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Abstract

In many applications where collecting data is ex-

pensive, for example neuroscience or medical

imaging, the sample size is typically small com-

pared to the feature dimension. These datasets call

for intelligent regularization that exploits known

structure, such as correlations between the fea-

tures arising from the measurement device. How-

ever, existing structured regularizers need spe-

cially crafted solvers, which are difficult to apply

to complex models. We propose a new regular-

izer specifically designed to leverage structure in

the data in a way that can be applied efficiently

to complex models. Our approach relies on fea-

ture grouping, using a fast clustering algorithm

inside a stochastic gradient descent loop: given a

family of feature groupings that capture feature

covariations, we randomly select these groups at

each iteration. Experiments on two real-world

datasets demonstrate that the proposed approach

produces models that generalize better than those

trained with conventional regularizers, and also

improves convergence speed, and has a linear

computational cost.

1. Introduction

Fitting complex machine learning (ML) models has lead

to impressive gains in accuracy in various fields, such as

computer vision, speech processing, and natural language

processing (LeCun et al., 2015a; Mnih et al., 2013). Yet,

the success of complex models has not carried over to high-

dimensional small-sample data such as full-brain images,

despite clear potential (Plis et al., 2014; Suk et al., 2016).

Indeed, complex models are prone to overfitting in settings

such as those encountered in neuroimaging:
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1. Large feature dimension: Neuroimaging data are very

high-dimensional, due to the progress in image reso-

lution. For example, functional Magnetic Resonance

Images (fMRIs) 1 are represented by 4D-arrays of 3D

images over time. The total dimensionality is in the or-

der of 107. This leads to the phenomenon known as the

curse of dimensionality, and is often an obstacle so the

success of ML.

2. Noise in the data: Neuroimaging data contain a signifi-

cant amount of physiological, respiratory, and mechani-

cal artifacts unrelated to the effect of interest. Removal

of this noise is a difficult task. Ideally, we need an ML

model that is robust against noise.

3. Small sample size: Neuroimaging data typically have

small sample sizes due to the logistics and cost of data

acquisition, as well as the effort required to recruit sub-

jects. It takes several hours to collect data from a single

individual. Therefore, the number of examples in neu-

roimaging data is usually in the order of hundreds, as

opposed to other ML applications, such as computer

vision, in which modern data sets comprise at least hun-

dreds of thousands samples.

These challenges are not limited to neuroimaging applica-

tions. They are common in medical imaging, genomics,

chemistry, and financial applications (Fan & Li, 2006; Con-

sortium et al., 2015). Regularization is crucial for the suc-

cess of ML in such settings. The optimal regularization

strategy for a given dataset should leverage the known struc-

ture of the data. Yet, classic approaches to structured reg-

ularization (Bach et al., 2012) entail high computational

cost and are not-well suited for fitting complex models with

stochastic gradient descent. Here, we introduce a structured

regularization strategy integrated in a stochastic gradient de-

scent (SGD) loop to tackle the challenges described above.

1.1. Related works: strategies to tackle overfit

A long-standing body of work tackle overfit in ML models.

Here, we briefly mention approaches that are most closely

related to the present effort. Conventional approaches to

1fMRI is a noninvasive neuroimaging modality that measures
brain activity during cognitive tasks in humans.
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mitigate overfitting include penalizing model weights, seek-

ing a reduced-dimensionality parametrization, or sharing

weights between related inputs or outputs.

Regularization with ℓ1 or ℓ2 penalties (Tibshirani, 1996)

reduces overfitting by biasing weights to avoid large values

due to chance. In high-dimensional data, features often

display groups of highly correlated or irrelevant features

(Bühlmann et al., 2013). Structured penalties (Bach et al.,

2012) leverage a priori hypotheses on these groups, foster-

ing sparsity accordingly. These approaches are based on the

group lasso (Yuan & Lin, 2006) which generalizes ℓ1 regu-

larization to groups of features. Zhao et al. (2009) similarly

generalize ℓ2 regularization to capture feature groups. A

drawback of these formulation is that they require groups

of features to be manually identified. Using the overlapping

group lasso (Jacob et al., 2009) enables more systematic

definitions of groups (Bach et al., 2012). However, as the

dimension grows, the number of overlapping groups gives

rise to prohibitive computational costs. In addition, these

approaches are limited to convex models.

Feature grouping by actually merging the features into a

single variable gives faster algorithms, though these are not

formulated as a single optimization and rely on heuristics

(Garcı́a-Torres et al., 2016). Using a clustering algorithm to

group features is a long-standing dimensionality reduction

technique used for ML on high-dimensional data (McCal-

lum et al., 2000; Thalamuthu et al., 2006; Xu & Wunsch,

2005). Combining it with model ensembling gives more

robustness to the feature grouping (Varoquaux et al., 2012).

In general, a good dimensionality reduction can limit overfit

and improve prediction of a model by reducing its input

dimensionality, and thus the number of model parameters.

Using random matrices to project data onto a lower dimen-

sional space can capture the important properties of the data

(Bingham & Mannila, 2001; Achlioptas, 2003) and thus

give very computationally efficient regularizations (Durrant

& Kabán, 2013; Alaoui & Mahoney, 2015; Cannings &

Samworth, 2017).

Stochastic regularizations also exploit randomness for effi-

cient approaches to prevent overfit. The prototypical ex-

ample in neural networks is Dropout (Srivastava et al.,

2014). Dropout modifies the network structure at each

update within an SGD loop: it removes units randomly

from the network during training and uses an approximate

averaging procedure across these “thinned” networks dur-

ing testing. Integrating random perturbations within SGD

gives a computationally cheap form of ensembling (Bach-

man et al., 2014). Dropout at the input layer can be viewed

as data augmentation with random projections (Bouthillier

et al., 2015; Vinh et al., 2016).

Another approach to tackle overfitting is by crafting models

with suitable inductive bias, for instance by imposing shared

weights to capture invariances of the data. Indeed, in a linear

model or a fully-connected layer of a neural network, the

number of model weights increases with the number of

inputs and the number of outputs. Convolutional neural

networks (CNNs) circumvent this difficulty with weight

sharing. Rather than fitting one parameter per input pixel,

CNNs re-use the same parameters by sliding a filter across

the input image. They typically use pooling layers that

introduce translation invariance and improve generalization

(Hinton et al., 2012). Indeed, CNNs are very successful on

natural images because a cat should be modeled as the same

object whether it is shifted to the left or to the right. Such

invariances also hold for text processing (Kalchbrenner et al.,

2014), but not for brain activation images. They display

meaningful structure that is specific to given features, i.e.

brain locations. Non-translation-invariant problems require

a departure from CNNs even in computer vision, eg with

pixel-specific filters (Ren et al., 2015).

1.2. Proposed approach

In this study, we use feature grouping to develop a computa-

tionally efficient stochastic regularization approach for data

with a general dependency structure across the features. Our

algorithm relies on a bank of feature grouping matrices to

group the features for training. These feature grouping ma-

trices are adapted to the data, but they can be pre-computed

outside of the optimization loop for computational efficiency.

Optimization is performed by a stochastic gradient descent

(SGD), sampling a matrix from the bank during forward

propagation to project the features into a reduced represen-

tation. The gradient is computed in this low-dimensional

space. In order to update the weights during back propa-

gation, we project the gradient back to the original feature

dimension. This procedure results in weights expressed on

the original feature dimension (brain voxels for neuroimag-

ing; pixels for image processing), that can be used at test

time. As the projection matrices are sparse by design, pro-

jection is fast and adds only a small computational cost.

On the other hand, gradients can be computed more effi-

ciently in the lower-dimensional space. When applied to

neural networks, our algorithm is suitable for the input layer

only, because it relies on pre-computed projection matrices.

These matrices depend on the values of the features, which

do not change during training, unlike inputs to intermediate

layers. Standard regularization techniques should be ap-

plied to the subsequent layers. We target high-dimensional

problems: the input layer typically has more parameters

than intermediate layers, and therefore calls for dedicated

regularization. Figure 1 illustrates our approach for a neural

network with a single hidden layer.

The feature grouping approach we employ is a linear-

time agglomerative clustering scheme, Recursive Nearest
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Figure 1. Illustration of the proposed approach: Forward propa-

gation of a neural network with a single hidden layer using feature

grouping during training. The parameters of the neural network

to be estimated are W0,b0,W1,b1. A bank of feature grouping

matrices are pre-generated where each matrix is calculated from a

sub-sample of the training test. At each SGD iteration, a feature

grouping matrix is sampled from the bank of pre-generated matri-

ces. The gradient is then computed with respect to Ŵ0 to update

W0 in backpropagation.

Agglomeration (ReNA) proposed by Hoyos-Idrobo et al.

(2019). ReNA is similar to the simple linear iterative cluster-

ing (SLIC) algorithm (Achanta et al., 2012) used to produce

super-pixels in computer vision applications. The advan-

tages of using a fast averaging procedure are two-fold: (i)

it has a denoising effect on structured signals; and (ii) it

reduces the dimension of signals with computation time

linear in the feature dimension.

In the following sections, we provide details of the com-

putational complexity of our approach. We also provide

theoretical implications for generalized linear models. We

demonstrate the success of our approach in noisy and small-

sample settings by applying it to fully-connected multi-layer

perceptrons (MLPs) and logistic regressions on the Olivetti

faces dataset (HOPPER, 1992), and a publicly available task

fMRI data set from the Human Connectome Project (Van Es-

sen et al., 2013). In both cases, our approach outperforms ℓ2
regularization and dropout applied to the same models, as

well as CNNs with dropout. Note that it cannot be combined

with CNNs as the structured projection removes the redun-

dant topography which convolutions exploit. Experimental

results demonstrate that feature grouping outperforms other

methods by the greatest margin when the data size is limited

and when the data are contaminated with noise.

2. Model

We consider supervised-learning settings. Let x ∈ R
p a

feature vector with y ∈ R the corresponding target. The

model is a function f : Rp → R with parameters Θ. These

parameters are estimated by minimizing the empirical risk

over training samples (xi, yi) for i ∈ {1, · · · , n} such that:

Θ̂ = argmin
Θ

1

n

n∑

i=1

L (f(xi;Θ), yi) (1)

where L is the cost per sample. For neural networks

with an MLP architecture, the parameter set is Θ =
{W0,b0,W1,b1, · · · ,WH ,bH} where H denotes the

number of hidden layers, Wi represents the weights and bi

represents the bias at the i-th layer.

2.1. Dimensionality reduction by feature grouping

We assume that x represents high-dimensional data with a

strong spatial structure as with fMRI data (where p ∼ 105−
106). Reducing the dimensionality of these signals reduces

memory requirements and speeds up training steps. This

reduced representation helps training if the signal present in

x is preserved. This can be achieved by capturing the signal

structure in the dimensionality reduction. Structure-aware

dimensionality reduction is indeed known to be useful for

neuroimaging data (Mwangi et al., 2014).

We use a data-driven feature averaging approach, ReNA.

The features are clustered, and their values are replaced

with a single value for each cluster. Let Φ ∈ R
k×p be the

dimensionality reduction matrix that projects the data to a

lower-dimensional space, with k ≪ p. The clusters are a

partition of the features P = {C1, C2, · · · , Ck}, where Cq is

the set of indices that belong to cluster q and Cq ∩ Cl = ∅
for q 6= l. Approximation on the q-th cluster can be written

as: (Φx)q = αq

∑

j∈Cq
xj , where αq = 1/

√

card(Cq) is a

constant for cluster q chosen to make Φ’s rows orthogonal.

Φx ∈ R
k is the projected, or reduced, version of x and

Φ
T
Φx is a piecewise constant approximation of x.

We use the ReNA clustering algorithm to obtain the projec-

tion matrices Φ. ReNA is a graph-constrained clustering:

when the graph represents the dependencies between the

features of the signal, feature grouping with ReNA has been

shown to have a denoising effect which improves subsequent

analysis (Hoyos-Idrobo et al., 2019). The algorithm starts

with p clusters, one per feature. Clusters are then recursively

merged until the desired number of clusters remain. Merg-

ing is achieved by a greedy graph cutting algorithm. For

data on a grid, as with image data, the initial graph connects

pixels or voxels to their neighbors, with edge weights deter-

mined by the data. A new graph is constructed to express

the connectivity after merging features, and the process is

repeated. Though we use ReNA, our framework can employ

any clustering algorithm. The benefits of ReNA are that it

is a fast structured clustering algorithm that leads to good

signal approximations.
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2.2. Stochastic Regularizer with Feature Grouping

We now describe our algorithm. First, we generate a bank of

feature grouping matrices Φ =
{

Φ
(1),Φ(2), · · · ,Φ(b)

}

us-

ing ReNA. Each Φ
(i) is generated using r samples from the

training data set selected randomly with replacement. Then

we begin the SGD loop for model training. At each iteration,

which consists of a gradient calculation and a weight update,

we sample a random Φ
(i) from the bank Φ. We use Φ

(i) to

project the training samples onto a lower dimensional space,

and compute gradients in this lower dimensional space. This

operation affects only the weight matrix in the input layer of

the neural network, while subsequent weights and all biases

are treated in a standard way. Instead of computing the

gradient with respect to the h× p dimensional matrix W0,

where h is the number of units in the first hidden layer, we

compute the gradient with respect to the h× k dimensional

weight matrix, called Ŵ0
def
= W0Φ

T . Computational op-

erations with Ŵ0 are much cheaper than those with W0

because k ≪ p.

During the update of W0, we project the gradient back to

the original space. This operation can be interpreted as

using W0Φ
T
Φ as a weight matrix instead of W0. Since

Φ
T
Φx is an approximation of x, it is equivalent to deriving

the weight matrix W0 from the approximation of the input.

Feature grouping acts as a stochastic regularizer by forcing

the model to learn from these approximated inputs.

We describe the resulting estimator for training a neural

network with H layers in Algorithm 1. Since the weights

W0 we learn match the original feature dimension, the

grouping matrices can be discarded after training completes,

and no special procedure is needed at test time.

2.3. Interpretation of the proposed approach

With randomized feature grouping matrices in the SGD, we

are effectively computing the parameters such that:

Θ̂ = argmin
Θ

1

n

n∑

i=1

EΦ

[

L
(

f(ΦT
Φxi;Θ), yi

)]

(2)

instead of Equation 1. We investigate the effect of this ap-

proach for generalized linear models (GLM) as used by

Wager et al. (2013) to uncover dropout’s properties. Here

Θ = {β}, where β is a vector of parameters. The general-

ized linear model framework models the response y given a

feature vector x and the model parameter β as:

p (y | x;β) , h(y) exp

(

yxTβ −A
(
x
Tβ

)
)

(3)

where h(y) is a quantity independent of x and β; and A(.)
is the log-partition function which is equivalent to ‖xTβ‖2

for a least squares regression or Gaussian model.

Algorithm 1 Training of a Neural Network with Feature

Grouping as a Stochastic Regularizer

Require: Learning Rate η
Require: Initial Parameters for H layers

Θ , {W0,b0,W1,b1, · · · ,WH ,bH}
Ensure: Generate a bank of feature grouping matrices where

each is generated by randomly sampling r samples from the
training data set with replacement

Φ =
{

Φ(1),Φ(2), · · · ,Φ(b)
}

1: while stopping criteria not met do
2: Sample a minibatch of m samples from the training set

{x(1), · · · ,x(m)} with corresponding labels y(i)

3: Sample Φ from the bank Φ.

4: Define Ξ ,

{

Ŵ0,b0,W1,b1, · · · ,WH ,bH

}

where

Ŵ0 , W0Φ
T .

5: Compute gradient estimate:

g← 1
m
∇Ξ

∑

i
L
(

f(Φx(i);Ξ), y(i)
)

6: Apply updates:

• W0 ←W0 − ηgw0
Φ

where gw0
, 1

m
∇

Ŵ0

∑

i
L
(

f(Φx(i);Ξ), y(i)
)

• bj ← bj − ηgbj

where gbj , 1
m
∇bj

∑

i
L
(

f(Φx(i);Ξ), y(i)
)

for j ∈ {0, · · · , H}

• Wj ←Wj − ηgwj

where gwj
, 1

m
∇Wj

∑

i
L
(

f(Φx(i);Ξ), y(i)
)

for j ∈ {1, · · · , H}

7: end while

We now separate Φ in two terms: ΦT
Φ = Ω +∆ where

Ω = E[ΦT
Φ] is the deterministic term and ∆ is zero-mean

noise term such that E [∆] = 0. Ω captures the common-

alities across multiple realizations of ReNA. As these are

shaped by the feature graph used to impose structure, Ω

typically resembles a graph smoothing operator. The sum

in Equation 2 can then be written as:

n∑

i=1

EΦ

[

L
(

f
(

Φ
T
Φxi;Θ

)

, yi

)]

(4)

=
n∑

i=1

−yix
T
i Ωβ + EΦ

[
A
(
x
T
i (Ω+∆)β

)]
(5)

We apply second-order Taylor approximation to the term

A
(
x
T (Ω+∆)β

)
around x

T
Ωβ as a standard quadratic

approximation also used by Bishop (1995); Rifai et al.

(2011); Wager et al. (2013) and take the expectation:

EΦ

[
A
(
x
T (Ω+∆)β

)]
≈

A
(
x
T
Ωβ

)
+

1

2
A′′

(
x
T
Ωβ

)
EΦ

[
‖xT

∆β‖2
]

(6)

The first-order term EΦ

[
A′

(
x
T
Ωβ

)
x
T
∆β

]
vanishes be-
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cause E [∆] = 0. Substituting this into Equation 5 gives:

n∑

i=1

EΦ

[

L
(

f
(

Φ
T
Φxi;Θ

)

, yi

)]

≈

n∑

i=1

−yix
T
i Ωβ +A

(
x
T
i Ωβ

)

︸ ︷︷ ︸

L(Ωxi,yi;β)

+
1

2

n∑

i=1

A′′
(
x
T
i Ωβ

)
VarΦ

[

x
T
i Φ

T
Φβ

]

︸ ︷︷ ︸

,R(β)

(7)

The above equation shows that our cost function consists of

two terms: (i) the loss on the smoothed input ΩX (ii) a reg-

ularization cost R (β). It is known that the term A′′
(
x
T
i β

)

corresponds to the variance of yi given xi under GLM set-

tings (McCulloch & Neuhaus, 2001). Hence A′′
(
x
T
i Ωβ

)
is

the variance of the model given the smoothed input features

Ωxi. Note that this term is constant for linear regression and

equivalent to pi(1−pi) where pi = 1/(1− exp (−x
T
i Ωβ))

with feature grouping for logistic regression.

The term VarΦ

[

x
T
i Φ

T
Φβ

]

corresponds to the variance of

the estimated target due to the randomization introduced by

stochastic regularizer. Using the definition Φ
T
Φ = Ω+∆

and symmetricity of ∆, it reduces to:

VarΦ

[

x
T
i Φ

T
Φβ

]

= VarΦ
[
x
T
i ∆β

]

= βT
E
[
∆xix

T
i ∆

]
β (8)

If we used a Φ matrix corresponding to a dropout on the

input layer, randomly masking features, we would have

Ω = I and ∆ a diagonal matrix where each i-th diagonal

term has E [∆i] = 0 and E
[
∆2

i

]
= δ/(1 − δ) where δ is

the dropout probability. Assuming E [∆i∆j ] = 0 for i 6= j,

it can be written as:

VarΦ

[

x
T
i Φ

T
Φβ

]

=
δ

1− δ

p
∑

j=1

x2
ijβ

2
j (9)

where xij is the j-th entry of xi. For linear regression, this

is equivalent to ridge regression after orthogonalizing the

features.

However, for feature grouping, the matrix E
[
∆xix

T
i ∆

]

rescales the feature vector xi by the variance of the cluster

membership for each feature. For instance, if a feature con-

sistently appears in a certain cluster, then the membership

variance for this feature will be low. If, on the other hand, a

feature appears in a certain cluster only in half of the sam-

ples, then the variance will be high and will have a large

weight in penalty term VarΦ

[

x
T
i Φ

T
Φβ

]

. As the clusters

in Φ are obtained from bootstrap replicates of the data, this

penalty term captures the local spatial stability of the data.

(a) Φ1 (b) Φ2

(c) Ω , E[ΦTΦ] (d) E[∆T∆]

Figure 2. Visualization for a toy example where number of feature

is p = 5 and number of clusters if k = 2. (a) and (b) The two

feature-grouping matrices Φ1 and Φ2 (c) Average of Φ1 and Φ2;

i.e. Ω (d) Variance of Φ, i.e. estimated variance of ∆. Ω indeed

does appear as a smoothing matrix, and E[∆T∆] captures the

spatial homogeneity: it is large for the central feature while the

sides are more smoothed by Ω and stabilized by the edges.

Figure 2 illustrates these terms with a toy example. Our

bank of feature-grouping matrices is made of 2 matrices,

Φ1 and Φ2. Note that the third feature appears with the

first two features in matrix Φ1 whereas it appears with the

last two features in Φ2. Figure 2(c) shows the average

of Φ
T
i Φi which captures the general topography of the

groups. Figure 2(d) shows the variance of these two matrices

which captures the high variance of feature 3. This way, our

algorithm penalizes the features that are more noisy via

the term VarΦ

[

x
T
i Φ

T
Φβ

]

in R(β) while used smoothed

features Ω in the optimized loss function L (Ωxi, yi;β) and

the regularized term A′′
(
x
T
Ωβ

)
in R(β).

2.4. Computational Complexity

The computational complexity of optimizing a given neu-

ral network with the feature-grouping stochastic regu-

larizer differs from the standard approach only for the

parameter W0. Learning the rest of the parameters

{b0,W1,b1, · · · ,bH ,WH} is unchanged. Therefore, it

is sufficient to compare performance for logistic regression

where the size of W0 is l × p instead of h × p where l is

the total number of classes. The computational complexity

of logistic regression, solved with the stochastic regularizer

using feature grouping breaks down in four parts: (i) com-

putation of the bank of Φ matrices (Step 1 in Algorithm

1; ) ii) multiplication by Φ in summation in Step 6; (iii)

computation of gradient in Step 6; and iv) update in Step 7.

The computational complexity of computing each Φ us-

ing ReNA is O (rp log (p/k)) (Hoyos-Idrobo et al., 2019)

where r is the number of samples used, p is the number of

features and k is the number of clusters. Since the bank

has b such matrices, the total computational complexity of

computing the bank is O (brp log (p/k)). This is a constant

factor independent of the number of iterations.
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Computing Φx, where Φ is of dimension p× k would be

O (kp). However, as Φ is sparse, this reduces to O (p).
Since there are m samples in a minibatch, the total compu-

tational complexity is O (mp). Computational complexity

of gradient computation for a row of Ŵ0 for a given sample

x
(i) is O (k). Computing the gradient across all rows and

samples in a minibatch has complexity O (lmk), l being the

number of tasks. Updating one row of W0 requires right

multiplying the gradient with respect to Ŵ0 by Φ
T which

would be O (kp), but due to the sparse structure of Φ, it re-

duces to O (p). As there are l rows, the total computational

complexity for update is O (lp).

Projection, gradients computation, and update are done for

each epoch, so the computational complexity for the full

iteration would be O (T mp+ T lmk + T l p) where T is

the total number of iterations. Hence the total computational

complexity of logistic regression with feature grouping us-

ing ReNA can be written as:

O (b r p log (p/k) + T mp+ T lmk + T l p) (10)

which is linear in the dimension of the input size p and

number of classes l. Computational complexity of standard

logistic regression, on the other hand, is O (T lmp).

3. Experiments

We presented a regularization algorithm that relies on fea-

ture grouping. Our approach can be easily integrated into

fully-connected feedforward neural networks. In order to

validate the effectiveness of our algorithm and compare it

with conventional approaches we experiment in noisy and

low sample size settings on face (Olivetti) and neuroimaging

(HCP) datasets:

Olivetti Faces: The Olivetti dataset consists of grayscale

64 × 64 face images from 40 subjects (HOPPER, 1992).

For each subject, there are 10 different images with varying

lighting and facial expressions. The target class for this

data set is the identity of the individual whose picture was

taken. We randomly split the data into test and train such

that the test dataset has 132 samples and the training dataset,

268 samples. As the faces are well centered, the data has a

strong non-translation-invariant structure.

HCP: The Human Connectome Project (HCP) has released

a large openly-accessible fMRI dataset. Here we use task

fMRI that includes seven tasks: 1. Working Memory, 2.

Gambling, 3. Motor, 4. Language 5. Social Cognition, 6.

Relational Processing, and 7. Emotion Processing. These

tasks have been chosen to map different brain systems. The

dataset includes 500 different subjects with images regis-

tered to the standard MNI atlas. For a given subject and

task, a GLM was fitted to each fMRI dataset (Barch et al.,

2013). Then volumetric contrasts of parameter estimate

(COPE) were computed to assess differences between dif-

ferent task components, resulting into brain maps. We use

20 different contrasts as described in Table A.1. fMRI data

are sampled in a common space of 91×109×91 with 2mm

isotropic voxels. We transformed 3D data into 1D arrays

of size p = 270 806 for our supervised classification algo-

rithms. Our goal is to classify 20 cognitive contrasts given

p = 270 806 features. The test dataset includes 1 964 sam-

ples with at least 95 samples from each target class whereas

the training set has 7 785 samples.

HCP - small: In order to perform fast experimentation,

we use a smaller number of classes and voxels from the

HCP data set. We select 8 different contrasts from tasks: 1.

Working Memory, 2. Gambling, 3. Relational, 4. Emotion,

and 5. Social as described in Table A.2 that are harder to

classify. fMRI data are resampled to a common space of

46×55×46 with 4mm isotropic voxels. We transformed 3D

data into 1D arrays of size 33, 854. Our goal is to classify

8 cognitive contrasts given 33, 854 features. The test data

includes 791 samples with at least 97 samples from each

target class whereas the training set has 3052 samples.

3.1. Architectures

We used three typical machine learning architectures in our

experiments: (i) logistic regression (ii) multilayer percep-

tron (MLP) with a single hidden layer of size 256, and (iii)

convolutional neural network (CNN) (LeCun et al., 2015b)

that consists of two convolutional layers, two sub-sampling

(pooling) layers and two fully connected layers. Convolu-

tional layers for the Olivetti data set used 5×5 convolutions

with stride 1 and the sub-sampling layers are 2 × 2 max

pooling layers. Convolutional layers for the HCP and HCP-

small data sets used 7 × 7 and 5 × 5 convolutions with

stride 2 in the first and second layers, respectively and the

sub-sampling layers are 2 × 2 max pooling layers. ReLU

activation functions are used both in MLP and CNN.

3.2. Training

We use the standard SGD algorithm with learning rate 0.01
for the Olivetti dataset and 0.05 for the HCP dataset. We use

a cross entropy loss. We ran experiments for logistic regres-

sion long enough (200 epochs for Olivetti and 500 epochs

for HCP and HCP-small) to guarantee convergence. We ap-

plied early stopping on MLP and CNN architectures when

the validation loss stopped improving in 10 (also known as

patience parameter) subsequent epochs. We repeated each

experiment with 10 different random initializations.

3.3. Parameter tuning for regularizers

We vary the regularization parameter for ℓ2 from 10−7 to

10 with a grid of factors of 10, and the dropout probability

parameter for dropout from 0.1 to 0.7 with a grid of 0.2 for
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Figure 3. Sampled feature grouping matrices from the bank. Each

matrix is computed using randomly selected 50 samples from the

Olivetti faces training data set. Note that each row of Φ matrix is

reshaped to the size of the image and then all rows are overlayed

for visualization purposes.

logistic regression and MLP architectures. We used only

dropout with dropout probability 0.5 for CNNs.

For our approach, each feature grouping matrix Φ is com-

puted over r = 50 randomly picked samples from the train-

ing data set for k clusters, where k is set to 10 % of the

total number of features. For each epoch during training,

a feature grouping matrix was randomly picked from the

bank of b = 100 matrices. Figure 3 shows samples of fea-

ture grouping matrices from the bank. Empirically, feature

grouping regularization is not very sensitive to the choice of

b and r (Table A.3). Moreover, we see that the performance

degrades only with extremely small number of k (Table A.4).

For MLP, we also combine feature grouping with dropout

at intermediate layers to regularize them.

3.4. Computational details

We use Python 3.6 for implementation (Oliphant, 2007)

using open-source libraries PyTorch (Paszke et al., 2017),

scikit-learn (Pedregosa et al., 2011), NiBabel (Brett

et al., 2016), nilearn (Abraham et al., 2014), joblib

(Varoquaux & Grisel, 2009) and NumPy (Walt et al., 2011).

Experiments are run using Nvidia GeForce GTX 1060

and 16GB RAM. Our implementation is openly avail-

able at https://github.com/sergulaydore/

Feature-Grouping-Regularizer.

3.5. Results in noisy settings

In order to explore robustness of classification approaches

with different regularizers, we add zero-mean Gaussian

noise with varying standard deviations. Here, we use

Olivetti faces and HCP-small data sets. The SNR (the ra-

tio of power of signal to noise) of Olivetti and HCP-small

becomes 3 dB and −2 dB respectively with moderate addi-

tional noise. These values reduce to 0.6 dB and −5 dB with

severe additional noise. We trained three architectures using

different regularizers for three noise levels (none, medium

and high). We report the test accuracy results with average

and standard error computed over 10 experiments in Table 1.

We report the best results across ℓ2 and dropout parameters.

For the Olivetti faces dataset, MLP with dropout outper-

forms other architectures and regularizers when there is

MODEL REGULARIZER
TEST ACCURACY (%)

OLIVETTI HCP-small

N
o

n
o

is
e

LR
None 85.23±0.70 86.80±0.18
Best ℓ2 86.52±1.01 87.22±0.12
Best dropout 85.76±0.88 87.35±0.15
feature grouping 86.52±0.68 87.37±0.29

MLP
None 85.38± 1.10 88.02± 0.18
Best ℓ2 87.73±0.81 88.31±0.14
Best dropout 89.55±0.88 87.72±0.13
feature grouping 85.45±1.08 87.36±0.57

CNN dropout, p = .5 83.56±1.43 74.96±0.61

M
ed

iu
m

n
o

is
e

le
v
el LR

None 50.83±1.79 79.77±0.35
Best ℓ2 51.06±1.16 79.97±0.36
Best dropout 52.20±1.21 79.90±0.30
feature grouping 80.00±0.83 84.16±0.24

MLP
None 54.55±1.63 76.94±0.20
Best ℓ2 56.59±1.53 80.66±0.22
Best dropout 61.82±1.14 80.01±0.42
feature grouping 80.91±1.02 83.75±0.35

CNN dropout, p = .5 77.65±1.11 63.94±1.27

H
ig

h
n

o
is

e
le

v
el

LR
None 22.27±0.54 71.42±0.61
Best ℓ2 24.62±1.50 71.76±0.43
Best dropout 24.09±1.54 72.10±0.48
feature grouping 64.55±1.77 77.93±0.38

MLP
None 25.00±1.89 62.92±0.40
Best ℓ2 28.56±2.09 69.13±0.32
Best dropout 34.02±1.48 69.81±0.56
feature grouping 68.79±1.04 76.45±0.52

CNN dropout, p = .5 56.89±1.62 54.35±0.93

Table 1. Average and standard error of test accuracy for different

regularizers at various noise levels for the Olivetti and HCP-small

data sets for logistic regression (LR), MLP and CNN models.

no additive Gaussian noise. However, it does not retain

its performance as Gaussian noise is added. Architectures

trained with feature grouping, on the other hand, are robust

to increasing noise level. Although CNNs do not have an

impressive performance, their performance degrades less

quickly with noise compared to the other architectures with

ℓ2 and dropout.

Similarly, for HCP-small data set, architectures with feature

grouping are more robust against additive Gaussian noise.

Unlike the Olivetti data set, CNNs perform poorly for all

noise settings. This could be because we use 2D convolu-

tions instead of 3D convolutions for a 3D data set. However,

3D convolutions demand much more memory than our avail-

able computational resources. Furthermore, the translation

invariance property of CNNs does not help for brain images,

and is in fact detrimental.

We compare the computational performances of CNN with

dropout and MLP with different regularizers for Olivetti

faces and HCP-small under high noise settings. Figure

4 clearly shows that MLP with feature grouping achieves

higher accuracy in shorter time despite the high noise for

both data sets.

We also show in Figure 5 the learned weights averaged over

10 different initializations for each approach. The weights

https://github.com/sergulaydore/Feature-Grouping-Regularizer
https://github.com/sergulaydore/Feature-Grouping-Regularizer
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Figure 4. Noisy settings: Performance in terms of test accuracy as

a function of computation time for neural networks using feature

grouping and best parameters for other regularizers with high noise

(a) Olivetti Faces (b) HCP-small.

from the feature grouping approach visually look less noisy,

which explains the superior performance of this approach in

noisy settings.

L R

(a)
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Figure 5. Visualization of the learned weights for logistic regres-

sion. Top: Olivetti faces data set with high noise level for an arbi-

trarily selected subject. Bottom: a single subject while performing

FACES task. (a) No regularizer (b) Best ℓ2 (c) Best Dropout (d)

Feature Grouping

3.6. Results for small-sample settings

We explore the robustness of different approaches in small-

sample settings for the HCP data set. Figure 6 shows logistic

regression and MLP learning curves with each regularizer:

the test accuracy when different numbers of samples are

used. It shows that feature grouping clearly outperforms

the other approaches both for logistic regression and MLP

when fewer samples are used. MLPs perform better than

logistic regression even for small sample sizes. Similar to

the results from HCP-small, CNNs do not perform well on

this data set. The difference between feature grouping, ℓ2,

and dropout disappears as the number of samples increases.

4. Conclusion

We propose a new stochastic regularizer, based on feature

clustering and averaging, randomized inside an SGD loop.

(a) Logistic Regression (b) Neural Networks

Figure 6. Small-sample settings: Performance in terms of test

accuracy as a function of number of samples using feature grouping

and best parameters for other regularizers, for HCP data set.

Our regularizer directly exploits structure in the data by

constructing clusters of correlated features. This makes it

particularly well-suited to data with very high dimension-

ality. Unlike classic structured regularizers, our approach

can be plugged into any model, including non-convex ones,

solved by gradient descent. In deep architectures, it operates

on the input layer, which is likely to contain more parame-

ters than subsequent layers in high-dimensional problems.

We demonstrate the effectiveness of our regularizer on two

problems with structure in the features: frame-aligned faces

and fMRI. In both cases, our method outperforms dropout,

ℓ2 regularization, and convolutional neural networks when

the noise level increases. On the fMRI data, we also show

that our method performs best as the sample size decreases.

Our approach comes with little computational cost: it only

adds to the SGD update loop a cost linear in the feature

dimension, but reduces the memory usage of subsequent

steps. Experimental results confirm that neural networks

trained with our regularizer converge in the same amount of

time as with other regularizers, but with higher accuracy.

Regularizations can be seen as modifying the objective func-

tion optimized during training. Our stochastic regularizer

forces the model to learn from smoothed inputs. Its effect

decomposes into interpretable components: the loss on the

smoothed inputs, and a regularization term which shrinks

model weights for the noisiest feature clusters. We also

draw connections to dropout.

The approach proposed here introduces new ideas for devel-

oping structured regularizations, departing from the classic

framework of engineering penalties. Our findings suggest

that the combination of structured random matrices and

stochastic optimization for regularization should be explored

further as it is versatile and computationally efficient. The

approach should be tested on other data that present a strong

stationary structure, such as spectra in chemistry. Lastly,

beyond ReNA, other clustering approaches could be used,

including other agglomerative approaches (Müllner, 2011),

or density-based methods.
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