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Feature-Guided Shape-Based Image Interpolation
Tong-Yee Lee* and Chao-Hung Lin

Abstract—A feature-guided image interpolation scheme is pre-
sented. It is an effective and improved, shape-based interpolation
method used for interpolating image slices in medical applications.
The proposed method integrates feature line-segments to guide the
shape-based method for better shape interpolation. An automatic
method for finding these line segments is given. The proposed fea-
ture-guided shape-based method can manage translation, rotation
and scaling situations when the slices have similar shapes. It can
also interpolate intermediate shapes when the successive slices do
not have similar shapes. This method is experimentally evaluated
using artificial and real two-dimensional and three-dimensional
data. The proposed method generated satisfactory interpolated
results in these experiments. We demonstrate the practicality,
effectiveness and reproducibility of the proposed method for
interpolating medical images.

Index Terms—Blending, distance map, interpolation, shape-
based, warping.

I. INTRODUCTION

M
EDICAL imaging devices produce medical data in the

form of image slices. In such images, the distance be-

tween consecutive slices is larger than the distance between two

neighboring pixels within a slice. This problem has an adverse

effect on the subsequent visualization and analysis processes

[1]–[4]. Many interpolation techniques have been proposed for

processing such data. Classical image interpolation procedures

fall into two main categories: gray level and shape-based. In the

following, we will overview the work related to the proposed

method.

The simplest method involves linearly interpolating the gray

values in the slices to fill in the gray values in the missing slices

[1]–[4]. However, artifacts are produced when the contour lo-

cations on two given slices shift considerably. To reduce these

artifacts, Keys et al. [6] attempted to use higher order functions

to perform interpolation. Later, a dynamically elastic surface

interpolation scheme was proposed to manage the branching

problem [7]. The key concept in this method involved deter-

mining the force field acting on the contour of one base image

and to deform it gradually, making it closer to the contour on

the other base image. Similarly, a hybrid approach combining

elastic interpolation, the spline theory and the surface consis-
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tency theorem was proposed to produce further improvement

[8].

Grevera and Udupa [5] and Herman et al. [10] proposed

shape-based methods by encoding the segmented image with

distance codes. This approach interpolates the distance instead

of the gray values and, therefore, maintains better geometric

changes. Because the shape-based method can be implemented

efficiently and achieves reasonable interpolation results, it

has become a widely used method. However, it cannot deal

effectively with objects with holes, large offsets, or heavy

invagination. To overcome these drawbacks, Guo et al. [11]

developed a morphology-based interpolation method. This

method first overlaps the two slices to obtain a morphologically

difference image and then applies a sequence of dilation

and erosion operations on nonoverlapping regions to achieve

interpolation. This method successfully resolves the problems

in objects with holes and large offsets. However, it still cannot

handle objects with heavy invagination [12]. Recently, Lee

et al. [13] proposed another morphology-based scheme. In

contrast to [11], this approach is simpler in computational

complexity and can handle more cases such as branching and

invagination.

Several modified shape-based methods that utilize knowl-

edge extracted from images have been developed. For example,

Goshtasby et al. [14] selected feature points from successive

frames to control the gray-level interpolation. Feature points are

selected using the gradient value as a criterion. Feature points

were used in [15], [16] defined using a fuzzy measure of bound-

aries and medial axis transforms. In [17] morphological skeleton

interpolation was proposed based on object representation using

mathematical morphological skeletonization.

In this paper, we propose a feature-guided shape-based image

interpolation scheme. We borrowed the image-warping concept

from T. Beier et al. [18] to compute interpolation with feature

line-segment control. We extended this basic idea in two di-

rections. First, the proposed scheme can automatically compute

feature line-segments to control shape-based methods. Second,

the original warping method in [18] is very computationally ex-

pensive. We propose methods to speed up the warping computa-

tion. In computer graphics, Cohen et al. [19] proposed three-di-

mensional (3-D) warping to interpolate 3-D volumetric objects.

There are two main drawbacks that prevent this method from

being directly used to interpolate medical images. First, this al-

gorithm is very computationally expensive. Second, the success

of this method is highly dependent on manual feature specifica-

tion. It is impractical to accurately specify corresponding fea-

tures in a real 3-D medical image that often contains hundreds

of slices. This is very tedious and labor intensive work. In ad-

dition, questions about the reproducibility and accuracy of the

method arise if different people specified the features.

0278-0062/02$17.00 © 2002 IEEE
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Fig. 1. Flowchart of the feature-guided shape-based interpolation algorithm.

The paper is organized as follows. The feature-guided

shape-based interpolation method is presented in Section II.

In Section III, the method for automatically finding feature

line-segments is presented. Experimental results when the

proposed method is applied to artificial and real-world data are

given in Section IV. Conclusions are drawn in Section V.

II. FEATURE-GUIDED SHAPE-BASED IMAGE INTERPOLATION

The proposed method is shown in Fig. 1. This method can be

divided into the following steps. For any given two consecutive

slices (binary or gray images), segment them (i.e., if gray im-

ages) and extract the contours for the objects of interest as in

most of the shape-based interpolation techniques. Our previous

techniques in [13] are exploited to compute the object matching

and create positive and negative object pairs. These tasks will

be briefly explained as we discuss branching and hole situa-

tions in Section IV. For each object pair (positive or negative),

the standard shape-based method [9], [10] is used to generate

the corresponding distance maps. The feature line-segments are

found automatically and warping is used to interpolate the in-

termediate distance maps. The work presented in this section is

the core of the proposed method. Next, the threshold is set to

zero for values stored on the interpolated distance maps to ob-

tain the interpolated contours. In case we need to create multiple

contours, such as branching or holes, some of the above proce-

dures must be processed several times (see the dashed line in

Fig. 1). Finally a contour-blending task is required to combine

all interpolated contours together to obtain the correct results. In

these above procedures, some well-known shape-based methods

[9], [10] and techniques were used from our previous work [13]

will not be explained here in detail. We will concentrate on the

fourth part of the above procedures. In the following subsec-

tions, we will present the details on 1) how warping [15] using

corresponding line segments to control the interpolation and

2) speeding up warping computation in the proposed method

and 3) how to automatically compute the control line segments.

A. Shape-Based Interpolation Using Warping

In Fig. 1, for given an object contour pair ( ) (i.e.,

after contour extraction) two distance maps ( ) are

computed using the standard shape-based method. After the

corresponding feature line-segments are computed (will be

described later) for ( ), a warping technique [18] is

used to fill in the distance information for the intermediate

distance map . To create , the warping is divided into

two main steps. First, we compute two deformed distance

maps ( ) from ( ) according to the control

line-segments. The two deformed ( ) maps are then

linearly blended to generate . Each control line segment

is directed. For each corresponding pair of line segments

and on ( ), the warping computes

an intermediate line segment , where ,

and .

The deformed can be then computed as follows [18]. For

each pixel coordinate of and its corresponding image

pixel on , the warping computes using

(1)

(2)

(3)

where the value is the position along the line normalized by the

distance and is the distance from the line and procedure

returning a vector that is perpendicular to the

input vector. The idea is very simple in the above equations.

Both directed lines and define their local coordi-

nate systems. For the corresponding and , their local co-

ordinates are ( ) in these two local systems defined by

and . In [18], the warping method uses multiple line seg-

ments. Assume that we have computed due to

corresponding line segments. We calculate the combined point

for as follows:

and (4)

where the distance is the distance from point to each line seg-

ment on . The parameter ( in all experiments) is a

small number to avoid being a zero value and the parameter

(i.e., in all experiments) is used to control the rate of

degradation influence per each line segment. In this manner, the

warping function calculates for . We then let the distance

value for on be the distance for on . Using proce-

dures similar to those above we can also compute the deformed

. Now, we have computed two deformed ( ) maps

for the intermediate . Next, both and are blended

in a linear manner to calculate using

(5)

where and is a pixel coordinate. We call the above

procedures a feature-guided shape-based interpolation method

in this paper.

B. Optimization

The warping technique [18] is a brute-force approach. It

computes every pixel to a new location according to all feature

line pairs. In this section, we will propose methods to speed

up the warping computation. We suggest warping computation
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speed improvements using the linearity property of each

warping scan-line and the bounding boxes.

1) Scan-Line Linearity of Warping Function: Using (1)–(3)

to transform a scan-line, we can obtain a transformed line that

is rotated, scaled or translated. In the following, we will show

that this transformation is a linear function. Assume that pixels

and are two ending points of a scan-line and is a point

on . For a feature line pair, the locations of , and will

be mapped onto new coordinates and . Since , and

are located on the same scan-line, we have

and (6)

For the pixel on either or , we use (1)–(3) to find

’s corresponding location on either or by (7),

as shown at the bottom of the page, where can be either

or and can be either or and and are

and in (1). Therefore, (7) indicates the transformation of

a given scan-line is a linear function. On this basis, we morph

two ending points for each scan-line using only (1)–(3) and lin-

early interpolate the remaining points rather than compute the

remaining points using (1)–(3). The warping computation can,

thus, be reduced. With this optimization, we approximate the in-

fluence of a line pair, say on a given scan-line, and term each

transformed line . We then use (4) to combine all s and ac-

complish warping this scan-line. This combination using (4) is

not a linear function and, thus, a straight line could be distorted

into a curve.

2) Bounding Box: The computation cost for the original

warping technique is in proportion to the number of feature

lines and image resolution. We can reduce the computation cost

by skipping some empty pixels in our application. For each con-

tour pair ( ), we find the union of their bounding boxes

and need only to perform the same interpolation procedures

described in Section II-A to this union area, as shown in Fig. 2.

Only a distance transform is performed on this area. Later in

Section IV, we will show how this bounding box technique

Fig. 2. B1 and B2 are bounding boxes for a given contour pair (C ; C ).
Both the distance transform and interpolation are performed only on the union
area instead of the whole image to save computation cost.

combined with scan-line optimization (in Section II-B1) will

significantly improve the warping computation.

III. AUTOMATICALLY COMPUTING CONTROL LINE SEGMENTS

In the following, we will propose an approach to compute cor-

responding line segments for a given contour pair ( ).

This approach consists of three main tasks: 1) finding the prin-

ciple axis of each contour, 2) simplifying the input contours and

3) contour matching. These three tasks will be presented in the

following sections.

A. Principle Axis Alignment

Given two input contours, we need to align their principle

axes before we find their corresponding line segments. A two-

dimensional (2-D) contour consists of points and any two

consecutive points and of these points can form a line

segment. The coordinate of is denoted as . The

principle axis of a contour can be computed from its , co-

variance matrix [20], where is defined by (8), as shown at the

bottom of the page. In (8), represents the average

of points. We then compute the maximum eigenvalue of

[20]. The corresponding eigenvector of defines the principle

axis of the contour . We compute the principle axes for the two

(7)

(8)



1482 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 12, DECEMBER 2002

(a) (b) (c) (d)

Fig. 3. Contour simplification. (a) Input contour consists of 999 points. (b)–(d)
Simplified contours of (a) consisting of 250, 60, and 12 points, respectively.

input contours ( and ) and their axes are denoted and

, respectively. The included angle between and

is then determined. Using this included angle , we then rotate

each of to achieve alignment using

(9)

where is the rotation matrix.

B. Contour Simplification

In our approach, line segments are used to control the shape-

based interpolation. Ideally, we will not use too many line seg-

ments and these line segments should be feature line segments of

the given contours. For this purpose, we implemented a method

for the optimal polygonal approximation of digitized curves

[21]. This method uses A heuristic search algorithm to speed

up finding the optimal solution. For a given -point contour, its

complexity is close to . In [21], the error function error

is used to estimate the local approximation and is equal

to the square Euclidean distance from contour each point from

to to its orthogonal projection onto the line

defined by and using

error (10)

where is a point from to . Fig. 3 shows an

example using this method (for more details, see [21]. After

simplification, only the feature points of a given contour are left.

In the next subsection, we will describe a matching method to

determine the correspondence among these feature points.

C. Contour Matching

Let , and , and be two

parametric curves for the source and input contours. In this

section, we need to establish the correspondence between the

two curves. To establish correspondence, two matching criteria

are considered: intensity and geometry similarities. We use the

image correlation to evaluate the intensity similarity. Assume

that two contours are originally extracted from two given gray-

level (or binary level for artificial data) image slices and .

For two contour points and on and , their image

correlation can be computed using

(11)

where and are the variances in intensity value for two

blocks centered on and , respectively. and

are computed using

for or (12)

And is covariance of and , and can be computed

using

(13)

For a continuous parametric curve , we can compute its

unit tangent vector using the following:

(14)

In this paper, the geometric similarity of and

is evaluated using the inner product of and

. This inner product is denoted using

(15)

The basic idea is that when two curves are matched, each

correspondence pair has an equal tangent vector

(i.e., inner product is equal to 1). Therefore, when we find

all of the equal tangent vectors between two curves, the best

match occurs when the sum of (15) for all correspondences

is the maximum. After the contour simplification discussed

in Section III-B, let us assume that both and

consists of points and each point is denoted as and

, where . To find the best matched

points between and , we optimally compute the

solution using the following:

(16)

To evaluate (16), we need to reparameterize [22]

using to find solutions. and are the weights

for the intensity and geometry similarities. In addition, the repa-

rameterization must be subject to , and

. Directly solving (16) is a hard problem. We

adopted Cohen et al. [23] approach by exploiting dynamic pro-

gramming over the points of and . This dy-

namic programming approach recursively defines a cost func-

tion using

(17)
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(a) (b) (c)

Fig. 4. Contour matching. (a) and (b) Input contours on I and I ,
respectively. Each corresponding point pair is shown using a line connecting
two corresponding points on two contours in (c).

Fig. 5. Warping procedures to interpolate contours.

The meaning of is interpreted as the optimal cost for

matching the first samples of with the first samples

of . The time complexity of is using

the dynamic programming approach [23]. Fig. 4 shows an ex-

ample of matching two curves using the proposed method. In

this example, each corresponding point pair is shown using a

line connecting two corresponding points. After the matching

task, these matched points will define corresponding points be-

tween the two contours and two consecutive feature-points from

a feature line-segment on each contour. In all examples in this

paper, when computing (17), we let and for

the real data and and for the artificial data.

D. Solving Interpolation Problems

We show an example in Fig. 5 using the proposed algorithm

to control shape-based interpolation. In this example, we need

to create distance maps [Fig. 5(a)] and [Fig. 5(b)]

for two input contours and on image slices and

. We used feature line-segments computed from the algo-

rithms presented in Section III-C to generate two warping dis-

tance maps [Fig. 5(c)] and [Fig. 5(d)]. Next, we used

(5) to linearly interpolate any number of intermediate distance

maps. This simple approach performs well as the orientation for

the principle axes of and are not too different. This ap-

proach would not otherwise be able to generate a smooth inter-

polation (see an example in Fig. 6). To avoid this situation, we

replaced (5) with

(18)

where , , are defined in (5), and

are defined in (9). Fig. 5(e) shows an interpolated map

using (18). We used an example in Fig. 6 to demonstrate the

difference using (5) and (18). In (5), and are shown in

(a) and (b). The matched points between the two contours are

illustrated in Fig. 5(c). Fig. 5(d) and (e) represents the rendered

results of the interpolated volume using (5) and (18). From this

example, we can observe that Fig. 5(e) has a smoother interpo-

lated volume than Fig. 5(d).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Experiments were performed using artificial and real-world

data. The artificially generated data were selected from pre-

vious work or selected to present the features of the proposed

algorithm.1 In the following examples, all corresponding point

pairs are shown using lines connecting the corresponding points

among the contours. The first example was presented in Sec-

tion III-D as shown in Fig. 6. This example demonstrates the ca-

pability of the proposed method to interpolate slices of a rotating

stick-like object. Fig. 7 shows that the shape of the stick-like

object is preserved and the object in the first original frame is

rotated to the orientation of the second original frame. The al-

gorithm was next applied on slices that contain two circles [11],

[12], [17] in Fig. 8. In this example, the shape of the large circle

on the first original frame is preserved and the circle is translated

and shrunk in size toward the small circle in the second orig-

inal frame. This experiment shows the ability of this algorithm

to interpolate slices contained in objects with large offsets and

that differ in size. From these two examples, the proposed fea-

ture-guided shape-based method can manage translation, rota-

tion and scaling situations, when the slices have similar shapes.

The next two examples were hole and branching problems

shown in Figs. 9 and 10. In Fig. 9, the original frames are (a)

and (b). Both (a) and (b) have a hole. This example demonstrates

the capability of the proposed method to interpolate object slices

with holes. In this example two contour pairs are created: a pos-

itive pair for the outer contours and a negative pair for the inner

hole-contours. We then used the proposed method to generate

two interpolated contours: one for a positive pair and one for a

negative pair. The two contours were then blended to generate

a desired contour. To deal with a hole, the blending is simply

a set subtraction operation [13]. For multiple negative and pos-

itive pairs, we separately interpolate the positive and negative

object pairs. Afterwards, we blend all of the same type interpo-

lated contours (positive or negative). In this case, the blending is

simply a set union operation. We then subtract the union of neg-

ative contours from the union of positive contours to produce the

final interpolated contour. More details about this blending can

be found in our previous work [13]. Fig. 10 demonstrates the

capability of the proposed method to interpolate object slices

with branches [7], [8], [11]–[13]. In [13], we scored each po-

tential matched object pair based on the overlapping informa-

tion and distance between them. If the score was over a se-

lected threshold, the potential pair was considered a matched

pair. We generated interpolated contours for all matched pairs.

1More experiments can be found at our research web site: http://couger.csie.
ncku.edu.tw/~vr/TMI_interpolation.html.
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(a) (b) (c) (d) (e)

Fig. 6. Difference using (5) and (18) is shown. (a) and (b) Original contours C and C , respectively. (c) Matched points between the two contours. (d) and
(e) Interpolated volume rendering results using (5) and (18), respectively.

(a) (b) (c) (d) (e)

Fig. 7. Interpolated slices for the example in Fig. 6.

Fig. 8. Objects with large offsets [11], [12], [17]. (a) and (b) Two input contours. (c) Matched points. (d) Interpolated volume rendering results. (e) Sequence of
interpolated slices.

Fig. 9. Objects with a hole [11]. (a) and (b) Original frames. (c).(left) positive pair and (right) negative pair. (d) Rendered result of interpolated volume and
(e) shows a sequence of interpolated object.

Fig. 10 shows the independent interpolation of three positive

object pairs. The final contour can then be reconstructed from

the union of these three interpolated contours. This example was

widely tested in [7], [8], [11]–[13]. The proposed scheme yields

very satisfactory results.

Figs. 11 and 12 are termed “moderate” and “extreme” con-

cave cases in [7]. The proposed method has the capability to

deal well with these two cases. Both examples were also tested

in [7]. To deal with these examples, this approach [7] employs

a very computationally intensive method to distort one contour

to be like another one. Using the simpler proposed scheme, we

see the shapes of the intermediate contour change smoothly re-

gardless of being a “moderate” or “extreme” concave case. Our

results are similar to those presented in [7].

The last two artificial examples were evaluated in [12] as

shown in Figs. 13 and 14. Sun et al. [12] mentioned that both

cases were difficult and were not solved well using the morpho-

logical-based interpolation method [11]. Many previous studies
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Fig. 10. Branching case [7], [8], [11]–[13]. (a) and (b) Original slices. (c) Matched object pairs. (d) Rendered result of interpolated volume. (e) Sequence of
interpolation.

Fig. 11. A “moderate” concave case [7]. (a) and (b) Original slices. (c) Correspondence. (d) Rendered result of interpolated volume. (e) Sequence of interpolation.

Fig. 12. An “extreme” concave case [7]. (a) and (b) Original slices. (c) Correspondence. (d) Interpolated volume rendering result. (e) Interpolation sequence.

suggested applying object centralization to have one object

enclosed by another before interpolation [17]–[19]. Sun et al.

pointed out that this conventional centralization (i.e., aligning

the centroids of the two objects) sometimes failed when the

objects were concave. To solve this issue, Sun et al. [12] iter-

atively employed object centralization and object enlargement

to ensure that object enclosure could occur. After interpolation,

this approach requires contour shrinking using erosion to

compensate for the object enlargement effect. Furthermore, this

process cannot always guarantee object enclosure even when

the enlarging factor becomes extremely large [12]. This entire

process is not very efficient with respect to the computational

complexity. Our proposed scheme is more practical than this

approach. Four examples using the proposed method applied to

real-world medical data follows in Figs. 15–18.

All of the above experiments were run on the 1-GHz Intel

Pentium III with 128-MB memory. All original slices were

256 256 images. We interpolated 100 slices for Figs. 7–14.

For Figs. 15–17, we interpolated eight slices. Table I shows

the timing information used in the proposed method and the

number of feature line segments for interpolating eight slices

in Figs. 15–17. The information includes the time used in

image preprocessing (i.e., contour extraction, object matching,

bounding boxes, computing the principle axes and distance
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Fig. 13. A difficult case tested in [12]. (a) and (b) Original slices. (c) Correspondence. (d) Interpolated volume rendering results. (e) Sequence of interpolation.

Fig. 14. The invagination case (abrupt change in shape) [12]. (a) and (b) Original slices. (c) Correspondence. (d) Interpolated volume rendering results.
(e) Sequence of interpolation.

Fig. 15. Colon CT image slices. (a) and (b) Original slices and colon contours are extracted in (c) and (d). (e) Correspondence. (f) Sequence of interpolation.

transform etc.), contour simplification, contour matching and

interpolation with warping. From this table, we can see that

most of the components of the proposed algorithm compute

very fast. Only the interpolation component is not fast. The

average time per interpolated slice was 4.16 s, achieved using

the nonoptimized proposed method for all experiments in this

paper. Tables II and III show the improvement in warping

computation using the scan-line linearity and bounding boxes.

From these two tables, we clearly see the improvement using

the proposed optimized schemes. The average time per interpo-

lated slice is reduced from about 4.16 s to 2.99 (using scan-line

linearity) and 1.097 s (using scan-line linearity with bounding

boxes). From these tables, we see that the interpolation cost is

in proportion to the number of line segments. The empty area is

also an important factor. As we discussed in Section II-B2, we

can save computation time, if we skip pixels outside the union

of the bounding boxes. The more pixels we skip, the greater the

potential improvement achieved.

Finally, we applied the proposed method to real 3-D molar

data. The original slices of the molar volume were scanned

from [17]. Fig. 18(a) shows 16 slices from the original 30

slices. Fig. 18(b) shows two views of the reconstructed results.
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Fig. 16. CT pelvis image slices: (a) and (b) are original slices; (c) and (d) are extracted contours with interest; (e) shows correspondence between (c) and (d).
(f) Interpolation sequence.

Fig. 17. MRI image slices. (a) and (b) Original slices. (c) and (d) Extracted contours with interest. (e) Correspondence between (c) and (d). (f) Interpolation
sequence.

Fig. 18. Molar volume reconstruction (256 � 256 � 240). Original input images were scanned from [17].

Table IV shows the experimental timing information for

reconstructing Fig. 18. Since we have 30 original slices, we

need to perform image preprocessing, contour simplification

and matching 30 times. A total of 240 slices were interpolated.

We also reconstructed other 3-D data.2

2Available: http://couger.csie.ncku.edu.tw/~vr/TMI_interpolation.html

V. CONCLUSION

We proposed using features to control shape-based inter-

polation. The proposed scheme was experimentally shown

to successfully resolve complex interpolation problems that

could not be managed using the original shape-based method

or other previous approaches. We applied the proposed scheme

to real-world data. All of the experimental results showed that

the proposed method could generate satisfactory interpolation.

If feature-lines are specified manually, there is no guarantee of
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TABLE IV
EXPERIMENTAL TIMINGS (UNIT: SECONDS) FOR FIG. 18

TABLE I
TIME (UNIT: SECONDS) ANALYSIS FOR EXPERIMENTS IN FIGS. 15–17.
FOR FIG. 17, 12–16 MEANS THAT THERE ARE TWO CONTOUR PAIRS

AND ONE PAIR USED 12 LINE SEGMENTS AND THE OTHER USED

16 LINE SEGMENTS TO CONTROL INTERPOLATION

TABLE II
PERFORMANCE COMPARISON (UNIT: SECONDS) AMONG THE NON-OPTIMIZED,
OPTIMIZED BY SCAN-LINE LINEARITY AND OPTIMIZED USING A COMBINATION

OF SCAN-LINE LINEARITY AND BOUNDING BOXES. IN THESE EXAMPLES:
FIGS. 15–18, WE INTERPOLATED EIGHT SLICES

TABLE III
PERFORMANCE COMPARISON (UNIT: SECONDS) AMONG THE NON-OPTIMIZED,

OPTIMIZED USING SCAN-LINE LINEARITY AND OPTIMIZED USING A

COMBINATION OF SCAN-LINE LINEARITY AND BOUNDING BOXES.
IN THESE EXAMPLES (FIGS. 7–14), WE INTERPOLATED 100 SLICES

reproducibility in daily practice because different persons can

specify different features. The proposed method automatically

finds the feature line-segments. This method can be used easily

in practice experiments and there is no reproducibility problem.

We also proposed techniques to optimize the warping speed.

On average, the achieved speedup varies from 1.39 to 3.79

times. The proposed method has demonstrated practicality,

effectiveness, reproducibility and accuracy in medical image

interpolation. Finally, we should also mention that the prior

techniques for shape-based interpolation are effective in the

large majority of circumstances in our experience. Further-

more, it is very difficult to state rigorously that our method

produces theoretically correct interpolated shape information,

since the input data are subsampled. However, in contrast to

other work, the proposed method generally and successfully

interpolates data that were reported in other previous work.

On the other hand, with improving imaging scanners, the

interpolation problem is becoming less necessary for 2-D/3-D

data. However, it will be another research direction to apply the

proposed method to four-dimensional (4-D) (plus time) data.

It is not common to have a very high resolution of 4-D data at

most hospitals.
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