:

• Niterations, the number of iterations performed by the main loop of the algorithm;
• Nphase, the number of search phases performed by the feature generator;
• Nnew, the number of new features evaluated at each search phase of the generator;
• Evaluation strategy, the evaluation strategy used by the feature generator to evaluate its

building blocks. We tested the data-driven strategy and the hybrid strategy.

FICUS was tested on various artificial and real-world classification problems. The majority of
the problem domains were taken from the Irvine Repository. The Attacking Queens, Soccer
Offside, and Isosceles Triangle problems are novel problems, the first two of which were
designed to test complex target concepts. Below we describe each of the domains used:

• Promoter. This problem, taken from the Irvine Repository, deals with the classification
of DNA sequences as promoters or non promoters. Each example is represented by 57
nominal attributes, which represent the values of its sequential nucleotides, in the range
{A, G, T, C}.
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• Wine. This problem, taken from the Irvine Repository, deals with the classification of
wines into 3 class types. Each example is represented by 13 continuous attributes, which
represent measures of chemical elements in the wine.

• Tic-Tac-Toe. The problem, taken from the Irvine Repository, deals with the classification
of legal tic-tac-toe end games, as wins or non-wins for the x player. Each example is
represented by 9 nominal attributes, which represent the slot values in the range {x, o, b}.

• Monks problems. This set of problems, taken from the Irvine Repository, contains the
three known monk problems. Each example is represented by 5 nominal attributes in the
range {1, 2, 3, 4}. The problems are

– (a1 = a2) or (a5 = 1);
– exactly two of (a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1);
– ((a5 = 3) and (a4 = 1)) or ((a5 �= 4) and (a2 �= 3)), with an added 5% class noise.

• Attacking queens. The target concept of this problem, illustrated in figure 9, is the ex-
istence of a mutual threat between any pair of queens placed on a chess board. In the
Queen2 domain, examples are pairs of queens specified by their row and column positions.
Similarly, Queen3 deals with triplets of queens.

• Soccer offside. This problem, illustrated in figure 9, deals with the classification of soccer
field situations as offside or not offside. (An offside situation occurs when a player of
one team is placed in front of all the second team’s players, at the moment the ball is
being passed ). Each player is represented by two attributes, which describe its X and Y
coordinates on the field. We experimented with problems of two 5-player and 11-player
teams, expressed by 20 and 44 attributes correspondingly.

• Isosceles triangle. This problem, deals with the classification of triangles as isosceles
or nonisosceles. Each example triangle is represented by its 3 continuous arc lengths.

Figure 9. The left picture describes the Attacking Queens problem while the right-hand side represents the Soccer
Offside problem.
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Table 1. The set of all the constructor functions used for the experiments.

Standard Mathematical functions +, −, ÷, ∗, = , AbsDiff , Average, Max, Min.

Standard Logic functions And, Or

Special Logic functions Count denoted as Count(b1, . . . , bn) returns the number
of its Boolean arguments which hold a TRUE value.

Interval functions Is( f, c) = TRUE ⇔ f = c
InRange( f, c1, c2) = TRUE ⇔ f ∈ [c1, c2].

Table 2. Problems and their supplied constructor functions.

Domain Constructors Domain Constructors

Promoter {Is, Count} Wine {÷, ∗, −, +}
Tic-Tac-Toe {Is, Count} Chess Queens {÷, ∗, −, +, AbsDiff }
Soccer Offside {÷, ∗, −, +, Max, Min} Balance {÷, ∗, −, +, AbsDiff }
Heart Disease {InRange, Count, And} Iris {÷, ∗, Avarage}
Monk Problems {Is, Count, =, Or} Isosceles Triangle {÷, ∗, Count, +, −, =}

Although the target concept is quite simple, concept learning algorithms like C4.5 are
unable to produce an effective decision tree for its description.

• Balance. This problem, taken from the Irvine Repository, was generated to model psycho-
logical experimental results. Each example is classified as having a balance scale tipped
to the right, tipped to the left, or balanced. Each example is represented by 4 continuous
attributes.

• Iris. This problem, taken from the Irvine Repository, deals with the classification of iris
plants into 3 classes. Each example is represented by 4 continuous attributes.

• Heart. This problem, taken from the Irvine Repository, deals with the classification of
patients diagnosed to have suffered a heart attack or not. Each example is represented by
14 attributes, mostly continuous, and few nominal attributes.

For each problem, FICUS was supplied with constructor functions relevant to the target
concept, as well as irrelevant functions to test the resilience of the algorithm. Table 1
contains the space of all constructor functions used for the experiments described here.2 It
is easy to add additional mathematical functions such as √ and aX , logic functions such as
XOR and domain-specific functions. These constructor functions are able to express some
of the representations that have been discussed, such as recursive Boolean expressions,
M-of-N expressions (using the Count function), and simple hyperplanes. Table 2 presents
the problem domains together with their associated constructor functions.

7.2. The performance of FICUS

Our basic experiment tests the performance of FICUS with DT for all the domains. Table 3
compares the performance of DT with the basic features to its performance with the features
constructed by FICUS.
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Table 3. The results obtained for the basic experiment set performed with FICUS. Each number represents the
average of 10-fold cross-validation. The numbers in parentheses are confidence intervals for p = 0.95. The table
presents both feature quality results expressed by accuracy and tree size, and generation resources represented by
CPU seconds, number of evaluated features and estimated complexity.

DT DT + FICUS FICUS resources

Weighted FICUS Time Evaluated Est.
Domain Accuracy Size Accuracy Size size advantage (Seconds) features comp.

Promoter 73.55 31.6 83.48 9.0 14.7 9.94 9.0 4301 397726
(±5.88) (±4.61) (±6.69)

Wine 92.67 13.9 95.25 7.4 13.0 2.57 6.9 1576 964325
(±3.81) (±2.65) (±4.03)

TicTacToe 85.38 247.0 96.45 64.5 113.7 11.00 90.9 21625 12562211
(±2.18) (±1.68) (±2.24)

Queens2 66.94 337.1 100.00 5.0 15.0 33.06 7.8 1625 2246981
(±4.03) (±0.00) (±4.03)

Queens3 66.37 262.1 98.06 23.2 40.1 31.69 40.1 14074 7889049
(±2.58) (±1.64) (±2.65)

Offside5 78.71 86.7 98.55 11.6 42.1 19.84 39.2 9755 7747704
(±3.47) (±0.85) (±3.77)

Offside11 66.94 99.5 81.94 62.2 123.5 15.00 108.8 36931 22626038
(±2.65) (±3.04) (±4.03)

Isosceles 62.10 205.1 100.00 3.0 11.0 37.90 5.5 395 950957
(±2.75) (±0.00) (±2.75)

Balance 78.08 222.8 99.84 5.0 15.0 21.76 18.3 5485 4231528
(±2.26) (±0.36) (±2.17)

Heart 75.76 76.8 77.27 67.2 75.7 1.51 10.7 6770 1056581
(±2.89) (±1.55) (±3.29)

Iris 94.67 14.6 93.67 8.4 12.9 −1.00 3.8 496 180782
(±2.80) (±4.27) (±3.90)

Monk1 99.27 116.1 100.00 3.0 6.0 0.73 1.6 276 99538
(±0.63) (±0.00) (±0.63)

Monks2 82.74 283.8 100.00 27.4 58.8 17.26 44.0 13418 5880228
(±2.42) (±0.00) (±2.42)

Monks3 100.00 143.6 100.00 5.0 7.0 0.00 3.8 353 406748
(±0.00) (±0.00) (±0.00)

The table presents the results achieved by employing a default configuration where
Niterations = 2, Nphase = 2, Nnew = 100 and Evaluation Strategy = Hybrid. It is clear that
FICUS significantly improved the classification accuracy for most domains. FICUS also
achieved better values of standard deviation. This reflects higher stability. FICUS dramat-
ically reduced the size of the produced tree classifiers. It also significantly reduced the
weighted tree size for all the problems containing only nominal attributes. For problems
containing continuous attributes, the reduction was sometimes less significant, and in a
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Table 4. A comparison between the performance of FICUS and other feature construction algorithms. Algorithms
whose feature representation is believed to be unsuitable for a problem domain were denoted in the table as N/S
(not suitable) with respect to the given problem. The numbers in parentheses are standard deviations.

FICUS + GALA + ID2-of-3
Problem DT DT C4.5 LFC (M-of-N)

Promoter 73.55 (±7.8) 83.48 (±6.1) 79.5 (±7.8) 75.1 (±7.0) 87.6

Wine 92.67 (±5.0) 95.25 (±3.5) 93.8 (±3.0) – –

TicTacToe 85.38 (±2.9) 96.45 (±2.2) – – 94.9

Queens2 66.94 (±5.3) 100.00 (±0.0) N/S N/S N/S

Queens3 66.37 (±3.4) 98.06 (±2.1) N/S N/S N/S

Offside5 78.71 (±4.6) 98.55 (±1.1) N/S N/S N/S

Offside11 66.94 (±3.5) 81.94 (±4.0) N/S N/S N/S

Isosceles 62.10 (±3.6) 100.00 (±0.0) N/S N/S N/S

Balance 78.08 (±3.0) 99.84 (±0.5) – – –

Heart 75.76 (±3.8) 77.27 (±2.0) 76.4 (±2.5) 75.2 (±2.7) 76.8

Iris 94.67 (±3.7) 93.67 (±5.6) – – –

Monk1 99.27 (±0.8) 100.00 (±0.0) – – 100

Monks2 82.74 (±3.2) 100.00 (±0.0) – – 98

Monks3 100.00 (±0.0) 100.00 (±0.0) – – 97.2

few cases the weighted tree size increased, regardless of the improvement in classification
accuracy.

Table 4 compares the results achieved by FICUS to those reported for other feature con-
struction algorithms for several UCI problems. Only UCI problems found suitable for these
algorithms’ representations were used. The results for ID2-of-3 are taken from (Zheng,
1996). In spite of its generality, the performance of FICUS was found to be comparable,
and in most cases superior to that of special-purpose construction algorithms, with respect
to their favorable domains. In addition, FICUS was successfully applied to other complex
problems such as Attacking Queens and Soccer Offside, for which the algorithms mentioned
could not be effectively applied due to their restricted representational power. Algorithms
whose feature representation is believed to be unsuitable for a problem domain were denoted
in the table as N/S (not suitable) with respect to the given problem.

Table 5 presents some of the prominent features that were generated by FICUS when
applied to the tested classification problems. The presented features appear in the majority
of the classifiers that were generated for the tested problem, mostly in those whose accu-
racy is high in comparison to the accuracy of classifiers that used the basic features. As
can be seen from the table, for the cases where the target concept is known, the promi-
nent features partially (or fully) express the underlying problem concept. Such features
enable the concept learner to increase the accuracy, compactness and comprehensibility
of the produced classifiers. For example, in the tic-tac-toe domain, almost all the fea-
tures that were output by FICUS are those using the count constructor to identify full rows,
columns and diagonals of the same color. In the promoter domain, FICUS identified the
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Table 5. A list of prominent features produced by the FICUS algorithm. These examples demonstrate the ability
of FICUS to discover features that are strongly related to the target concept.

Domain Prominent generated feature(s)

Promoter Count (Is(p-34,G),Is(p-36,T), Is(p-35,T))

This prominently produced feature describes the minus 35 contact region, which
has been identified in many recognized promoters.

Offside-11 /(Max(w8y , w9y , Max(w1y , w2y , w11y), Max(w5y , w6y , w11y ,
Max(w3y , w4y , w10y ))), Max(b4y , b6y , b9y , Max(b1y , b2y ,
b8y ), Max(b5y , b7y , b9y , Max(b3y , b10y , b11y ))))

This complex feature, which appeared in similar versions throughout the produced
classifiers, almost fully describes the entire target concept. w6y is the Y
coordinate of player no. 6 of the white team.

Queens-3 *(AbsDiff (Q1x , Q2x ), AbsDiff (Q1y , Q2y )), AbsDiff (AbsDiff (Q1x , Q2x ),
AbsDiff(Q1y , Q2y ))

The first feature identifies whether Queens 1 and 2 are placed on the same row
or column, while the second feature identifies whether they are placed on any
common diagonal. Similar symmetric features identified threats between other
queen pairs.

Isosceles Count(= (A1, A2), = (A2, A3), = (A3, A1))

This feature completely represents the concept of an isosceles triangle, which
requires at least one pair of equal arcs.

Tic-Tac-Toe Count(Is(s1, x), Is(s2, x), Is(s3, x)) Count(Is(s1, x), Is(s5, x), Is(s9, x))

Count(Is(s3, o), Is(s5, o), Is(s7, o))

These representative features describe rows, columns, and diagonals of consecutive
x or o signs. Although FICUS was able to produce features of much higher
complexity, it almost exclusively produced rows, columns and diagonals of slot
triplets.

Monk2 Count(Is(A1, 1), Is(A2, 1), Is(A3, 1), Is(A4, 1), Is(A5, 1))

Fully describes the target concept of the Monk2 problem

Wine ∗(Attrib11, /(Attrib7, Attrib10))

This feature and its mathematical equivalents appeared in the majority of classifiers
which achieved 100% accuracy. We do not know the meaning of this feature
since the wine domain theory was not available to us.

Heart Count(In Range(cp, −∞, 3.5), In Range(ca, −∞, 0.5)

In Range(cp, −∞, 3.5) was a component of most prominent features.

Balance /(/(Distanceright, Distanceleft), /(Weightleft, Weightright))
∗(Distanceright, /(Weightright, ∗(Weightleft, Distanceleft)))

These features fully describe the target concept.

minus 35 contact region, which is considered to be a good promoter indicator by the existing
theory.

7.3. The effect of the number of constructors on the performance of FICUS

Any concept learning task involves a knowledge engineering stage where the expert decides
what features will be used for the induction task. Robust learners are able to overcome the
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Table 6. The results of testing FICUS under two conditions. The third column shows the performance of FICUS

when selecting from the union of all the constructor functions of the different domains. The fourth column shows
the performance of FICUS with generated features evaluated at the root of the tree only. The numbers in parentheses
are confidence intervals for p = 0.95.

Domain DT DT + FICUS All constructors Root only

Promoter 73.55 (±5.88) 83.48 (±4.61) 82.03 (±6.00) 83.44 (±6.11)

TicTacToe 85.38 (±2.18) 96.45 (±1.68) 95.36 (±1.34) 88.36 ( ± 2.13)

Queens3 66.37 (±2.58) 98.06 (±1.64) 88.23 (±4.88) 70.32 (±3.66)

Offside5 78.71 (±3.47) 98.55 (±0.85) 97.10 (±2.45) 82.42 (±3.28)

Monks2 82.74 (±2.42) 100.00 (±0.00) 99.92 (±0.18) 92.98 (±3.20)

existence of redundant and irrelevant features. In the FICUS framework, we face a similar
situation with the constructors. The expert supplies constructors that are estimated to be
relevant to the problem. We tested the robustness of FICUS by giving it the merged set of 5
domains.

Table 6 shows the results obtained. We can see that except for one domain, the penalty
in performance is negligible. This indicates that FICUS indeed is able to select the right
constructors for the generation of good features.

7.4. The effect of local evaluation on the FICUS

One of the important elements of FICUS is the use of decision trees in order to evaluate
features in a local context. We decided to test the utility of this element by turning it off
and test the algorithm’s performance. Table 6 shows the results obtained by evaluating
features only at the root level of the tree (which is equivalent to not using the tree at all).
We can see that in 4 out of the 5 domains the performance of FICUS indeed deteriorated as
expected.

7.5. The effect of the numeric parameters on the performance of FICUS

We have performed several experiments to test the effect of the independent variables
described above on the performance of FICUS. We used four problem domains for these
experiments: promoter, offside11, 3queens and tic-tac-toe, which represent a variety of
domains and learned concepts. The graphs in figure 10 show the mutual effect of the
number of iterations (Niterations) and number of generation-phases (Nphase) on the accuracy
of the produced classifier. As expected, the utility of the generated features increases with
the increase in the number of iterations and the number of phases. We found, however, that
further increasing the number of generation phases caused an abrupt increase of the feature
complexity.

The reason for this phenomenon is data overfitting that occurs in tree nodes that contain
relatively few cases. In such nodes there is a better chance for generating overly complex
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features that successfully discriminate between members of the two classes in the (relatively
small) local instance set. We have indeed witnessed this in several experiments. A possible
solution may be to alter the existing evaluation criteria such that the importance of low
complexity increases with reverse proportion to the size of the local instance set. For exam-
ple, in the data-driven evaluation function, hd

b( f ), the constant α could be replaced with a
function that depends on the size of the local instance set E . Another possible solution for
the described phenomenon is pruning.

The graphs in figure 11 show the performance of FICUS as a function of its num-
ber of evaluated features at each generation phase (Nnew). These figures also show the
effect of the evaluation strategy of building blocks employed by the generator on the
achieved performance. Each figure contains two graphs, corresponding to the employed
selection strategy. For the offside11 and queens3 problems, which represent complex target
concepts, the graphs indicate a noticeable improvement in accuracy as a result of in-
creasing the number of evaluated features. The tic-tac-toe problem demonstrated mini-
mal sensitivity to the number of evaluated features, especially when employing a hybrid
selection strategy. For the promoter problem, the optimal number of evaluated features
was interestingly discovered to be approximately 12, regardless of the selection strat-
egy. This may result from its large number of irrelevant basic features. This, combined
with a small data set, might lead to the construction and selection of superfluous fea-
tures. The graphs do not indicate a conclusive advantage to either one of the selection
strategies, excluding the complex offside11 problem, in which the hybrid strategy sig-
nificantly outperformed the data-driven. In addition, the hybrid selection strategy outper-
formed the data-driven when employing a small number (Nnew = 1, . . . , 10) of evaluated
features.

7.6. The performance of FICUS with other concept learners

While FICUS uses DT as an internal procedure for determining local context, the resulting
features can be used with other concept learning algorithms. We tested the effect of adding
the generated features to the perceptron, back propagation, nearest neighbor and k-nearest
neighbor algorithms. Tables 7–12 show the results obtained.

We can see from the results that for several domains the performance of the tested
algorithm improves significantly when using the features generated by FICUS. For two
domains (Isosceles and Monk1), the accuracy obtained by the perceptron algorithm was
doubled. For two additional domains (Wine and Monk3) the accuracy improved by more
than 20%.

The performance of the back propagation algorithm was also improved by the features
generated by FICUS, but to a lesser extent. This is not surprising, since we can view the nodes
in the hidden layer as intermediate features generated by the back propagation algorithm.
Still, for two domains, the difference in accuracy was over 30% in favor of the FICUS

enhanced version. For two other domains the difference was around 20%.
The performance of all the nearest neighbor classifiers was also significantly improved

when using the FICUS generated features. This was achieved despite the sensitivity of nearest
neighbor classifiers to redundant features.
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Table 7. The performance of the perceptron algorithm with the basic features compared to its performance with
the featur generated by FICUS. The numbers in parentheses are confidence intervals with p = 0.95.

Domain Perceptron Perceptron + FICUS Difference

Promoter 76.34 (±6.71) 83.96 (±6.22) 7.62 (±8.21)

Wine 30.87 (±5.99) 52.25 (±9.08) 21.39 (±9.52)

TicTacToe 34.66 (±1.84) 37.69 (±3.98) 3.03 (±2.35)

Queens2 58.55 (±4.86) 65.48 (±3.03) 6.94 (±5.00)

Offside5 57.66 (±4.03) 66.13 (±6.77) 8.47 (±6.83)

Offside11 55.48 (±4.14) 60.32 (±7.36) 4.84 (±8.85)

Isosceles 48.70 (±4.73) 98.70 (±1.69) 50.00 (±5.69)

Balance 35.44 (±7.03) 38.80 (±5.09) 3.36 (±6.06)

Heart 62.95 (±7.09) 60.10 (±4.64) −2.86(±4.53)

Iris 63.33 (±8.63) 66.67 (±5.84) 3.33 (±4.50)

Monk1 49.35 (±2.65) 100.00 (±0.00) 50.65 (±2.65)

Monk2 48.79 (±6.55) 55.97 (±8.30) 7.18 (±9.66)

Monk3 75.97 (±2.85) 98.79 (±1.34) 22.82 (±3.61)

Table 8. The performance of the back propagation algorithm with the basic features compared to its performance
with the features generated by FICUS. The numbers in parentheses are confidence intervals with p = 0.95.

Domain Backprop Backprop + FICUS Difference

Promoter 82.49 (±6.45) 83.42 (±7.73) 0.93 (±3.86)

Wine 89.63 (±6.61) 90.79 (±7.31) 1.16 (±2.73)

TicTacToe 62.90 (±3.88) 81.66 (±14.46) 18.76 (±16.08)

Queens2 72.98 (±5.05) 96.13 (±3.38) 23.15 (±6.00)

Offside5 68.23 (±3.51) 75.73 (±4.97) 7.50 (±3.63)

Offside11 59.52 (±3.76) 65.00 (±5.30) 5.48 (±4.79)

Isosceles 61.50 (±3.17) 92.60 (±11.16) 31.10 (±11.78)

Balance 86.40 (±2.27) 89.44 (±3.61) 3.04 (±2.88)

Heart 76.93 (±1.93) 77.10 (±3.25) 0.17 (±4.17)

Iris 85.00 (±4.93) 84.67 (±5.05) −0.33(±1.35)

Monk1 93.87 (±6.65) 100.00 (±0.00) 6.13 (±6.65)

Monk2 65.16 (±4.48) 99.27 (±0.84) 34.11 (±4.63)

Monk3 97.74 (±1.08) 97.58 (±1.02) −0.16(±0.76)

8. Discussion

We presented the FICUS construction algorithm, which receives the standard input of su-
pervised learning, as well as a feature representation specification (FSS), and uses them
to produce a set of generated features. FICUS searches its defined feature space, continu-
ously attempting to improve its generated feature set as long as resources are available. The
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Table 9. The performance of the nearest neighbor algorithm with the basic features, compared to its performance
with the features generated by FICUS. The numbers in parentheses are confidence intervals with p = 0.95.

Domain Nearest Nearest + FICUS Difference

Promoter 77.73 (±6.91) 82.01 (±4.84) 4.29 (±4.67)

Wine 96.63 (±1.59) 97.47 (±1.49) 0.84 (±1.89)

TicTacToe 67.43 (±1.69) 94.73 (±2.11) 27.30 (±1.75)

Queens2 70.81 (±2.77) 86.21 (±1.97) 15.40 (±2.11)

Offside5 59.35 (±1.54) 67.58 (±4.14) 8.23 (±4.39)

Offside11 54.19 (±2.90) 58.55 (±4.36) 4.35 (±4.96)

Isosceles 69.20 (±1.25) 100.00 (±0.00) 30.80 (±1.25)

Balance 56.56 (±2.98) 79.52 (±3.99) 22.96 (±4.55)

Heart 76.43 (±2.28) 77.10 (±3.11) 0.68 (±4.07)

Iris 94.00 (±4.32) 94.00 (±4.18) 0.00 (±1.59)

Monk1 88.31 (±1.77) 100.00 (±0.00) 11.69 (±1.77)

Monk2 87.98 (±2.01) 100.00 (±0.00) 12.02 (±2.01)

Monk3 91.94 (±2.12) 100.00 (±0.00) 8.06 (±2.12)

Table 10. The performance of the 3-nearest neighbor algorithm with the basic features, compared to its perfor-
mance with the features generated by FICUS. The numbers in parentheses are confidence intervals with p = 0.95.

Domain 3-Nearest 3-Nearest + FICUS Difference

Promoter 79.18 (±6.32) 86.30 (±4.96) 7.12 (±3.69)

Wine 96.35 (±1.67) 97.47 (±1.49) 1.12 (±1.39)

TicTacToe 67.95 (±1.82) 96.14 (±2.03) 28.19 (±1.82)

Queens2 70.81 (±2.09) 82.98 (±2.27) 12.18 (±2.64)

Offside5 63.79 (±2.61) 72.58 (±4.19) 8.79 (±3.29)

Offside11 52.66 (±2.67) 60.89 (±3.94) 8.23 (±4.16)

Isosceles 66.70 (±2.52) 100.00 (±0.00) 33.30 (±2.52)

Balance 68.00 (±2.53) 80.96 (±2.70) 12.96 (±2.45)

Heart 80.15 (±3.01) 78.46 (±1.61) −1.69 (±2.60)

Iris 94.67 (±3.59) 94.33 (±3.56) −0.33 (±0.75)

Monk1 81.85 (±2.67) 99.35 (±0.65) 17.50 (±2.73)

Monk2 76.13 (±2.96) 99.92 (±0.18) 23.79 (±2.97)

Monk3 92.02 (±2.08) 99.92 (±0.18) 7.90 (±1.96)

algorithm bases its operation on the framework of decision tree learning, which defines
its feature construction context. The algorithm uses general construction operators whose
actual action is determined by the input FSS. It also uses general feature evaluation functions
that can be uniformly applied to different forms of constructed features. Both data-driven and
hypothesis-driven strategies are employed by the algorithm to guide its conducted search.
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Table 11. The performance of the 5-nearest neighbor algorithm with the basic features, compared to its perfor-
mance with the features generated by FICUS. The numbers in parentheses are confidence intervals with p = 0.95.

Domain 5-Nearest 5-Nearest + FICUS Difference

Promoter 76.84 (±8.26) 85.89 (±6.34) 9.05 (±5.17)

Wine 96.35 (±0.97) 97.18 (±1.89) 0.83 (±2.12)

TicTacToe 70.41 (±1.82) 95.35 (±1.91) 24.95 (±2.02)

Queens2 71.94 (±1.86) 84.84 (±1.94) 12.90 (±1.92)

Offside5 66.94 (±2.26) 75.81 (±3.73) 8.87 (±2.94)

Offside11 55.16 (±4.14) 62.74 (±4.85) 7.58 (±3.55)

Isosceles 64.50 (±2.27) 100.00 (±0.00) 35.50 (±2.27)

Balance 74.16 (±2.06) 82.56 (±4.22) 8.40 (±3.39)

Heart 81.16 (±3.26) 81.49 (±2.10) 0.32 (±2.26)

Iris 95.00 (±3.03) 94.67 (±3.02) −0.33(±0.75)

Monk1 78.63 (±2.21) 98.63 (±0.72) 20.00 (±1.80)

Monk2 71.29 (±4.43) 99.52 (±0.49) 28.23 (±4.44)

Monk3 93.31 (±2.09) 99.35 (±0.65) 6.05 (±2.06)

Table 12. The performance of the 7-nearest neighbor algorithm with the basic features, compared to its perfor-
mance with the features generated by FICUS. The numbers in parenthesis are confidence intervals with p = 0.95.

Domain 7-Nearest 7-Nearest + FICUS Difference

Promoter 75.43 (±6.20) 85.43 (±5.54) 10.00 (±5.87)

Wine 96.90 (±2.02) 97.46 (±1.99) 0.56 (±2.28)

TicTacToe 76.36 (±1.87) 94.99 (±1.69) 18.63 (±2.15)

Queens2 71.53 (±3.41) 86.13 (±1.65) 14.60 (±2.86)

Offside5 66.29 (±2.96) 75.89 (±4.30) 9.60 (±3.54)

Offside11 56.05 (±3.66) 63.87 (±6.18) 7.82 (±4.41)

Isosceles 61.90 (±2.56) 100.00 (±0.00) 38.10 (±2.56)

Balance 77.68 (±1.33) 83.84 (±4.07) 6.16 (±3.62)

Heart 80.99 (±2.20) 83.68 (±2.92) 2.69 (±2.20)

Iris 94.67 (±3.02) 95.00 (±2.81) 0.33 (±0.75)

Monk1 78.55 (±2.04) 98.31 (±0.69) 19.76 (±1.91)

Monk2 67.58 (±2.14) 99.84 (±0.36) 32.26 (±2.21)

Monk3 93.55 (±1.90) 99.11 (±0.63) 5.56 (±1.73)

While FICUS is similar in some aspects to some of the existing feature construction
algorithms (such as LFC, CITRE, GALA, and FRINGE), its main strength and contribution are
its generality and flexibility. FICUS was designed to perform feature generation given any
feature representation specification complying to its general purpose grammar (presented
in figure 2).
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The large majority of previous related work presented algorithms for searching some
known feature space (such as Boolean expressions, M of N expressions, hyper planes, or bit
strings). The novelty of this work is in building an algorithm that searches any member of
an infinite family of feature spaces defined by a general purpose grammar. The flexibility of
FICUS makes it suitable for a wide variety of feature representations and problem domains.
It also enables the use of FICUS to evaluate and discover good feature representations for
a given domain. By accepting feature representation as dynamic input, FICUS enables easy
incorporation of human domain knowledge.

The choice of feature representation (mainly the set of constructor functions) is up to
the deployer of FICUS. As in the general case of concept learning, poor representation leads
to poor results. In our experiments, FICUS performed very well with relatively simple sets
of constructor functions that seemed potentially relevant to the given domain. In a lesion
study, we supplied FICUS with the union of constructor sets of the individual domains. The
results showed only minor deterioration in FICUS’s performance, indicating its robustness
to irrelevant constructors. The deterioration that did occur as a result of using irrelevant
constructor functions is analogous to the existing findings (Kira & Rendell, 1992; John,
Kohavi & Pfleger, 1994; Kohavi & Dan, 1995; Sangiovanni-Vincentelli, 1992; Caruana &
Freitag, 1994; Salzberg, 1993) regarding the use of irrelevant attributes in classical concept
learning. In both cases, deterioration in accuracy is caused by the data overfitting that results
from increasing the feature space.

An interesting direction for overcoming this problem could be to exploit the fact that
FICUS receives its representation language as dynamic input for conducting a search in
the representation space. Methods similar to those employed for feature selection (John,
Kohavi, & Pfleger, 1994; Kohavi & Dan, 1995; Salzberg, 1993) could be adopted to find a
utile subset of constructor functions.

FICUS employs the decision tree algorithm DT as an internal mechanism for directing
feature construction. The decision tree splits the instance space into exclusive subspaces
for which feature construction is locally applied. Performing local feature construction for
different subspaces of the instance space has proved effective especially for complex and
disjunctive concepts. A lesion study in which feature construction was performed only
for the entire instance space (only at the root of the tree) showed significant deteriora-
tion in performance. The internal decision tree algorithm is a straightforward implemen-
tation of ID3 without pruning or other advanced improvements. We would like to explore
the effect of adding pruning to the internal concept learner (DT). It is quite possible that
pruning would remove subtrees with irrelevant constructed features, thus improving the
quality of the set of constructed features passed to the next iteration. Regardless of the
fact that the DT algorithm is used internally, the output of FICUS is a feature set, and not
the final decision tree built in the last iteration. Therefore, FICUS can be used in conjunc-
tion with concept learners other than DT. Our experiments showed significant improve-
ment for all tested concept learners, including perceptron, back propagation, and nearest
neighbor.

It is interesting to view the FICUS algorithm as an evolutionary process. The population
is the set of constructed features. New members of the population are constructed by com-
bining existing feature pairs of high fitness. The fitness is assigned by the building block
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evaluation functions, which look at properties such as information gain, complexity and rel-
ative gain with respect to the parents. The pairs are combined by applying a set of predefined
combination operators (Compose, Insert, Replace and Interval). The population is kept at a
fixed size by removing members with low fitness. The particular tree-based representation
used by FICUS resembles the tree-structured elements manipulated by genetic programming
algorithms (Koza, 1992; Koza et al., 1996).

The merit of our approach was demonstrated by applying the algorithm to various clas-
sification problems. FICUS was able to significantly improve the accuracy of the resulting
classifiers for several types of concept learners. In addition, it generated features that often
expressed important aspects of the underlying target concept. FICUS’s general and flexible
form of feature representation turns it into an effective tool for discovering useful represen-
tations with respect to a given classification problem. It also enables utilization of partial
domain-specific human knowledge for this purpose.

One limitation of the FICUS framework is that its search algorithm depends on the assump-
tion that building blocks of complex features of high utility will also be found to be utile.
While this was the case in most of the problems upon which FICUS was tested, it is quite
possible that in certain domains this assumption does not hold and a gradual generation of
structured features will not be effective. This problem may be addressed by increasing the
beam size of the search algorithm. Such an increase, however, is quite restricted due to its
high computational demands.

FICUS runs as a preprocessing stage, prior to to concept learning. Therefore, its non-
trivial resource requirement is added to the overall execution time. This might seem to
limit our approach. Nevertheless, the user can control the amount of resources invested in
feature generation. Therefore, the combined system can be viewed as an anytime concept
learning algorithm. That means that the user can specify the required tradeoff between
learning resources and expected classification accuracy. As can be seen in our experi-
ments, investing an additional several seconds can yield a very significant improvement in
accuracy.

To conclude, many researchers have shown the benefit of feature generation for solving
classification problems. Many alternative feature generation algorithms based on a variety
of representation schemes have been proposed. The methodology presented here offers a
general framework for feature generation and has several advantages over existing algo-
rithms. While other algorithms are tailored to a predefined feature representation that may
not be inappropriate for the problem at hand, the FICUS algorithm allows a flexible repre-
sentation which may appropriate for a variety of domains. The most important advantage
of our framework is that it allows expressing and exploiting partial background knowledge
for constructing utile features. Such knowledge is commonly available for real-world prob-
lems, but can not be easily exploited by other feature generation algorithms due to their
representational rigidity.

Notes

1. Feature Incremental ConstrUction System.
2. The AbsDiff function measures the absolute difference between two numeric values.
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