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Abstract. Despite the improved accuracy of deep neural networks, the
discovery of adversarial examples has raised serious safety concerns. Most
existing approaches for crafting adversarial examples necessitate some
knowledge (architecture, parameters, etc) of the network at hand. In this
paper, we focus on image classifiers and propose a feature-guided black-
box approach to test the safety of deep neural networks that requires no
such knowledge. Our algorithm employs object detection techniques such
as SIFT (Scale Invariant Feature Transform) to extract features from an
image. These features are converted into a mutable saliency distribution,
where high probability is assigned to pixels that affect the composition
of the image with respect to the human visual system. We formulate
the crafting of adversarial examples as a two-player turn-based stochas-
tic game, where the first player’s objective is to minimise the distance
to an adversarial example by manipulating the features, and the sec-
ond player can be cooperative, adversarial, or random. We show that,
theoretically, the two-player game can converge to the optimal strategy,
and that the optimal strategy represents a globally minimal adversarial
image. For Lipschitz networks, we also identify conditions that provide
safety guarantees that no adversarial examples exist. Using Monte Carlo
tree search we gradually explore the game state space to search for adver-
sarial examples. Our experiments show that, despite the black-box set-
ting, manipulations guided by a perception-based saliency distribution
are competitive with state-of-the-art methods that rely on white-box
saliency matrices or sophisticated optimization procedures. Finally, we
show how our method can be used to evaluate robustness of neural net-
works in safety-critical applications such as traffic sign recognition in
self-driving cars.

1 Introduction

Deep neural networks (DNNs or networks, for simplicity) have been developed
for a variety of tasks, including malware detection [11], abnormal network activ-
ity detection [31], and self-driving cars [5,6,32]. A classification network N can
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be used as a decision-making algorithm: given an input α, it suggests a decision
N(α) among a set of possible decisions. While the accuracy of neural networks
has greatly improved, matching the cognitive ability of humans [17], they are
susceptible to adversarial examples [4,33]. An adversarial example is an input
which, though initially classified correctly, is misclassified after a minor, per-
haps imperceptible, perturbation. Adversarial examples pose challenges for self-
driving cars, where neural network solutions have been proposed for tasks such
as end-to-end steering [6], road segmentation [5], and traffic sign classification
[32]. In the context of steering and road segmentation, an adversarial example
may cause a car to steer off the road or drive into barriers, and misclassifying
traffic signs may cause a vehicle to drive into oncoming traffic. Figure 1 shows an
image of a traffic light correctly classified by a state-of-the-art network which is
then misclassified after only a few pixels have been changed. Though somewhat
artificial, since in practice the controller would rely on additional sensor input
when making a decision, such cases strongly suggest that, before deployment
in safety-critical tasks, DNNs resilience (or robustness) to adversarial examples
must be strengthened.

Fig. 1. An adversarial example for the YOLO
object recognition network.

A number of approaches have
been proposed to search for
adversarial examples (see Related
Work). They are based on com-
puting the gradients [12], along
which a heuristic search moves;
computing a Jacobian-based
saliency map [27], based on which
pixels are selected to be changed;
transforming the existence of
adversarial examples into an opti-
misation problem [8], on which
an optimisation algorithm can be
applied; transforming the existence of adversarial examples into a constraint
solving problem [15], on which a constraint solver can be applied; or discretising
the neighbourhood of a point and searching it exhaustively in a layer-by-layer
manner [14]. All these approaches assume some knowledge about the network,
e.g., the architecture or the parameters, which can vary as the network continu-
ously learns and adapts to new data, and, with a few exceptions [26] that access
the penultimate layer, do not explore the feature maps of the networks.

In this paper, we propose a feature-guided approach to test the resilience
of image classifier networks against adversarial examples. While convolutional
neural networks (CNN) have been successful in classification tasks, their feature
extraction capability is not well understood [37]. The discovery of adversar-
ial examples has called into question CNN’s ability to robustly handle input
with diverse structural and compositional elements. On the other hand, state-
of-the-art feature extraction methods are able to deterministically and effi-
ciently extract structural elements of an image regardless of scale, rotation or
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transformation. A key observation of this paper is that feature extraction meth-
ods enable us to identify elements of an image which are most vulnerable to a
visual system such as a CNN.

Leveraging knowledge of the human perception system, existing object detec-
tion techniques detect instances of semantic objects of a certain class (such as
animals, buildings, or cars) in digital images and videos by identifying their fea-
tures. We use the scale-invariant feature transform approach, or SIFT [20], to
detect features, which is achieved with no knowledge of the network in a black-
box manner. Using the SIFT features, whose number is much smaller than the
number of pixels, we represent the image as a two-dimensional Gaussian mix-
ture model. This reduction in dimensionality allows us to efficiently target the
exploration at salient features, similarly to human perception. We formulate the
process of crafting adversarial examples as a two-player turn-based stochastic
game, where player I selects features and player II then selects pixels within
the selected features and a manipulation instruction. After both players have
made their choices, the image is modified according to the manipulation instruc-
tion, and the game continues. While player I aims to minimise the distance to an
adversarial example, player II can be cooperative, adversarial, or nature who
samples the pixels according to the Gaussian mixture model. We show that,
theoretically, the two-player game can converge to the optimal strategy, and
that the optimal strategy represents a globally minimal adversarial image. We
also consider safety guarantees for Lipschitz networks and identify conditions to
ensure that no adversarial examples exist.

We implement a software package1, in which a Monte Carlo tree search
(MCTS) algorithm is employed to find asymptotically optimal strategies for
both players, with player II being a cooperator. The algorithm is anytime,
meaning that it can be terminated with time-out bounds provided by the user
and, when terminated, it returns the best strategies it has for both players. The
experiments on networks trained on benchmark datasets such as MNIST [18]
and CIFAR10 [1] show that, even without the knowledge of the network and
using relatively little time (1 min for every image), the algorithm can already
achieve competitive performance against existing adversarial example crafting
algorithms. We also experiment on several state-of-the-art networks, including
the winner of the Nexar traffic light challenge [25], a real-time object detection
system YOLO, and VGG16 [3] for ImageNet competition, where, surprisingly,
we show that the algorithm can return adversarial examples even with very lim-
ited resources (e.g., running time of less than a second), including that in Fig. 1
from YOLO. Further, since the SIFT method is scale and rotation invariant, we
can counter claims in the recent paper [21] that adversarial examples are not
invariant to changes in scale or angle in the physical domain.

Our software package is well suited to safety testing and decision support
for DNNs in safety-critical applications. First, the MCTS algorithm can be used
offline to evaluate the network’s robustness against adversarial examples on

1 The software package and all high-resolution figures used in the paper are available
from https://github.com/matthewwicker/SafeCV.

https://github.com/matthewwicker/SafeCV
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a given set of images. The asymptotic optimal strategy achievable by MCTS
algorithm enables a theoretical guarantee of safety, i.e., the network is safe when
the algorithm cannot find adversarial examples. The algorithm is guaranteed to
terminate, but this may be impractical, so we provide an alternative termination
criterion. Second, the MCTS algorithm, in view of its time efficiency, has the
potential to be deployed on-board for real-time decision support.

An extended version of the paper, which includes more additional explana-
tions and experimental results, is available from [36].

2 Preliminaries

Let N be a network with a set C of classes. Given an input α and a class c ∈ C, we
use N(α, c) to denote the confidence (expressed as a probability value obtained
from normalising the score) of N believing that α is in class c. Moreover, we
write N(α) = arg maxc∈C N(α, c) for the class into which N classifies α. For
our discussion of image classification networks, the input domain D is a vector
space, which in most cases can be represented as IRw×h×ch

[0,255] , where w, h, ch are

the width, height, and number of channels of an image, respectively, and we let
P0 = w × h × ch be the set of input dimensions. In the following, we may refer
to an element in w × h as a pixel and an element in P0 as a dimension. We
remark that dimensions are normalised as real values in [0, 1]. Image classifiers
employ a distance function to compare images. Ideally, such a distance should
reflect perceptual similarity between images, comparable to human perception.
However, in practice Lk distances are used instead, typically L0, L1 (Manhattan
distance), L2 (Euclidean distance), and L∞ (Chebyshev distance). We also work
with Lk distances but emphasise that our method can be adapted to other
distances. In the following, we write ||α1 − α2||k with k ≥ 0 for the distance
between two images α1 and α2 with respect to the Lk measurement.

Given an image α, a distance measure Lk, and a distance d, we define
η(α, k, d) = {α′ | ||α′ − α||k ≤ d} as the set of points whose distance to α
is no greater than d with respect to Lk. Next we define adversarial examples, as
well as what we mean by targeted and non-targeted safety.

Definition 1. Given an input α ∈ D, a distance measure Lk for some
k ≥ 0, and a distance d, an adversarial example α′ of class c �= N(α)
is such that α′ ∈ η(α, k, d), N(α) �= N(α′), and N(α′) = c. Moreover,
we write advN,k,d(α, c) for the set of adversarial examples of class c and let
advN,k,d(α) =

⋃

c∈C,c �=N(α) advN,k,d(α, c). A targeted safety of class c is defined

as advN,k,d(α, c) = ∅, and a non-targeted safety is defined as advN,k,d(α) = ∅.

Feature Extraction. The Scale Invariant Feature Transform (SIFT) algorithm
[20], a reliable technique for exhuming features from an image, makes object
localization and tracking possible without the use of neural networks. Generally,
the SIFT algorithm proceeds through the following steps: scale-space extrema
detection (detecting relatively darker or lighter areas in the image), keypoint
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localization (determining the exact position of these areas), and keypoint descrip-
tor assignment (understanding the context of the image w.r.t its local area).
Human perception of an image or an object can be reasonably represented as a
set of features (referred to as keypoints in SIFT) of different sizes and response
strengths, see [35] and Appendix of [36] for more detail. Let Λ(α) be a set of fea-
tures of the image α such that each feature λ ∈ Λ(α) is a tuple (λx, λy, λs, λr),
where (λx, λy) is the coordinate of the feature in the image, λs is the size of
the feature, and λr is the response strength of the feature. The SIFT procedures
implemented in standard libraries such as OpenCV may return more information
which we do not use.

Fig. 2. Illustration of the transformation of an image into a saliency distribution. (a)
The original image α, provided by ImageNet. (b) The image marked with relevant
keypoints Λ(α). (c) The heatmap of the Gaussian mixture model G(Λ(α)).

On their own, keypoints are not guaranteed to involve every pixel in the
image, and in order to ensure a comprehensive and flexible safety analysis, we
utilize these keypoints as a basis for a Gaussian mixture model. Figure 2 shows
the original image (a) and this image annotated with keypoints (b).

Gaussian Mixture Model. Given an image α and its set Λ(α) of keypoints,
we define for λi ∈ Λ(α) a two-dimensional Gaussian distribution Gi such that,
for pixel (px, py), we have

Gi,x =
1

√

2πλ2
i,s

exp
(−(px − λi,x)2

2λ2
i,s

)

Gi,y =
1

√

2πλ2
i,s

exp
(−(py − λi,y)2

2λ2
i,s

)

(1)

where the variance is the size λi,s of the keypoint and the mean is its location
(λi,x, λi,y). To complete the model, we define a set of weights Φ = {φi}i∈{1,2,...,k}

such that k = |Λ(α)| and φi = λi,r/
∑k

j=0 λj,r. Then, we can construct a Gaus-
sian mixture model G by combining the distribution components with the weights
as coefficients, i.e., Gx =

∏k
i=1 φi × Gi,x and Gy =

∏k
i=1 φi × Gi,y. The two-

dimensional distributions are discrete and separable and therefore their realiza-
tion is tractable and independent, which improves efficiency of computation. Let
G(Λ(α)) be the obtained Gaussian mixture model from Λ(α), and G be the set of
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Gaussian mixture models. In Fig. 2 we illustrate the transformation of an image
into a saliency distribution.

Pixel Manipulation. We now define the operations that we consider for manip-
ulating images. We write α(x, y, z) for the value of the z-channel (typically
RGB or grey-scale values) of the pixel positioned at (x, y) on the image α. Let
I = {+,−} be a set of manipulation instructions and τ be a positive real number
representing the manipulation magnitude, then we can define pixel manipula-
tions δX,i : D → D for X a subset of input pixels and i ∈ I:

δX,i(α)(x, y, z) =

⎧

⎨

⎩

α(x, y, z) + τ, if (x, y) ∈ X and i = +
α(x, y, z) − τ, if (x, y) ∈ X and i = −
α(x, y, z) otherwise

for all pixels (x, y) and channels z ∈ {1, 2, 3}. Note that if the values are bounded,
e.g., [0, 1], δX,i(α)(x, y, z) needs to be restricted to be within the bounds. For sim-
plicity, in our experiments and comparisons we allow a manipulation to choose
either the upper bound or the lower bound with respect to the instruction i. For
example, in Fig. 1, the actual manipulation considered is to make the manipu-
lated dimensions choose value 1.

3 Safety Against Manipulations

Recall that every image represents a point in the input vector space D. Most
existing investigations of the safety (or robustness) of DNNs focus on opti-
mising the movement of a point along the gradient direction of some function
obtained from the network (see Related Work for more detail). Therefore, these
approaches rely on the knowledge about the DNN. Arguably, this reliance holds
also for the black-box approach proposed in [26], which uses a new surrogate net-
work trained on the data sampled from the original network. Furthermore, the
current understanding about the transferability of adversarial examples (i.e., an
adversarial example found for a network can also serve as an adversarial exam-
ple for another network, trained on different data) are all based on empirical
experiments [26]. The conflict between the understanding of transferability and
existing approaches to crafting adversarial examples can be gleaned from an
observation made in [19] that gradient directions of different models are orthog-
onal to each other. A reasonable interpretation is that transferable adversarial
examples, if they exist, do not rely on the gradient direction suggested by a
network but instead may be specific to the input.

In this paper, we propose a feature-guided approach which, instead of using
the gradient direction as the guide for optimisation, relies on searching fro adver-
sarial examples by targeting and manipulating image features as recognised by
human perception capability. We extract features using SIFT, which is a reason-
able proxy for human perception and enables dimensionality reduction through
the Gaussian mixture representation (see [29]). Our method needs neither the
knowledge about the network nor the necessity to massively sample the network
for data to train a new network, and is therefore a black-box approach.
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Game-Based Approach. We formulate the search for adversarial examples as a
two-player turn-based stochastic game, where player I selects features and player
II then selects pixels within the selected features and a manipulation instruction.
While player I aims to minimise the distance to an adversarial example, player
II can be cooperative, adversarial, or nature who samples the pixels according to
the Gaussian mixture model. To give more intuition for feature-guided search, in
Appendix of [36] we demonstrate how the distribution of the Gaussian mixture
model representation evolves for different adversarial examples.

We define the objective function in terms of the Lk distance and view the
distance to an adversarial example as a measure of its severity. Note that the
sets advN,k,d(α, c) and advN,k,d(α) of adversarial examples can be infinite.

Definition 2. Among all adversarial examples in the set advN,k,d(α, c) (or
advN,k,d(α)), find α′ with the minimum distance to the original image α:

arg min
α′

{sevα(α′) | α′ ∈ advN,k,d(α, c)(or advN,k,d(α))} (2)

where sevα(α′) = ||α−α′||k is the severity of the adversarial example α′ against
the original image α.

We remark that the choice of Lk will affect perceptual similarity, see Appendix
of [36].

Crafting Adversarial Examples as a Two-Player Turn-Based Game.

Assume two players I and II. Let M(α, k, d) = (S ∪ (S × Λ(α)), s0,
{Ta}a∈{I,II}, L) be a game model, where S is a set of game states belong-
ing to player I such that each state represents an image in η(α, k, d), and
S × Λ(α) is a set of game states belonging to player II where Λ(α) is a set
of features (keypoints) of image α. We write α(s) for the image associated to
the state s ∈ S. s0 ∈ S is the initial game state such that α(s0) is the origi-
nal image α. The transition relation TI : S × Λ(α) → S × Λ(α) is defined as
TI(s, λ) = (s, λ), and transition relation TII : (S × Λ(α)) × P(P0) × I → S
is defined as TII((s, λ), X, i) = δX,i(α(s)), where δX,i is a pixel manipulation
defined in Sect. 2. Intuitively, on every game state s ∈ S, player I will choose a
keypoint λ, and, in response to this, player II will choose a pair (X, i), where
X is a set of input dimensions and i is a manipulation instruction. The labelling
function L : S ∪ (S × Λ(α)) → C × G assigns to each state s or (s, λ) a class
N(α(s)) and a two-dimensional Gaussian mixture model G(Λ(α(s))).

A path (or game play) of the game model is a sequence s1u1s2u2... of game
states such that, for all k ≥ 1, we have uk = TI(sk, λk) for some feature λk and
sk+1 = TII((sk, λk), Xk, ik) for some (Xk, ik). Let last(ρ) be the last state of
a finite path ρ and PathF

a be the set of finite paths such that last(ρ) belongs
to player a ∈ {I, II}. A stochastic strategy σI : PathF

I
→ D(Λ(α)) of player

I maps each finite paths to a distribution over the next actions, and similarly
for σII : PathF

II
→ D(P(P0) × I) for player II. We call σ = (σI, σII) a strategy

profile. In this section, we only discuss targeted safety for a given target class c
(see Definition 1). All the notations and results can be easily adapted to work
with non-targeted safety.
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In the following, we define a reward R(σ, ρ) for a given strategy profile σ =
(σI, σII) and a finite path ρ ∈

⋃

a∈{I,II} PathF
a . The idea of the reward is to

accumulate a measure of severity of the adversarial example found over a path.
Note that, given σ, the game becomes a fully probabilistic system. Let α′

ρ =
α(last(ρ)) be the image associated with the last state of the path ρ. We write
t(ρ) for the expression N(α′

ρ) = c ∨ ||α′
ρ − α||k > d, representing that the path

has reached a state whose associated image either is in the target class c or
lies outside the region η(α, k, d). The path ρ can be terminated whenever t(ρ)
is satisfiable. It is not hard to see that, due to the constraints in Definition 1,
every infinite path has a finite prefix which can be terminated. Then we define
the reward function R(σ, ρ) =

⎧

⎨

⎩

1/sevα(α′
ρ) if t(ρ) and ρ ∈ PathF

I
∑

λ∈Λ(α) σI(ρ)(λ) · R(σ, ρTI(last(ρ), λ)) if ¬t(ρ) and ρ ∈ PathF
I

∑

(X,i)∈P(P0)×I σII(ρ)(X, i) · R(σ, ρTII(last(ρ), X, i)) if ρ ∈ PathF
II

where σI(ρ)(λ) is the probability of selecting λ on ρ by player I, and σII(ρ)(X, i)
is the probability of selecting (X, i) based on ρ by player II. We note that a path
only terminates on player I states.

Intuitively, if an adversarial example is found then the reward assigned is the
inverse of severity (minimal distance), and otherwise it is the weighted summa-
tion of the rewards if its children. Thus, a strategy σI to maximise the reward
will need to minimise the severity sevα(α′

ρ), the objective of the problem defined
in Definition 2.

Definition 3. The goal of the game is for player I to choose a strategy σI to
maximise the reward R((σI, σII), s0) of the initial state s0, based on the strategy
σII of the player II, i.e.,

arg max
σI

optσII
R((σI, σII), s0). (3)

where option optσII
can be maxσII

, minσII
, or natσII

, according to which player
II acts as a cooperator, an adversary, or nature who samples the distribution
G(Λ(α)) for pixels and randomly chooses the manipulation instruction.

A strategy σ is called deterministic if σ(ρ) is a Dirac distribution, and is called
memoryless if σ(ρ) = σ(last(ρ)) for all finite paths ρ. We have the following
result.

Theorem 1. Deterministic and memoryless strategies suffice for player I, when
optσII

∈ {maxσII
,minσII

, natσII
}.

Complexity of the Problem. As a by-product of Theorem 1, the theoretical
complexity of the problem (i.e., determining whether advN,k,d(α, c) = ∅) is in
PTIME, with respect to the size of the game model M(α, k, d). However, even
if we only consider finite paths (and therefore a finite system), the number of
states (and therefore the size of the system) is O(|P0|

h) for h the length of the
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longest finite path of the system without a terminating state. While the precise
size of O(|P0|

h) is dependent on the problem (including the image α and the
difficulty of crafting an adversarial example), it is roughly O(50000100) for the
images used in the ImageNet competition and O(100020) for smaller images such
as CIFAR10 and MNIST. This is beyond the capability of existing approaches
for exact or ǫ-approximate computation of probability (e.g., reduction to linear
programming, value iteration, and policy iteration, etc) that are used in proba-
bilistic verification.

4 Monte Carlo Tree Search for Asymptotically Optimal

Strategy

In this section, we present an approach based on Monte Carlo tree search
(MCTS) [9] to find an optimal strategy asymptotically. We also we show that
the optimal strategy, if achieved, represents the best adversarial example with
respect to the objective in Definition 2, under some conditions.

We first consider the case of optσII
= maxσII

. An MCTS algorithm, whose
pseudo-code is presented in Algorithm 1, gradually expands a partial game tree
by sampling the strategy space of the model M(α, k, d). With the upper confi-
dence bound (UCB) [16] as the exploration-exploitation tradeoff, MCTS has a
theoretical guarantee that it converges to optimal solution when the game tree
is fully explored. The algorithm mainly follows the standard MCTS procedure,
with a few adaptations. We use two termination conditions tc1 and tc2 to control
the pace of the algorithm. More specifically, tc1 controls whether the entire pro-
cedure should be terminated, and tc2 controls when a move should be made. The
terminating conditions can be, e.g., bounds on the number of iterations, etc. On
the partial tree, every node maintains a pair (r, n), which represents the accumu-
lated reward r and the number of visits n, respectively. The selection procedure
travels from the root to a leaf according to an exploration-exploitation balance,
i.e., UCB [16]. After expanding the leaf node to have its children added to the
partial tree, we call Simulation to run simulation on every child node. A simula-
tion on a new node is a play of the game from node until it terminates. Players
act randomly during the simulation. Every simulation terminates when reaching
a terminated node α′, on which a reward 1/sevα(α′) can be computed. This
reward is then backpropagated from the new child node through its ancestors
until reaching the root. Every time a new reward v is backpropogated through a
node, we update its associated pair to (r+v, n+1). The bestChild(root) returns
the child of root which has the highest value of r/n. The other two cases are sim-
ilar except for the choice of the next move (i.e., Line 12). Instead of choosing the
best child, a child is chosen by sampling G(Λ(α)) for the case of optσII

= natσII
,

and the worst child is chosen for the case of optσII
= minσII

. We remark the
game is not zero-sum when optσII

∈ {natσII
,maxσII

}.

Severity Interval from the Game. Assume that we have fixed termination
conditions tc1 and tc2 and target class c. Given an option optσII

for player
II, we have an MCTS algorithm to compute an adversarial example α′. Let
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Algorithm 1. Monte Carlo Tree Search for optσII
= maxσII

1: Input: A game model M(α, k, d), two termination conditions tc1 and tc2, a target
class c

2: Output: An adversarial example α′

3: procedure MCTS(M(α, k, d), tc1, tc2, c)
4: root ← s0

5: While(¬tc1):
6: While(¬tc2):
7: leaf ← selection(root)
8: newnodes ← expansion(M(α, k, d), leaf)
9: for node in newnodes:

10: v ← Simulation(M(α, k, d), node, c)
11: backPropogation(node, v)
12: root ← bestChild(root)
13: return root

sev(M(α, k, d), optσII
) be sevα(α′), where α′ is the returned adversarial example

by running Algorithm 1 over the inputs M(α, k, d), tc1, tc2, c for a certain
optσII

. Then there exists a severity interval SI(α, k, d) with respect to the role
of player II:

[sev(M(α, k, d),max
σII

), sev(M(α, k, d),min
σII

)]. (4)

Moreover, we have that sev(M(α, k, d), natσII
) ∈ SI(α, k, d).

Safety Guarantee via Optimal Strategy. Recall that τ , a positive real
number, is the manipulation magnitude used in pixel manipulations. An image
α′ ∈ η(α, k, d) is a τ -grid image if for all dimensions p ∈ P0 we have
|α′(p)−α(p)| = n ∗ τ for some n ≥ 0. Let G(α, k, d) be the set of τ -grid images
in η(α, k, d). First of all, we have the following conclusion for the case when
player II is cooperative.

Theorem 2. Let α′ ∈ η(α, k, d) be any τ -grid image such that α′ ∈
advN,k,d(α, c), where c is the targeted class. Then we have that sevα(α′) ≥
sev(M(α, k, d),maxσII

).

Intuitively, the theorem says that the algorithm can find the optimal adver-
sarial example from the set of τ -grid images. The idea of the proof is to show
that every τ -grid image can be reached by some game play. In the following, we
show that, if the network is Lipschitz continuous, we need only consider τ -grid
images when τ is small enough. Then, together with the above theorem, we can
conclude that our algorithm is both sound and complete.

Further, we say that an image α1 ∈ η(α, k, d) is a misclassification aggregator
with respect to a number β > 0 if, for any α2 ∈ η(α1, 1, β), we have that N(α2) �=
N(α) implies N(α1) �= N(α). Intuitively, if a misclassification aggregator α1 with
respect to β is classified correctly then all input images in η(α1, 1, β) are classified
correctly. We remark that the region η(α1, 1, β) is defined with respect to the L1
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metric, but can also be defined using Lk′ , some k′, without affecting the results
if η(α, k, d) ⊆

⋃

α1∈G(α,k,d) η(α1, k
′, τ/2). Then we have the following theorem.

Theorem 3. If all τ -grid images are misclassification aggregators with respect
to τ/2, and sev(M(α, k, d),maxσII

) > d, then advN,k,d(α, c) = ∅.

Note that sev(M(α, k, d),maxσII
) > d means that none of the τ -images

in η(α, k, d) is an adversarial example. The theorem suggests that, to achieve
a complete safety verification, one may gradually decrease τ until either
sev(M(α, k, d),maxσII

) ≤ d, in which case we claim the network is unsafe, or the
condition that all τ -grid images are misclassification aggregators with respect to
τ/2 is satisfiable, in which case we claim the network is safe. In the following, we
discuss how to decide the largest τ for a Lipschitz network, in order to satisfy
that condition and therefore achieve a complete verification using our approach.

Definition 4. Network N is a Lipschitz network with respect to the distance Lk

and a constant � > 0 if, for all α, α′ ∈ D, we have |N(α′, N(α))−N(α,N(α))| <
� · ||α′ − α||k.

Note that all networks whose inputs are bounded, including all image clas-
sification networks we studied, are Lipschitz networks. Specifically, it is shown
in [30] that most known types of layers, including fully-connected, convolutional,
ReLU, maxpooling, sigmoid, softmax, etc., are Lipschitz continuous. Moreover,
we let ℓ be the minimum confidence gap for a class change, i.e.,

ℓ = min{|N(α′, N(α)) − N(α,N(α))| | α, α′ ∈ D, N(α′) �= N(α)}.

The value of ℓ is in [0, 1], dependent on the network, and can be estimated by
examining all input examples α′ in the training and test data sets, or computed
with provable guarantees by reachability analysis [30]. The following theorem
can be seen as an instantiation of Theorem 3 by using Lipschitz continuity with
τ ≤ 2ℓ

�
to implement the misclassification aggregator.

Theorem 4. Let N be a Lipschitz network with respect to L1 and a con-
stant �. Then, when τ ≤ 2ℓ

�
and sev(M(α, k, d),maxσII

) > d, we have that
advN,k,d(α, c) = ∅.

1/ǫ-convergence Because we are working with a finite game, MCTS is guaran-
teed to converge when the game tree is fully expanded. In the worst case, it may
take a very long time to converge. In practice, we can work with 1/ǫ-convergence
by letting the program terminate when the current best adversarial example has
not been improved by finding a less severe one for ⌈1/ǫ⌉ iterations, where ǫ > 0
is a small real number.

5 Experimental Results

For our experiments, we let player II be a cooperator, and its move (X, i) is
such that for all (x1, y1, z1), (x2, y2, z2) ∈ X we have x1 = x2 and y1 = y2,
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i.e., one pixel (including 3 dimensions for color images or 1 dimension for grey-
scale images) is changed for every move. When running simulations (Line 10
of Algorithm 1), we let σI(λ) = λr/

∑

λ∈Λ(α) λr for all keypoints λ ∈ Λ(α)
and optσII

= natσII
. That is, player I follows a stochastic strategy to choose

a keypoint according to its response strength and player II is nature. In this
section, we compare our method with existing approaches, show convergence of
the MCTS algorithm on limited runs, evaluate safety-critical networks trained on
traffic light images, and counter-claim a recent statement regarding adversarial
examples in physical domains.

Comparison with Existing Approaches. We compare our approach to two
state-of-the-art methods on two image classification networks, trained on the well
known benchmark datasets MNIST and CIFAR10. The MNIST image dataset
contains images of size 28 × 28 and one channel and the network is trained
with the source code given in [2]. The trained network is of medium size with
600,810 real-valued parameters, and achieves state-of-the-art accuracy, exceeding
99%. It has 12 layers, within which there are 2 convolutional layers, as well as
layers such as ReLU, dropout, fully-connected layers and a softmax layer. The
CIFAR10 dataset contains small images, 32 × 32, with three channels, and the
network is trained with the source code from [1] for more than 12 hours. The
trained network has 1,250,858 real-valued parameters and includes convolutional
layers, ReLU layers, max-pooling layers, dropout layers, fully-connected layers,
and a softmax layer. For both networks, the images are preprocessed to make
the value of each dimension lie within the bound [0, 1]. We randomly select 1000
images {αi}i∈{1..1000} from both datasets for non-targeted safety testing. The

numbers in Table 1 are average distances defined as 1
1000 ·

∑1000
i=1 ||αi − α′

i||0,
where α′

i is the adversarial image of αi returned by the algorithm. Table 1 gives
a comparison with the other two approaches (CW [8] and JSMA [27]). The
numbers for CW and JSMA are taken from [8]2, where additional optimisations
have been conducted over the original JSMA. According to [27], the original
JSMA has an average distance of 40 for MNIST.

Table 1. CW vs. Game (this paper) vs. JSMA

L0 CW (L0 algorithm) Game (timeout = 1 m) JSMA-F JSMA-Z

MNIST 8.5 14.1 17 20

CIFAR10 5.8 9 25 20

Our experiments are conducted by setting the termination conditions tc1 =
20 s and tc2 = 60 s for every image. Note that JSMA needs several minutes to

2 For CW, the L0 distance in [8] counts the number of changed pixels, while for the
others the L0 distance counts the number of changed dimensions. Therefore, the
number 5.8 in Table 1 is not precise, and should be between 5.8 and 17.4, because
colour images have three channels.
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handle an image, and CW is 10 times slower than JSMA [8]. From the table,
we can see that, already in a limited computation time, our game-based app-
roach can achieve a significant margin over optimised JSMA, which is based
on saliency distributions, although it is not able to beat the optimisation-based
approach CW. We also mention that, in [14], the un-optimised JSMA produces
adversarial examples with smaller average L2 distance than FGSM [12] and DLV
on its single-path algorithm [14]. Appendix of [36] provide illustrative examples
exhibiting the manipulations that the three algorithms performed on the images.

Convergence in Limited Runs. To demonstrate convergence of our algo-
rithm, we plot the evolution of three variables related to the adversarial severity
sevα(α′) against the number of iterations. The variable best (in blue color) is the
smallest severity found so far. The variable current (in orange) is the severity
returned in the current iteration. The variable window (in green) is the average
severity returned in the past 10 iterations. The blue and orange plots may over-
lap because we let the algorithm return the best example when it fails to find
an adversarial example in some iteration. The experiments are terminated with
1/ǫ-convergence of different ǫ value such as 0.1 or 0.05. The green plot getting
closer to the other two provides empirical evidence of convergence. In Fig. 3 we
show that two MNIST images converge over fewer than 50 iterations on manipu-
lations of 2 pixels, and we have confirmed that they represent optimal strategies
of the players. We also work with other state-of-the-art networks such as the
VGG16 network [3] from the ImageNet competition. Examples of convergence
are provided in Appendix of [36].

Fig. 3. (a) Image of a two classified as a seven with 70% confidence and (b) the demon-
stration of convergence. (c) Image of a six classified as a five with 50% confidence and
(d) the demonstration of convergence. (Color figure online)

Evaluating Safety-Critical Networks. We explore the possibility of applying
our game-based approach to support real-time decision making and testing, for
which the algorithm needs to be highly efficient, requiring only seconds to execute
a task.

We apply our method to a network used for classifying traffic light images
collected from dashboard cameras. The Nexar traffic light challenge [25] made
over eighteen thousand dashboard camera images publicly available. Each image
is labeled either green, if the traffic light appearing in the image is green, or
red, if the traffic light appearing in the image is red, or null if there is no traf-
fic light appearing in the image. We test the winner of the challenge which
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scored an accuracy above 90% [7]. Despite each input being 37632-dimensional
(112× 112× 3), our algorithm reports that the manipulation of an average of
4.85 dimensions changes the network classification. Each image was processed
by the algorithm in 0.303 s (which includes time to read and write images), i.e.,
304 s are taken to test all 1000 images. We illustrate the results of our analysis
of the network in Fig. 4. Though the images are easy for humans to classify, only
one pixel change causes the network to make potentially disastrous decisions,
particularly for the case of red light misclassified as green. To explore this par-
ticular situation in greater depth, we use a targeted safety MCTS procedure on
the same 1000 images, aiming to manipulate images into green. We do not con-
sider images which are already classified as green. Of the remaining 500 images,
our algorithm is able to change all image classifications to green with worryingly
low severities, namely an average L0 of 3.23. On average, this targeted procedure
returns an adversarial example in 0.21 s per image. Appendix of [36] provides
some other examples.

Fig. 4. Adversarial examples generated on Nexar data demonstrate a lack of robust-
ness. (a) Green light classified as red with confidence 56% after one pixel change. (b)
Green light classified as red with confidence 76% after one pixel change. (c) Red light
classified as green with 90% confidence after one pixel change. (Color figure online)

Counter-Claim to Statements in [21]. A recent paper [21] argued that, under
specific circumstances, there is no need to worry about adversarial examples
because they are not invariant to changes in scale or angle in the physical domain.
Our SIFT-based approach, which is inherently scale and rotationally invariant,
can easily counter-claim such statements. To demonstrate this, we conducted
similar tests to [21]. We set up the YOLO network, took pictures of a few traffic
lights in Oxford, United Kingdom, and generated adversarial examples on these
images. For the adversarial example shown in Fig. 1, we print and photograph
it at several different angles and scales to test whether it remains misclassified.
The results are shown in Fig. 5. In [21] it is suggested that realistic camera
movements – those which change the angle and distance of the viewer – reduce
the phenomenon of adversarial examples to a curiosity rather than a safety
concern. Here, we show that our adversarial examples, which are predicated on
scale and rotationally invariant methods, defeat these claims.
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Fig. 5. (Left) Adversarial examples in physical domain remain adversarial at multiple
angles. Top images classified correctly as traffic lights, bottom images classified incor-
rectly as either ovens, TV screens, or microwaves. (Right) Adversarial examples in the
physical domain remain adversarial at multiple scales. Top images correctly classified
as traffic lights, bottom images classified incorrectly as ovens or microwaves (with the
center light being misclassified as a pizza in the bottom right instance).

6 Related Works

We review works concerning the safety (and robustness) of deep neural networks.
Instead of trying to be complete, we aim to only cover those directly related.

White-Box Heuristic Approaches. In [34], Szegedy et. al. find a targeted
adversarial example by running the L-BFGS algorithm, which minimises the
L2 distance between the images while maintaining the misclassification. Fast
Gradient Sign Method (FGSM) [12], a refinement of L-BFGS, takes as inputs
the parameters θ of the model, the input α to the model, and the target label
y, and computes a linearized version of the cost function with respect to θ to
obtain a manipulation direction. After the manipulation direction is fixed, a
small constant value τ is taken as the magnitude of the manipulation. Carlini
and Wagner [8] adapt the optimisation problem proposed in [34] to obtain a
set of optimisation problems for L0, L2, and L∞ attacks. They claim better
performance than FGSM and Jacobian-based Saliency Map Attack (JSMA) with
their L2 attack, in which for every pixel xi a new real-valued variable wi is
introduced and then the optimisation is conducted by letting xi move along
the gradient direction of tanh(wi). Different from the optimisation approaches,
the JSMA [27] uses a loss function to create a “saliency map” of the image
which indicates the importance of each pixel on the network’s decision. A greedy
algorithm is used to gradually modify the most important pixels. In [23], an
iterative application of an optimisation approach (such as [34]) is conducted on
a set of images one by one to get an accumulated manipulation, which is expected
to make a number of inputs misclassified. [22] replaces the softmax layer in a
deep network with a multiclass SVM and then finds adversarial examples by
performing a gradient computation.
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White-Box Verification Approaches. Compared with heuristic search
approaches, the verification approaches aim to provide guarantees on the safety
of DNNs. An early verification approach [28] encodes the entire network as
a set of constraints. The constraints can then be solved with a SAT solver.
[15] improves on [28] by handling the ReLU activation functions. The Simplex
method for linear programming is extended to work with the piecewise linear
ReLU functions that cannot be expressed using linear programming. The app-
roach can scale up to networks with 300 ReLU nodes. In recent work [13] the
input vector space is partitioned using clustering and then the method of [15]
is used to check the individual partitions. DLV [14] uses multi-path search and
layer-by-layer refinement to exhaustively explore a finite region of the vector
spaces associated with the input layer or the hidden layers, and scales to work
with state-of-the-art networks such as VGG16.

Black-Box Algorithms. The methods in [26] evaluate a network by generat-
ing a synthetic data set, training a surrogate model, and then applying white
box detection techniques on the model. [24] randomly searches the vector space
around the input image for changes which will cause a misclassification. It shows
that in some instances this method is efficient and able to indicate where salient
areas of the image exist.

7 Conclusion

In this paper we present a novel feature-guided black-box algorithm for evalu-
ating the resilience of deep neural networks against adversarial examples. Our
algorithm employs the SIFT method for feature extraction, provides a theoreti-
cal safety guarantee under certain restrictions, and is very efficient, opening up
the possibility of deployment in real-time decision support. We develop a soft-
ware package and demonstrate its applicability on a variety of state-of-the-art
networks and benchmarks. While we have detected many instabilities in state-
of-the-art networks, we have not yet found a network that is safe. Future works
include comparison with the Bayesian inference method for identifying adver-
sarial examples [10].
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