
Feature grouping by "relocalisation" of eigenvectors of the

proximity matrix

Guy L. Scott
Robotics Research Group

Department of Engineering Science

University of Oxford

We describe a widely applicable method of grouping - or

clustering - image features (such as points, lines, corners,

flow vectors and the like). It takes as input a "proximity

matrix" H - a square, symmetric matrix of dimension N

(where N is the number of features). The element i,j of

H is an initial estimate of the "proximity" between the i-

th and yth features. As output it delivers another square

symmetric matrix S whose i-)th element is near to, or

much less than unity according as features i and j are to

be assigned to the same or different clusters.

To find S we first determine the eigenvalues and eigenvec-

tors ofH and re-express the features as linear combina-

tions of a limited number of these eigenvectors - those with

the largest eigenvalues. The cosines between the resulting

vectors are the elements ofS. We demonstrate the appli-

cation of the method to a range of examples and briefly

discuss various theoretical and computational issues.

In studying various problems in computer vision we have

hit upon an apparently novel method of cluster analysis

[4] related to a technique widely used in molecular physics

[2] [6]. The input to the method is a matrix H of pair-

wise proximities in, for example, a two dimensional image;

the output is closely related to the molecular concept of

a "bond order" matrix which indicates whether any two

features do or do not belong to the same cluster.

Let us consider a feature space (2-dimensional for simplic-

ity) containing three features A, B, C as shown in figure

1.

Let us define as the measure of proximity between any

pair of features the quantity exp(—c/2/2cr2) where d is the

Euclidean distance beteen the two features and a is a

scale constant. For a value of a approximately equal to

the distance between A and B the proximity matrix H,

shown in figure 1, is obtained.
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Table 1.

We wish to analyse this matrix to obtain a clustering;

that is, we wish to automatically extract one "cluster"

which includes only A and B and another that includes

only C. In this 3-feature case there are many trivial proce-
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Figure 1: Three-point configuration

dures that might be applied, but we desire a method that

will generalise to proximity matrices of arbitrary size and

complexity.

To analyse the connectivity implicit in H effectively we

need to extract a fair number of eigenvectors. In the 3 x 3

example given above the eigenvalues and eigenvectors are

as follows:

Eigenvalues

A
B
C

Ey

1.63

-0.71

-0.71

-0.04

E2
1.00

-0.01

-0.05

1.00

Ez
0.37

0.71

-0.71

-0.03

Table 2.

The eigenvector E\ with the highest eigenvalue (that is to

say the eigenvector that "does the most to explain" the

structure of H) consists of almost equal parts of A and

B - and very little of C. (The sense of an eigenvector is

arbitrary - only its direction counts - so the components

could all be reversed in sign). The second eigenvector

E2 consists almost exclusively of C. Like Ex, E3 consists

of A and B with very little C but now the components

associated with A and B are opposite in sign. By analogy

with the analysis of modes of vibration we shall sometimes

refer to the eigenvectors as "modes".

We might feel inclined to regard our eigenvector decom-

position of H as, to all intents and purposes, a clustering.

The first two vectors cleanly divide the three features into

two groups along the desired lines. However, our clean re-

sult has been achieved by contrivance. A suitable choice

of image and of the scale constant a ensured the fulfil-

ment of conditions that in general we cannot expect to

hold. First, the two "groups" - AB and C in its solitary

splendour - are almost disjoint in the sense of being linked
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by very small elements of the matrix H. Also, the three
eigenvalues are well separated. There is thus no degener-
acy causing arbitrary linear mixing of the desired modes.

These two conditions ensure no "contamination" of one
group by another. But if we enlarge a to a value closer to
AB than AC - to obtain a stronger association between C
and the other two features - we obtain the following H:
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Table 3.

The eigenvalues and vectors are now as follows:

Eigenvalues
A

B

C

Ei

2.21
0.65
0.61
0.44

E2

0.72
-0.19
-0.43
0.88

E3

0.07
0.73
-0.66
-0.16

Table 4.

It is clear from inspection of this table that our features
are no longer cleanly segmented by the eigenvector de-
composition. The non-neglible interaction of C with A
and with B has "pulled" the first mode towards it.

"RELOCALISATION"
The columns in table 4 above define the eigenvectors (or
modes) as linear combinations of features. The rows rep-
resent the "coordinates" of each feature measured along
the various eigenvectors - they represent the "expansion"
of that feature in terms of the eigenvector basis. Let us
call the whole row associated with a feature its F-vector
and denote it by F,- where i labels the feature. For ex-
ample FB represents the row labelled B in table 4. Note
that the F-vectors of any two distinct features are neces-
sarily orthogonal, that is Ft • Fj = 0 for differing i and j .
But we will be less concerned with Fi than with its "trun-
cated" form Ti, in which the components associated with
the eigenvectors beyond a certain point in the eigenvalue-
ordered sequence are set to zero. We will use M to denote
the number of modes up to the cut-off point.

With M=2 we have, in the case described by table 4,
TA = [0.65,-0.19,0] and TB = [0.61,-0.43,0]. They
are not orthogonal at all. In fact they are quite similar.
By contrast, they both differ markedly from Tc, being
roughly (but not exactly) orthogonal to it. We now com-
pute a "bond order" matrix P whose element Pij is the
scalar product of the i-th and j-th T-vectors:

A

B
C

A

0.46
0.48
0.12

B

0.48
0.57
-0.11

C

0.12
-0.11
0.97

Table 5.

Note that the 2 x 2 "block" subtended by features A and

B has elements approximately 0.5 in magnitude, while
the "1 x 1 " block corresponding to the solitary feature C
has magnitude close to 1.0. It is in fact possible to show
that if the features fall into well separated groups, and
the number of eigenvectors used in the reconstruction is
equal to the number of groups, then every element in an
n x n block will be equal to 1/n.

The association indicated by the closeness of TA and TB
can be made more apparent - both to human and machine
- if we compute an "association matrix" S whose element
Stj is the cosine of the angle between the i-th and j-th
T-vectors:

A

B

C

A

1.00
0.95
0.18

B

0.95
1.00
-0.15

C

0.18
-0.15
1.00

Table 6.

Comparison of table 6 with table 3 reveals a marked
change in the direction of "high contrast" (with matrix
entries tending toward either unity or zero).

THE GENERAL CASE
We use subscripts i and j to refer to features (i,j < N),

and r and s (r, s < N) to denote eigenvalues/vectors.

The proximity of features i and j is denoted by Hij (

= Fiji). The proximity matrix H has eigenvaues Ar and

eigenvectors Er satisfying

r = \rEr (1)

The eigenvalues Ar are ordered in decreasing sequence

Ai > A2 > .... > XN

We denote by V the matrix whose columns are the eigen-
vectors Ei, E2,..., EN. The rows of V

correspond to the features. Provided the eigenvectors ET

are properly normalised (and rendered orthogonal in the
case of degeneracy) V will be an orthogonal matrix, sat-
isfying

V V
T
 = I = V

T V (2)

where I is the identity matrix. If D is the diagonal matrix

D = diag[\1,\2,..-,\N]

then V T H V = D and V D V T = H.

Truncation of Ft after M components gives

The matrix whose rows are T{ is denoted by W.

Let J be the diagonal matrix whose first M components
diagonal elements are 1, the others being 0. Then:

P = V T J V
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is the "bond order" matrix (the language is that of molec-
ular physics); its elements satisfy

M N

r = l r= l

in which the first sum is restricted, the second not.

The association matrix S has elements

(4)

The entry P{j in the bond order matrix is the scalar prod-
uct of the truncated feature vectors Ti and Tj. These vec-
tors in general have magnitude less than unity, and so the
elements of the bond order matrix can give the impression
of a low apparent degree of association between two fea-
tures, despite their T-vectors being similar or even iden-
tical. For this reason the association matrix S is formed
by first normalising the T-vectors so that they have unit
magnitude and then forming the scalar products. The en-
try Sij is thus the cosine of the angle between the i-th and
j-th T-vectors, and is independent of their magnitude.

Like P, S may contain negative elements, one indication
that we have not got a very clear-cut partitioning. If so,
the situation can sometimes be improved by the following
procedure:

1. Return to the bond order matrix P - the unnor-
malised version of S.

2. Set the negative entries in P to zero, to obtain a new
matrix H*.

3. Using H* as proximity matrix apply the original pro-
cedure to obtain a new bond order matrix P*, say.

4. Repeat steps 2-3 until negative entries in the bond
order matrix are insignificant by some criterion.

5. Re-compute the association matrix S.

In molecular physics negative bond orders correspond to
repulsive electrodynamic forces between two atoms. Our
iterative procedure may be regarded - very loosely! - as
accommodating "repulsion" by moving features apart so
that their proximity approaches zero.

IMAGE CLUSTERING - AN EXAM-
PLE

Figure 2 shows a dot-pattern extracted from the wing-
markings of the common southern African butterfly
Hamanumida Daedalus. Figures 3 and 4 show the promix-
ity matrix H for two widely separated values of <r (the
ratio between them is 1:10). For the purposes of display
only we have ordered the points in such a way as to ob-
tain an H matrix that is as "block-like" as possible. Note
that the ordering of features makes no difference whatso-
ever to the logic of our method. Figure 3 shows H for
a "short-range" a, considerably smaller than the separa-
tion between the left- and right-hand wing-pairs. Figure 4

Figure 2: Dot-pattern from butterfly wings

w «* /

Figure 3: "Short-range" proximity matrix for butterfly

u

Figure 4: "Long-range" proximity matrix for butterfly

Figure 5: P matrix derived from matrix of figure 3
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Figure 6: P matrix derived from matrix of figure 4 Figure 8: S matrix derived from matrix of figure 4

«•« * , * * • * •

• - : : :

• • •

Figure 7: S matrix derived from matrix of figure 3 Figure 9: First mode of the butterfly pattern

shows H for a "long-range" a in which proximity between
points on opposite sides is considerable.

Figures 5 and 6 show the P matrices resulting, for the
short- and long-range a respectively, from one pass of our
procedure with M—4. Note the considerable enhancement
of the block structure. In order from the top left the
four "blocks" correspond to: the fore-left, the hind-left,
the fore-right and the hind-right wings. Also note the
presence of negative (i.e. darker) regions corresponding
to "repulsion" between the fore- and hind-wings on each
side.

Figures 7 and 8 show the S matrices corresponding to 5
and 6 respectively. The variation in intensity in figures
5 and 6 which is due to variation in the amplitude of the
T-vectors has been removed by the normalisation process
and the result is a higher-contrast image. Note also that
intensity scaling of the grey-level image for display dis-
guises the fact that the intra-block entries in figures 5
and 6 are of typical amplitude 0.05 (there being abour 20
points per block) whereas those in figures 7 and 8 are of
amplitude close to 1.0.

The similarity of the results obtained with very different
values of a demonstrates the robustness of our method to
this parameter - at least in the case where there truly are
distinct clusters of features.

To generate the remaining figures referred to in this sec-
tion we employed an "intermediate" value of a. The first
10 eigenvalues of H are:

22.31 20.95 10.91 9.79 3.39 2.91 2.43 1.92 0.99 0.88

The closeness of eigenvalues 1 and 2 - and of 3 and 4 -
is diagnostic of "near-degeneracy" and "contamination".
Inspection of the first four modes (figures 9 to 12 inclu-
sive) reveals the sort of delocalisation we encountered in
the simple 3-feature case. These images are obtained by
plotting, at the geographical location of each butterfly-
point 2, a square with a grey-level corresponding to the
value of Vlr - where r indexes the mode being displayed.

We first set M=2 and construct a association matrix S.
The 2-th row of this can be regarded as a list of revised "as-
sociation strengths" of feature i with all features. Many
rows are, of course, rather similar to other rows (this is
what it means for a matrix to have a block-like structure).
To obtain figures 13 and 14 we selected two representative
rows of S - those corresponding to the features marked
with a cross - and plotted them exactly as we plotted the
modes in the preceding figures. We find that we have "lit
up" the left and right wing-pairs separately.

Increasing M to 4 and repeating the procedure just de-
scribed we obtain four distinct groups (there now being
four "blocks" in S). Two of these are shown in figures 15
and 16 (the other two are mirror images grouping points
on the right hand wing). In these figures the negative as-
sociations with the "crossed" features are more prominent
than in figures 13 and 14, where they are barely visible.
Iteration in the manner described in the previous section
is found to reduce their magnitudes considerably.

An obvious question that arises concerns the "optimal"
choice of M- the effective dimension of the T-vectors.
First, it is plainly a bad idea to truncate the mode se-
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Figure 10: Second mode of the butterfly pattern

4

Figure 14: Second "group" derived with M=2

Figure 11: Third mode of the butterfly pattern
Figure 15: "Group" derived with Af=4

Figure 12: Fourth mode of the butterfly pattern

quence between two nearly equal eigenvalues since the re-
sult would then be affected by small changes in the data.
For example mode number M (included) and mode num-
ber M+1 (excluded) could be made to swap round with
a small change of a or small perturbations of features.
To avoid this, there should be a marked step in "energy"
between the last included and the first excluded mode.

Second, it is not clear that a single value of M is what
is required for a grouping analysis. We might naturally
want to analyse our image hierarchically [4]; first at M=2
to obtain a left-wing/right-wing segmentation and then
at Af=4 to obtain a front-wing/back-wing segmentation.
But we are very far from having solved the problem of the
automatic selection of a value (or values) for M.

S' •

Figure 13: "Group" derived with M-1
Figure 16: "Group" derived with A/=4
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Figure 17: Initial proximity data as provided by Cowie

Figure 18: Output of Cowie's program

GROUPING IN A COMPLEX FEA-
TURE SPACE

At the 1989 AVC conference R. Cowie et al [3] presented
a paper that described a way of grouping the vertices in
a line-drawing, by first constructing a proximity matrix,
and then deriving a clustering from it. Unfortunately, the
results of the second stage left something to be desired, so
we have applied our own clustering method to the Belfast
proximity data, kindly made available to us by Dr. Cowie.

Figure 17 shows one of Cowie's proximity matrices (for
the Penrose triangle) in a grey level representation. This
corresponds to H in our nomenclature. Figure 18 shows a
result of application of Cowie's program. Figure 19 shows
the association matrix S resulting from one pass with our
program. Figure 20 shows S after iterating five times with

Figure 19: Association matrix S - no iteration

Figure 20: Association matrix S - after 5 iterations

our program for the same value of M. The block structure
of the resulting association matrix is much clearer than in
figure 19, and one of us (GLS) is collaborating with Dr.
Cowie on further applications of our method.

A NOTE ON COMPUTATION

Accurate and complete solutions to eigenvalue problems
tend to be computationally expensive. The time scales
as N

3
, being about 25 seconds on a Sun 3 for N = 79.

Leaving aside the undoubted possibilities for parallelisa-
tion and analogue computation, we note that time may
be considerably reduced if advantage is taken of a num-
ber of factors including: the fact that a proximity matrix
is often very sparse; not all eigenvalues and vectors are
needed (only as many as there are clusters); and the re-
quired accuracy is low (we do not care if eigenvectors of
similar frequency are "mixed").

We have also considered extending our method to the do-
main of continuous image functions using basis functions
such as a fixed grid of Gaussians or Fourier components.
These extensions are to be presented and discussed else-
where.
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