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Abstract

Automatic image annotation is a highly valuable tool for

image search, retrieval and archival systems. In the absence

of an annotation tool, such systems have to rely on either

users’ input or large amount of text on the webpage of the

image, to acquire its textual description. Users may pro-

vide insufficient/noisy tags and all the text on the webpage

may not be a description or an explanation of the accom-

panying image. Therefore, it is of extreme importance to

develop efficient tools for automatic annotation of images

with correct and sufficient tags. The context of the image

plays a significant role in this process, along with the con-

tent of the image. A suitable quantification of the context of

the image may reduce the semantic gap between visual fea-

tures and appropriate textual description of the image. In

this paper, we present an unsupervised feature-independent

quantification of the context of the image through tensor de-

composition. We incorporate the estimated context as prior

knowledge in the process of automatic image annotation.

Evaluation of the predicted annotations provides evidence

of the effectiveness of our feature-independent context esti-

mation method.

1. Introduction

Image search and retrieval systems rely heavily on the

availability of the textual descriptions of images to sat-

isfy the textual queries of users. Such systems can benefit

greatly from image annotation systems which aim at pro-

ducing accurate and concise textual descriptions for images.

Automatic image annotation is a very challenging problem

as low-level visual features (HOG, mean and standard devi-

ation of color channels, edge filters, etc.) used to describe

the contents of an image do not represent any ready and

comprehensible connection to the textual description of the

image. This distance between low-level visual features and

textual description of image is described as semantic gap.

The context of the image may help reduce this gap. The
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context information may be used as prior knowledge in the

process of automatic image annotation to bridge the gap be-

tween low-level representation of content of the image and

its textual description.

Estimation of the context of image is essential to the task

of incorporating this information in image annotation pro-

cess. The meta-data or any additional data available with

images may provide understandable context but the avail-

ability of such additional information is not a very practical

assumption. In the ideal scenario, the context should be es-

timated from the image itself. Some forms of image repre-

sentation may be suitable for context representation. For ex-

ample, visual features representing scene of an image may

be used as prior knowledge in the process of identification

of details of the scene, i.e., content of the image. Still, the

context estimation task is tied to some for of visual features

with the inherent problem of semantic gap.

In this paper, we propose a feature-independent and un-

supervised context estimation process. The proposed pro-

cess does not depend upon availability of additional infor-

mation with images or any form of visual features. It in-

volves tucker decomposition of tensors, typically used for

video processing. We devise a unique strategy to transform

images into suitable tensors, which are capable of provid-

ing useful context information for individual images. We

incorporate estimated context in the process of automatic

image annotation as prior knowledge. The evaluation of this

process over two popular image annotation datasets, i.e.,

IAPR1 and ESP game2, provides encouraging evidence of

the effectiveness of our context estimation strategy.

The rest of this paper is arranged as follows. We present

a survey of image annotation and tensor decomposition re-

lated literature in section 2. The problem is properly formu-

lated in section 3. The proposed feature-independent con-

text estimation strategy is presented in section 4. In section

5, we describe the annotation scheme incorporating context

information. We explain the intuition behind our context es-

timation strategy in section 6. Sections 7 and 8 describe the

results of our evaluation and conclusion, respectively.

1http://www.imageclef.org/photodata
2http://hunch.net/ jl/



2. Related Work

Automatic image annotation is a well-studied prob-

lem and various strategies have been previously proposed

to solve this problem. One popular class of frame-

works is inspired by relevance models used for machine

translation problem from the domain of natural language

processing[12, 16, 6, 22]. These methods estimate joint

probability of words with some visual representation of im-

ages by assuming a generative model solved by expectation

over training data. These frameworks are computationally

efficient and moderately accurate. Several methods have

been proposed that achieve significantly better performance

than the relevance model based frameworks, at the cost of

increased computational complexity. These methods rely

on some iterative optimization of the system, assuming that

the nearest-neighbors of an image encode information of the

appropriate tags for that image[9, 17, 3, 29]. Object identi-

fication tools from computer vision have been employed in

the annotation process[21, 15]. Such methods usually work

with very limited vocabulary sets.

Some systems have been proposed to use auxiliary infor-

mation available with images in the process of image an-

notation. Usually these systems work with images from

news datasets as these images have accompanying news

articles[7, 8]. Auxiliary information provides context for

each image that helps reduce the semantic gap between

visual features and textual descriptions. Tariq et al. pro-

posed to estimate context without auxiliary information, us-

ing scene analysis of images[27].

In this paper, we propose to remove the dependence of

context estimation process on auxiliary information as well

as any form of visual features.

Tensors have been used as a natural representation

scheme for videos, text document collections and image

ensembles [4, 14, 28, 1, 10]. Tensor analysis and decom-

position algorithms have been applied to the tasks such as

action recognition and motion detection, in the domain of

video analysis[23, 19, 30, 26]. Kolda et al. presented a

detailed study of tensor decomposition methods along with

their applications[13].

In this paper, we present a novel strategy for forming

useful tensors from independent images and using decom-

position of tensors as a source of context information to be

employed in image annotation process.

3. Problem Formulation and Notations

Our aim is to estimate useful context information to be

incorporated in the process of automatic annotation of im-

ages with proper textual tags. We assume the availability of

training data which is a reasonable assumption made by ev-

ery annotation and prediction system. The training dataset,

denoted by I, consists of images and their textual descrip-

tions. Let each training sample be denoted by I . There is

a fixed set of vocabulary, say V, made up of words used in

the descriptions of all I ∈ I. Let the size of V be N . There

are test images available, each denoted by Io. These are the

images which need to be annotated with proper words from

the vocabulary set V. The goal of the annotation system

is to come up with a subset {w1, w2, ..., wB} of vocabulary

words for Io such that each wb of this subset is a suitable

annotations for image Io.

We assume that thecontext information is encoded in the

group structure of training images where training images

in one group have some ‘relation’ to other members of the

group. This ‘relation’ shared by the members of one group

is defined in section 4.1. Each test image has some associa-

tion to these groups which encodes its context information.

4. Estimation of Context Information

Estimation of context is a three-step process in the pro-

posed system. The first task is to form a limited number of

groups of the training data such that all images in one group

have some ‘relation’ with each other. The next step involves

formation and then decomposition of tensors, made up of

images of each group. In the last step, context of test im-

ages is estimated by modifying tensors and comparing new

decomposition results against those generated in the second

step.

Assume that each training image I ∈ I has its textual

description encoded in a vector v of length N . Each entry

of vn of vector v indicates presence or absence of the corre-

sponding word of the vocabulary in the textual description

of image I .

4.1. Context groups

In the first step, we need to construct groups, termed con-

text groups, of images such that all images in one group

have some ‘relation’ to each other. Our system requires two

things from this process; 1) each image group should be a

representation of some context that is capable of aiding the

prediction of appropriate annotations for images, 2) im-

ages of one group should have sufficient visual similarity

to each other so that the group could be used as basis for

formation of visual signature of the context.

The textual descriptions of the images in the training set

are available. It is intuitive to assume that the textual de-

scription of an image predicts its visual representation. We

calculate tfidf representation of the textual description of

each image I , denoted by v
′ which is a vector of length N .

If NnI is the number of times nth word appears in the de-

scription of image I and Nn is the cumulative frequency of

nth word in the dataset, nth entry of v′ is

v′n =
NnI

Nn

(1)



Figure 1. An example of context group formed on the basis of

similarity in textual descriptions

Figure 2. An example of context group formed on the basis of

similarity in textual descriptions

The images in the training set are clustered based on the

cosine similarity between their tfidf vectors. The properties

of tfidf representation ensures that this process groups im-

ages with the same distinctive words in their textual descrip-

tions, together. Each image group will be able to uniquely

provide evidence for those words. For example, if the word

‘sky’ occurs commonly in descriptions across all the train-

ing data, it is part of ‘general’ vocabulary of the dataset and

is not a distinctive feature of any of the image groups. On

the other hand, if ‘snow’ is a tag for a few images, the group

of those images can uniquely provide evidence for the tag

‘snow’. Moreover, the images grouped together have high

similarity among their textual representations. Therefore,

we justifiably assume reasonable visual similarity between

images of one group. We employed an iterative hierarchi-

cal clustering process with cut-off threshold to control the

number of clusters at each iteration. Large clusters were

further split in subsequent iterations to keep context group

size distribution as uniform as possible.

4.2. Tensor formation and decomposition

One context tensor Tc ∈ R
X×Y×Z is constructed for

each of the image groups formed in the first step. The im-

ages in one group are resized to a fixed height Y and width

X , converted to gray-scale, processed though a Gaussian

blurring filter and concatenated together to form the tensor.

Three dimension, i.e., x, y and z, of this tensor represent

image width, image height and image indices, respectively.
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 Figure 3. Tensor formation: images of one group are stacked to-

gether to form one tensor

Notice that the goal of this process is to estimate an over-

all signature of the context while context is encoded in the

distinctive words of image descriptions in one group. This

context signature should be made insensitive to fine visual

details so that when association of a new image to any of the

context signatures is assessed, it focuses on global similar-

ity between the new image and member images of that con-

text group and not on the local details of images. Therefore,

images of one group are all processed by a blurring Gaus-

sian filter to remove sharp distinctions because of edges.

The next step is the decomposition of the context tensor

through Tucker decomposition to find a compact signature

of the context group. Tucker decomposition is a popular

technique to project tensor Tc ∈ R
X×Y×Z onto a smaller

core tensor S and three matrices P,Q, and R such that

Tc ≈ S×1P×2Q×3R =

X
∑

x=1

Y
∑

y=1

Z
∑

z=1

gxyzpx◦qy◦rz, (2)

where P ∈ R
X×K , Q ∈ R

Y×K , and R ∈ R
Z×K are the

orthogonal matrices, S ∈ R
K×K×K is the core tensor and

K ≤ min(X,Y, Z). The ×i operator denotes the multipli-

cation between a tensor and a vector in mode-i of that ten-

sor, whose result is also a tensor, namely, A = B×iα ⇐⇒
(A)jk =

∑I

i=1
Bijkαi.

We apply a rank-1 decomposition, i.e., K is set to 1. In

this case, P,Q,R are vectors with lengths equal to the width

of the image, the height of the image and the size of the

context group, respectively. Vector R ∈ R
Z×1 is the most

important for our system. This vector represents the simi-

larity/dissimilarity of one image to its neighboring images

in the tensor Tc. Since all images concatenated together be-

long to one context groups, i.e., they are all visually similar

as they all have highly similar textual descriptions, there

should be only small variations in the entries of this vector.

Vector R is the compact signature for the context group.

4.3. Context estimation

The next step is to quantify context of test images in

terms of their association with different context signatures.

Let each test image be represented as Io. There is no textual

description available for Io. As we explained in previous



section, context signature is a vector of length R with little

variation across its entries as it is the result of tucker decom-

position of a tensor made up of R visually similar images

belonging to one context group. If a foreign entity, e.g., a

test image Io, is inserted into this tensor at any location, say

l, it will disturb entries at and around index l in the vector

R. The amount of disturbance will be proportional to the

dissimilarity between Io and the members of that context

group.
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Figure 4. Comparison of rank-1 tucker decomposition with visu-

ally similar and dissimilar image inserted into a tensor; Blue curve:

original tucker decomposition vector R, Green curve: New tucker

decomposition vector R′ with an image visually similar to images

of the context group inserted into context tensor, Red curve: New

decomposition vector R′ with visually dissimilar image inserted

into tensor.

To estimate association of a test image Io with a context

group, it is inserted at locations separated by a fixed interval,

say L, in the corresponding context tensor Tc by swapping

images at those locations for Io. New vector R′ is computed

through tucker decomposition. The difference between R
and R′ is an inverse measure of the association of Io with

the context represented by the context group corresponding

to Tc. We estimate conditional probability distribution for

Io given every possible context group as

P (Tc|Io) =
exp(−(R′ −R)TΓ−1(R′ −R))

√

2π|Γ |
(3)

Γ is covariance matrix, assumed to be of form γI where

I is identity matrix and γ can be selected empirically over

some held-out portion of data. This probability distribution

encodes the association of the test image Io with available

context groups, in turn encoding its association with sets of

distinctive words of each group.

As mentioned earlier, words occurring too frequently are

given less weight in the process of forming context groups.

To service such words, we also form a ‘general’ context

group consisting of all training images. Each test image

Io is assigned the same conditional probability, given ‘gen-

eral’ context group, and P (Tc|Io) is renormalized so that it

sums to 1. Let α denote the renormalization weight which

is empirically estimated by cross-validation over a held-out

portion of training data.

Note that no visual features have been employed in the

3-step process. Instead, a comprehensive estimate of con-

text in terms of a probability distribution is obtained using

the textual labels of the training data and processing of raw

images through tucker decomposition.

5. Context-sensitive Automatic Image Annota-

tion

In this section, we will present our strategy for automatic

image annotation that incorporates context information, es-

timated as distribution P (Tc|Io) in section 4.

Our annotation model is inspired by relevance models,

used in machine translation to estimate joint probability

between words of two different languages. The proposed

model induces context-dependence in a weighted expecta-

tion procedure to find joint probability of vocabulary words

and visual features of images.

5.1. Mathematical Model

Each image is assumed to be made up of A number

of visual units, i.e., r = {r1, r2, ..., rA}. These visual

units are formed by dividing each image through a grid

of fixed size. Color and texture qualities of each section

of the grid form the representative vector for that section.

The textual description of the image is represented by set

w = {w1, w2, .., wB} such that each wb ∈ V where V is

the vocabulary set. Size of set w, say B, is assumed to be

the same for all test images.

Context information is incorporated by assuming that

there exists a set of all context categories, i.e., T such that

each Tc ∈ T corresponds to one context group and, in turn,

one context tensor (defined in sections 4.1 and 4.2). Each

training image I belongs to one of these Tc. Every test im-

age Io has certain conditional probability distribution over

all Tc, denoted by P (Tc|Io). The context is encoded in

P (Tc|Io). Tariq et al. presented a similar case for context

estimation by scene analysis[27]. Therefore, we employ

similar relevance model weighted by context, i.e., P (Tc|Io),
to estimate joint probability of words and visual units of Io.

1. pick a context category Tc ∈ T with probability condi-

tioned over the test image Io, i.e., P (Tc|Io)

2. pick image I from training set I with probability

P (I|Tc)

3. for a = 1, 2, ...., A

(a) pick a visual unit ra from conditional probability

PR(.|I)

4. for b = 1, 2, ...., B

(a) pick a word wb from conditional probability

PVTc
(.|I)



The goal of the system is to maximize joint probability of r

and w conditioned over Io, given by following equation.

P (w, r|Io) =
∑

Tc∈T

P (Tc|Io)
∑

I∈I

P (I|Tc)
∏

b∈B

PVTc

(wb|I)
∏

a∈A

PR(ra|I)

(4)

Image description of training image I is assumed to have

multiple Bernoulli distribution over the vocabulary set of

the context group it belongs to, i.e., VTc
. Thus, PVTc

(wb|I)
is wb-th component of this distribution.

PVTc

(wb|I) =
µδwb

+Nwbc

µ+NTc

(5)

Nwbc denotes the number of members of the context group

Tc with word wb in their descriptions. NTc
is the total num-

ber of members of Tc. δwb
is set to 1 if description of image

I has word wb in it. Otherwise, It is set to 0. µ is an empir-

ically selected constant.

Section 4.3 explains the estimation of P (Tc|Io) by equa-

tion 3 while P (I|Tc) is estimated as the following step func-

tion.

P (I|Tc) =

{

1/NTc
, if I ∈ Tc

0, otherwise
(6)

PR(ra|I) is the density estimate for generating visual

unit ra given a training image I where ra is a visual unit of

interest, i.e., it belongs to the test image Io. Gaussian kernel

is employed for this density estimate. If training image I is

assumed to be made up of set of visual units {i1, i2, ..., iA},

then

PR(ra|I) =
exp(−(ra − ia)

TΣ−1(ra − ia))
√

2π|Σ|
(7)

This equation uses Gaussian density kernel with covariance

matrix Σ which can be taken as βI for convenience where

I is the identity matrix. β determines smoothness around

point ia and can be empirically selected on held-out set of

data. Note that this estimate signifies importance of spatial

coherence between I and Io as it compares the visual units

at the same grid location, indicated by subscript a.

This model incorporates estimated context information

for each test image Io in the form of P (Tc|Io) and our ex-

periments show that this information improves the perfor-

mance of the annotation system.

6. Implications of Tensor Decomposition

In this section, we present a brief analysis of tensor for-

mation and decomposition along with the complexity of the

decomposition process and its implications regarding con-

text estimation for images.

The idea of tensor formation and decomposition has

been widely explored in text mining and video analysis

communities. Tensor provides a comprehensive representa-

tion for videos such that each frame of the video is a ‘slice’

in a tensor. Two out of three dimensions are representative

of frame width and height while the third dimension rep-

resents time. Thus, tensors are highly suited for temporal

analysis of videos. Our contribution in this work is to come

up with a comprehensive tensor formation strategy for im-

ages which have no temporal connection to each other. In

our case, the third dimension is used for image indices only.

Tucker decomposition of three-way tensors is a higher-

order extension of Principal Component Analysis (PCA) of

matrices[13]. It is a rank based estimation which results in

the decomposition of the tensor in three matrices and one

core tensor where size of the core tensor is pre-specified.

Assume that the three dimensions represent words, authors

and keywords for a tensor made up of documents with

available authorship and keywords information. Three de-

composed matrices U, V and W represent association of

words with word-groups, authors with author-groups and

keywords with keyword-groups, respectively. The num-

ber of word-groups, author-groups and keyword-groups are

specified by the size of core tensor. Core tensor encodes

how groups relate to each other.
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Figure 5. Tucker decomposition: U = words ×

word-groups, V = authors × author-groups,W =

keywords × keyword-groups, R1, R2 and R3 represent word,

author and keyword groups

The proposed context estimation strategy employs rank-

1 decomposition, i.e., core tensor is a scalar and matrices

are now vectors. Idea is that the system already knows that
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Figure 6. Rank-1 Tucker decomposition: S is a scalar, P,Q and R

are vectors, R = Image-indices×1 where 1 represent the single

context group represented by tensor.

all images in one tensor belong to one group, based on the



similarity in their textual descriptions. This type of group

information is potentially useful in the final task of the pro-

posed system, i.e., image annotation. The purpose of tucker

decomposition is to find out how individual elements of one

group relate to the overall group so that the system may

determine if some entity belongs to the group or not. Ide-

ally, there should be little variation in the vector along the

dimension of indices of images as all images are similar

to each other. If a foreign entity is plugged in, this vector

is perturbed. The amount of perturbation provides an esti-

mate of how much similar/dissimilar the foreign entity is,

to the group. If foreign entity is the test image, as in sec-

tion 4.3, this process estimates how much the test image is

similar/dissimilar to the context group at hand.

6.1. Computational Complexity

Computational complexity of the proposed context es-

timation scheme depends on the strategy used for Tucker

decomposition. Popular existing algorithms for Tucker de-

composition, such as higher order orthogonal iterations

(HOOI)[5], are based on alternating least square (ALS).

Phan et al. proposed a method, computationally less ex-

pensive than HOOI[24]. ALS method is not guaranteed

to converge to a global optimum or a stationary point, but

if it converges under certain conditions, then it has lo-

cal linear convergence rate[2]. Alternatively, differential-

geometric Newton method provides convergence guarantee

with quadratic local convergence rate and per iteration cost

of O(H3D3) for a tensor T ∈ R
H×H×H and core tensor

S ∈ R
D×D×D[11].

7. Evaluation

In this section, we will present the effects of incor-

poration of context, estimated by the proposed feature-

independent strategy, in relevance model based automatic

image annotation process.

7.1. Datasets

We used two popular image annotation datasets, i.e.,

IAPR-TC 12 and ESP game, to evaluate our system. IAPR

dataset consists 19, 846 images taken by tourists and each

image is described carefully in a few sentences. The de-

scriptions of images are processed by TreeTagger3 for tok-

enization, lemmatization and part-of-speech tagging of the

tokens. Frequently occurring nouns are picked to form vo-

cabulary set. ESP game dataset consists of images labeled

by players of ESP game. A smaller subset of size 21, 844
has been popularly used to test different image annotation

systems. We also experimented with the same subset. The

description for each image is already in the form of tokens/

words which are used to form the vocabulary set.

3http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/

We used the same split of data in training and test sets

(90% for training, 10% for test) for both datasets as used

by other image annotation systems. IAPR and ESP datasets

have been generally tested over vocabulary sets of 291 and

269 most frequently occurring words, respectively, by vari-

ous image annotation systems. In our system, training data

is split into context groups and each group provides evi-

dence for the distinctive words of descriptions of images in

that group. Thus, the vocabulary varies from collection of

samples of one context group to the other, instead of being

fixed to a specific number for all data. But we made sure

that approximately the same number of unique words (291
for IAPR and 269 for ESP) appear in the final output, i.e.,

annotations predicted for test images, by adjusting parame-

ters of our system. In this paper, results have been reported

over these unique words to keep them comparable to those

of other systems. The overall vocabulary sets are of lengths

1002 and 2032 for IAPR and ESP game datasets, respec-

tively.

Our system, in the first stage, forms groups of training

images on the basis of similarity between their textual de-

scriptions, i.e., 595 context groups for IAPR and 637 con-

text groups for ESP game. Too small groups are dropped as

they correspond to infrequently occurring words out of the

overall vocabulary set. A training image is pruned out of

its context group if the distance of its corresponding entry

in context signature (R), from mean of R, is more than the

standard deviation of R. Such images fail the condition of

visual similarity with their context group. All test images

which are sufficiently close to at least one context group are

part of the test set.

7.2. Image Representation

We employed a grid-based representation of images in

the automatic image annotation process. This representa-

tion requires division of each image through a grid of fixed

size. A grid of 5 × 6 is used in our experiments. Each grid

section is assigned a vector representing color and texture

qualities of that specific portion of the image. In our ex-

periments, this vector is of length 46 and contains 18 color

features (mean and std. deviation of each channel of RGB,

LUV and LAB color-spaces), 12 texture features (Gabor en-

ergy computed over 3 scales and 4 orientations ), 4 bin HoG

and discrete cosine transform coefficients. This set of im-

age features has been commonly used by many previously

proposed image annotation systems[16, 6]. We observed

that increasing the grid size beyond 5× 6 does not improve

performance of the system.

Guillaumin et al. employed a combination of holistic and

local visual features and reported improvement in the per-

formance of their system[9]. More recently, Chen et al. and

Verma et al. used the same features in their systems [3, 29].

We also ran additional experiments with this combination



of feature set and observed performance improvement.

Note that these features are used in the relevance model

based image annotation process and have nothing to do with

the context estimation procedure. Initial stage of our system

is feature-independent, estimating context information for

test images by processing raw images only.

7.3. Results

In general, image annotation systems are used to produce

as many annotations for each test image Io as is the average

number of words per image in training data. Commonly

used evaluation parameters are mean values of precision

and recall per word and number of words with positive re-

call (N+). We used the same evaluation criterion. Tables 1

%age mean %age mean

Precision Recall N+

CRM[16] 21 15 214

MBRM[6] 21 14 186

BS-CRM[22] 22 24 250

JEC[20] 25 16 196

Lasso[20] 26 16 199

HGDM [18] 29 18 –

AP[25] 28 26 –

TagProp-ML[9] 48 25 227

TagProp[9] 46 35 266

FastTag[3] 47 26 280

2PKNN-ML[29] 54 37 278

context-RM 56 24 224

context-RM-B 61 24 242

Table 1. Performance evaluation for IAPR-TC-12 dataset

%age mean %age mean

Precision Recall N+

CRM[16] 29 19 227

MBRM[6] 21 17 218

JEC[20] 23 19 227

Lasso[20] 22 18 225

AP[25] 24 24 –

TagProp-ML[9] 49 20 213

TagProp[9] 39 27 239

FastTag[3] 46 22 247

2PKNN-ML[29] 53 27 252

context-RM 55 21 226

context-RM-B 61 20 234

Table 2. Performance evaluation for ESP-game dataset

and 2 show performance comparison of our system against

many previously proposed strategies over IAPR-TC 12 and

ESP datasets, respectively. Two variations of our system

have been thoroughly tested. Two notations, i.e., context-

RM and context-RM-b, represent settings in which our

system employs grid-based visual features and features pre-

sented by Guillaumin et al., respectively, for weighted ex-

pectation based annotation process. Table 3 presents sam-

ples of words with very high and very low recall for both

datasets.

7.4. Observations

As explained in section 2, different strategies have been

previously explored for the task of image annotation while

each strategy has its pros and cons. In the tables 1 and 2,

CRM and MBRM refer to two relevance model based an-

notation techniques which are very efficient computation-

ally and perform moderately well. Our annotation strategy

is also based on relevance models but incorporates the con-

text estimated through our novel feature-independent strat-

egy. Our annotation prediction framework performs much

better than other relevance model based systems. TagProp,

FastTag and 2PKNN-ML refer to a few iterative optimiza-

tion or nearest-neighbor type frameworks which are com-

putationally quite expensive but predict annotations more

accurately. Our strategy performs better than such systems

in terms of precision of predicted annotations. Performance

of our system is comparable in terms of recall of predicted

annotations to FastTag and TagProp-ML. The bulk of the

computational complexity lies in the pre-processing stage

of our system which involves context estimation. The rest

of our system is computationally efficient. Our strategy

also beats greedy algorithms based systems such as JEC and

Lasso[20].

8. Conclusion

We proposed a novel strategy for feature-independent
context estimation for images, employing tensor decompo-
sition. Tensors have been previously suggested as a natural
representation scheme for video processing. Our contribu-
tion is a unique solution for forming tensors from individual
images in a way that each tensor encodes useful information
regarding context of images. The proposed context estima-
tion strategy is feature-independent. We employed the esti-
mated context in the process of automatic image annotation,
a problem that usually suffers from semantic gap between
visual features and textual descriptions. The performance of
our annotation strategy provides evidence of the effective-
ness of our context estimation process. In future, we intend
to explore tensor decomposition, with rank more than one,
for context group formation as well as context estimation.
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