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Abstract

The use of Convolutional Neural Networks (CNNs) as a feature learning method for Human Activity Recognition (HAR) is 

becoming more and more common. Unlike conventional machine learning methods, which require domain-specific exper-

tise, CNNs can extract features automatically. On the other hand, CNNs require a training phase, making them prone to the 

cold-start problem. In this work, a case study is presented where the use of a pre-trained CNN feature extractor is evaluated 

under realistic conditions. The case study consists of two main steps: (1) different topologies and parameters are assessed 

to identify the best candidate models for HAR, thus obtaining a pre-trained CNN model. The pre-trained model (2) is then 

employed as feature extractor evaluating its use with a large scale real-world dataset. Two CNN applications were considered: 

Inertial Measurement Unit (IMU) and audio based HAR. For the IMU data, balanced accuracy was 91.98% on the UCI-HAR 

dataset, and 67.51% on the real-world Extrasensory dataset. For the audio data, the balanced accuracy was 92.30% on the 

DCASE 2017 dataset, and 35.24% on the Extrasensory dataset.

Keywords Convolutional Neural Networks · Deep learning · Human Activity Recognition · Free-living

1 Introduction

In recent years, research in Machine Learning (ML) has 

gone through some of its biggest advancements. In particu-

lar, Deep Learning (DL) methods have brought significant This research has received funding under the ACROSSING 
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improvements in several fields where ML models are cur-

rently employed. The first applications of DL methods have 

been in computer vision and natural language processing 

(LeCun et al. 2015). The accuracy improvement brought by 

such methods has caused an increasing popularity; nonethe-

less, their application to Human Activity Recognition (HAR) 

is relatively new. Consequently, the exploration of use of DL 

in HAR provides scope for significant contribution. There 

is no general definition of DL, making it difficult to classify 

HAR methods in this perspective. In LeCun et al. (2015), 

the authors highlighted one of the main characteristics dis-

tinguishing DL methods with respect to conventional ML: 

i.e., the capacity of Convolutional Neural Network (CNNs) 

of learning data representation in an automatic fashion.

Studies on HAR have been undertaken over the last 

two decades (Bulling et al. 2014). Conventional ML and 

the use of Human Crafted Features (HCF) for HAR have 

been deeply investigated, for instance in Janidarmian et al. 

(2017); Espinilla et al. (2018). Those studies evaluated fea-

ture selection strategies for HAR, and helped to identify 

which features are more relevant depending on the set of 

target activities, type of sensors, and sensor’s location where 

relevant. Recent studies have shown that CNN-based auto-

matic feature extraction can provide results comparable to 

the best known HCF case (Ronao and Cho 2016). Neverthe-

less, most studies have focused on comparing the HCF and 

the CNN case based on final accuracy of a trained classi-

fier, for instance (Li et al. 2018). Moreover, in most cases, 

HAR methods have been evaluated using data collected 

in controlled environments, i.e., with data that are possi-

bly under-representing the main challenges that real-world 

deployment introduces (Vaizman et al. 2017). In contrast, 

this work aims at evaluating CNNs as a feature extractor in 

a real-world environment. This article is an extended ver-

sion of the work published in Cruciani et al. (2019b). In 

our previous work, we compared the performances of using 

HCF and CNN automatic features, and explored the effect 

of the main hyperparameters on the feature learning abilities 

of CNNs. This work aims at providing a real-world evalu-

ation of CNN as feature extractors for HAR, considering 

two different sensor modalities: Inertial Measurement Unit 

(IMU)-based and audio based. This paper makes the follow-

ing contributions:

1. An evaluation of the best identified CNN architecture 

for IMU and audio based HAR is performed using data 

collected in controlled conditions.

2. An evaluation of the identified CNN architecture is per-

formed on a large real-world publicly available dataset.

The remainder of this paper is structured as follows. Sec-

tion 2 provides an overview of related work, highlighting 

the contribution of this study in the context of past stud-

ies. Section 3 describes the proposed case study employing 

CNN-based feature extractors for HAR. Section 4 describes 

the experiments undertaken and the evaluation methodology. 

Results and discussion are reported in Sects. 5 and 6 respec-

tively. Finally, conclusions are drawn in Sect. 7.

2  Related work

The generic Activity Recognition Chain (ARC) (Bulling 

et al. 2014) for conventional supervised ML approaches, 

as depicted in Fig. 1, consists of four steps leading from 

raw data to activity classification; namely: pre-processing, 

segmentation, feature extraction, and classification. Some 

DL methods, as in the case of CNNs, allow classification 

directly with pre-processed segmented raw-data, without 

requiring an explicit step for feature extraction (LeCun et al. 

2015). Feature extraction, in the case of CNNs, is performed 

through the convolution of the input signal with a kernel 

(also referred to as filter) (Ordóñez and Roggen 2016). The 

result of the convolution operation is known as feature map 

(Ordóñez and Roggen 2016). The ability of CNNs to learn 

features automatically has a twofold consequence. On the 

one hand, it simplifies the ARC by automating a step that 

typically requires significant domain-specific expertise to 

identify a suitable feature set (LeCun et al. 2015). This pro-

cess is usually accomplished by applying a feature selection 

strategy: starting from the largest possible set of features, 

to then reduce the feature set to the ones providing better 

discrimination between target classes; whereas for CNNs 

none of these steps are required. On the other hand, the use 

of CNNs moves the feature extraction step to within the clas-

sifier model, meaning that a CNNs feature extractor requires 

a training phase in order to generate suitable features, expos-

ing the approach to the cold-start problem. This drawback of 

using CNNs has often been addressed in computer vision, 

where it is common to use pre-trained CNN models for fea-

ture extraction, for instance in Rajaraman et al. (2018).

Figure 2 illustrates the difference between the HCF case 

and the use of CNN for feature extraction in the case of a 

Multi-Layer Perceptron (MLP) classifier. The MLP clas-

sifier consists of a series of dense fully connected layers, 

Fig. 1  The Activity Recognition Chain (ARC) in conventional ML approaches. Adapted from Bulling et al. (2014)
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leading to an output layer with the same number of nodes 

as the number of target classes. In the conventional case 

(a), the MLP is fed with an input consisting of a vector of 

HCF. In the CNN case (b), a series of convolutional lay-

ers accomplish the step of feature extraction (Baldominos 

et al. 2019).

The convolutional layers composing the architecture 

can be optionally followed by a max-pooling operation, 

with the goal of down-sampling the data representation, 

thus reducing the size of the feature map (Baldominos 

et al. 2019). After the series of convolutional layers, the 

output of last convolutional layer is usually flattened into a 

1D vector, feeding the MLP as in the HCF case. Convolu-

tional layers are typically implemented as 2D convolution, 

as in image (and sometimes) audio processing; whereas 1D 

(or temporal) convolution is more common for IMU sig-

nals (Moya Rueda et al. 2018; Saeed et al. 2018). Figure 3 

visualizes an example of temporal convolution where the 

kernel size is 2.

Rectified Linear Unit (ReLU) is among the most common 

activation function for convolutional layers, whereas, for 

connecting the last dense layer with the output layer, Soft-

max is typically used in multi-class classification problems 

(i.e., when output classes are mutually exclusive) (Ordóñez 

and Roggen 2016). Other activation functions such as sig-

moid can be used in the case of multi-label classification 

(i.e., when more than one output node can be active at the 

same time e.g., ‘sitting’ and ‘on a bus’) (Huang et al. 2019).

In this work, two main applications of CNNs are consid-

ered, both with application to HAR, namely: IMU-based, 

and audio-based HAR. To shorten the notation of the CNN 

architectures, we use n-CNN where n is the number of con-

volutional layers, with k indicating the size of the kernel, and 

f denoting the number of filters (or kernels).

2.1  IMU‑based methods

IMU are among the most investigated sensor modalities to 

perform HAR (Bulling et al. 2014). In contrast to vision-

based systems, for instance, inertial sensors do not pose pri-

vacy issues, are available on-board all modern smartphones, 

and are more energy efficient than other sensors such as the 

GPS.

HCFs for IMU-based methods have been deeply investi-

gated in the past; with studies that identified the most rel-

evant features for a range of specific settings. In particular, 

these studies investigated the best HCF sets, depending on 

the set of target activities, and sensor location (Morales 

and Akopian 2017; Janidarmian et al. 2017; Espinilla et al. 

2018). With DL becoming more popular, recent studies have 

started to analyze the case of DL in comparison with con-

ventional ML (Li et al. 2018; Baldominos et al. 2019). In 

these cases, the comparison mostly focused on the evalua-

tion of the final accuracy of models, using different feature 

learning strategies, including HCF and CNNs. In Ronao and 

Cho (2016), a more detailed analysis of CNNs was provided 

for IMU-based HAR. The authors analyzed the impact of the 

main hyperparameters such as, the number of convolutional 

layers, and the kernel size used for the convolution. Com-

pared to Ronao and Cho (2016) and Cruciani et al. (2019b), 

Fig. 2  Feature extraction step in the case of HCF and with CNN automatic features. Adapted from Cruciani et al. (2019b)

Fig. 3  Feature map obtained using 1D convolution and kernel size of 

2. Adapted from Baldominos et al. (2019)
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the current work has evaluated CNNs on a more challenging 

set of target activities (including a NULL class), and evalu-

ated a pre-trained feature extractor in realistic conditions.

2.2  Audio‑based methods

Audio-based event recognition has received significant 

research attention in the last ten years and many public 

datasets have been released (Gemmeke et al. 2017; Mesaros 

et al. 2017) to help researchers benchmark their algorithms. 

The low cost of microphone sensors and the high processing 

power of single-board computers has increased the inter-

est for on-device processing for various applications, spe-

cifically for real-time remote tracking of patients from their 

health care providers (Alsina-Pagès et al. 2017).

One of the fundamental problems in the audio-based 

event recognition is the feature extraction. Many types of 

low-level features such as zero-crossing rate, band-energy 

ratio, spectral roll-off, spectral flux, spectral centroid, spec-

tral contrast, mel-frequency cepstral coefficients (MFCCs) 

and gammatone frequency cepstral coefficients are com-

monly used in the literature (Peltonen et al. 2002; Eronen 

et al. 2006; Perttunen et al. 2008; Valero and Alias 2012; Xia 

et al. 2018). Most of the aforementioned features work well 

for specific datasets but may fail on others. For instance, the 

MFCCs provide good classification results for the speech 

recognition task, but can have poor performance when 

classifying unstructured, noisy data, such as environmen-

tal sounds. The main reason is that the MFCCs convert the 

input signal to the mel-scale, using a log operation on the 

power spectrum, which relates to how the human ear per-

ceives sounds (Zhao and Wang 2013). Therefore, there could 

be frequencies that are not emphasized, which are important 

for environmental sound.

Recently, deep CNNs have been successful in many tasks, 

such as speech recognition (Abdel-Hamid et al. 2014), audio 

source separation (Grais et al. 2018), environmental sound 

recognition (Morfi and Stowell 2018) and end-to-end poly-

phonic event detection (Çakir and Virtanen 2018). The fun-

damental difficulty of environmental sound recognition is 

that the input signal is highly variable due to different envi-

ronments (indoor, outdoor, vehicle) and acoustic conditions 

(echo, reverb).

2.3  Contribution of this work

With respect to past studies using CNNs, this work pre-

sents the following contributions. Firstly, two example 

cases, IMU-based and audio-based methods are consid-

ered. Although, other studies already compared different 

feature learning methods including CNNs, the comparison 

is typically limited to the assessment of final accuracy per-

formance in controlled conditions. In this study the best 

candidate CNN architectures for audio and IMU-based HAR 

are evaluated under realistic conditions, using a large real-

world public dataset.

3  Case study

The current work aimed at experimenting the use of CNN 

with a twofold goal. The first goal of this study was to ana-

lyze the quality of CNN automatically extracted features, 

with different hyperparameters and topologies. The second 

goal was to explore the use of a pre-trained CNN feature 

extractor on a real-world dataset for HAR. Such an approach 

benefits from the CNN ability to automate feature extraction, 

while at the same time avoiding the cold-start problem.

In our previous work (Cruciani et al. 2019b), a case study 

was proposed composed of two steps, as depicted in Fig. 4. 

In the first step (Fig. 4a), a CNN feature extractor is trained. 

In this step, the effect of different topologies and hyperpa-

rameters combinations is evaluated. This analysis identifies 

the best performing models for HAR. In the second step, the 

best performing CNN model, trained in the previous step, 

is used only as feature extractor, converting raw-data into a 

suitable input vector for a second classifier model. Weights 

of the CNN networks are frozen in the first step, and the 

CNN model is used by taking the feature vector produced by 

the flatten layer after the series of convolutional operations. 

By taking the output of the flatten layer, the feature vector 

obtained can be used as a representation of raw data in a 

different context, following a paradigm similar to transfer 

learning. Features generated by this pre-trained classifier 

are used to train the second model, as presented in Fig. 4b. 

Finally, performance of the second model is evaluated, as 

presented in Fig. 4c.

In Cruciani et al. (2019b), some preliminary experiments 

were conducted to compare HCF and CNN; however, the 

scope was limited to the first step of the current case study. 

In this work, we report on the completion of the second step 

in form of an illustrative example on how to use a CNN fea-

ture extractor for HAR, together with some additional results 

and analysis regarding the first step, not present in the pre-

vious work. In the previous work, some basic requirements 

regarding suitable datasets for the case study were identified. 

In particular, it was identified that for the first step the use of 

datasets collected in controlled environments was preferable. 

The nature of such datasets, being collected in controlled 

conditions, does not expose to the risk of noisy labels, that 

may occur when the annotation occurs in uncontrolled con-

ditions. Issues like label noise may affect the comparison 

with HCFs leading to an incorrect evaluation. Consequently, 

two datasets were identified: the UCI-HAR (Anguita et al. 

2013) for the IMU, and the DCASE 2017 (Mesaros et al. 

2017) for the audio, as controlled environment datasets to 
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be used in the first step. The second step of our case study 

aimed at evaluating the use of the pre-trained CNN feature 

extractor, this time, in real-world conditions. Naturally, the 

datasets used in step 1 and step 2 must have similar char-

acteristics: with input data of the same nature, and similar 

target activities (although the set of target activities may 

differ between the two cases).

In implementing our case study for the IMU sensor, a clas-

sifier of different nature (i.e., not CNN based) was chosen as 

second model for the IMU. A Random Forest (RF) model 

was identified as a suitable model, using CNN extracted fea-

tures instead of HCF. RF were proven to be among the best 

classification methods for IMU-based HAR (Baldominos 

et al. 2019), and are commonly used for HAR. Based on these 

findings an RF model was used, although any supervised 

classifier could be used in this step, and the choice of RF sim-

ply aims at providing an illustrative example. Regarding the 

audio modality, a 1D CNN was used for our case study. For 

both the IMU and audio case, evaluation of the models was 

performed using the Exatrasensory dataset (Vaizman et al. 

2017), providing the challenging case of a real-world dataset.

4  Experiment

The experiment was conducted following the two steps pro-

posed in the case study:

1. Comparing the performance of different CNN architec-

tures and hyperparameters. As result of the comparison, 

two CNN feature extractors are trained: one for the IMU 

and one for the audio case.

2. A second model is trained using features extracted with 

the CNN pre-trained in step 1. Finally, evaluation of the 

second model using CNN features is performed in real-

istic conditions.

The following sections provide details of the experimental 

methods for each of these steps.

4.1  Step 1: Comparing CNN architectures

Using the two datasets identified for the IMU and audio 

cases, a number of CNN structures and hyperparameters 

were evaluated, in particular:

1. The number of convolutional layers

2. The kernel size used for the convolution

3. The number of filters

4.1.1  Evaluation methodology

The evaluation of hyperparameters and CNN architectures 

was performed considering that the more complex the 

model is, the higher are the chances of overfitting, particu-

larly when training with small size datasets, or with data not 

universally representative of the target activities. Therefore, 

the evaluation of different models corresponding to different 

combinations of the aforementioned hyperparameters was 

undertaken starting from a simple model; and then gradually 

increasing the complexity in search of an optimal trade-off 

between accuracy and model complexity. The comparison 

evaluated the effect of the number of layers of convolution 

n, keeping the kernel size k fixed to k = 2 for the 1D convo-

lution, and a relatively small number of filters ( f = 12 ) in 

the first layer. The best combination was identified before 

proceeding to the next exploration phases: i.e., maintaining 

the number of convolutional layers n fixed, while increasing 

Fig. 4  The proposed case 

study: a the CNN-based feature 

extractor is trained on a dataset 

and obtained model weights 

are frozen, b automatic features 

extracted using the pre-trained 

CNN feature extractor are used 

to train a second classifier on a 

different dataset; finally c, test-

ing of the second model allows 

the evaluation of the final clas-

sification accuracy on the new 

dataset. Adapted from Cruciani 

et al. (2019b)
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the kernel size k = [2, 4, 8, 16, 32, 64] , and, finally evaluating 

use of multiple filters f = [12, 24, 48, 96, 128].

Evaluation using the accuracy measured on the final 

model was complemented by means of visualization of 

the features produced. For visualization purposes, Prin-

cipal Component Analysis (PCA) was used to reduce the 

dimension of the feature space to the first three principal 

components, and generating two plots for each configura-

tion showing the 1st and 2nd, and the 1st and 3rd compo-

nents, respectively. As will be described in Sects. 5 and 

6, the plot visualization helped with interpretation of the 

results during the exploration of the different combinations 

of hyperparameters.

The best identified models were then used as feature 

extractor for step 2 of the case study.

4.1.2  IMU case

As previously mentioned, the UCI-HAR dataset was used for 

the IMU case, performing a comparison similar to Ronao and 

Cho (2016). Compared to Ronao and Cho (2016) and our 

previous work (Cruciani et al. 2019b), in this work experi-

ments were conducted using the updated version of the same 

dataset (Reyes-Ortiz et al. 2016), which includes labels also 

for postural transitions. Samples corresponding to transitions 

were used to define a more challenging target activity set, with 

transitions considered as the NULL class. This version of the 

dataset is publicly available.1 The dataset includes tri-axial 

accelerometer and gyroscope signals recorded using a smart-

phone (Samsung Galaxy S2). The dataset also provides a set 

of 561 HCFs extracted from the accelerometer and gyroscope 

signals. This set of HCFs was used in our previous experiment 

comparing CNN and HCF features. The features available 

with the dataset were extracted using a window size of 128 

samples (corresponding to 2.56 s with the 50 Hz sampling 

rate). The same segmentation was kept for this experiment. In 

this configuration the input layer of the CNN takes a 128 × 6 

input shape (corresponding to the 3 channels X, Y, Z of the 

accelerometer and gyroscope signals). The dataset provides a 

train-test partition, with 21 of the 30 subjects as training set, 

and the remaining 9 subjects for testing purposes. To reduce 

the probability of overfitting, the 21 training subjects were 

divided into two groups 18 for training and 3 for validation 

during training. Evaluation of different configurations was 

made using Adam (Kingma and Ba 2015) and Stochastic 

Gradient Descent (SGD) optimizers, with different number 

of layers, kernel sizes, and number of filters. For final train-

ing of the CNN feature extractor, the SGD optimizer was 

used. Compared to the Adam optimizer, SGD provides, in 

some cases, better generalization on unseen data (Keskar and 

Socher 2017), and that is also for the case of IMU data for 

HAR (Cruciani et al. 2019a). The training stops when loss 

on the validation set stops decreasing. SGD typically causes 

more oscillations during the training process, thus, requir-

ing a higher number of epochs to converge. Despite a slower 

training process, SGD provides two main advantages. Firstly, 

the stochastic approach increases the chances to improve 

over local minima solutions. Secondly, this reduces the risk 

of stopping the training process too early, ensuring that the 

model has gone through a higher number of epochs. The final 

training of the CNN feature extractor was performed on a high 

number of epochs ( ≥ 10000 ) keeping a high patience (1000 

epochs) and saving only best weights minimizing the loss on 

the validation set. On top of using a different optimizer, some 

additional variants were introduced in the final CNN model 

for feature extraction. These changes were made consider-

ing the different nature of the two datasets. In the UCI-HAR 

dataset, sensor location was constrained to the waist, whereas 

in the Extrasensory dataset it is uncontrolled. Consequently, 

two more channels (the 3D magnitude of the accelerometer 

and gyroscope) were added as input. This provided a 128 × 8 

input to the CNN, introducing two rotation invariant chan-

nels. On top of that, accelerometer and gyroscope data were 

recorded at different sampling rates in the two datasets: 50 

Hz for the UCI-HAR, and 40 Hz for the Extrasensory. In the 

final training, UCI-HAR data were down-sampled to 40 Hz 

in order to train the CNN feature extractor in a compatible 

manner with the Extrasensory data. At this stage, the identi-

fied optimal kernel size k = 32 (identified in the first step) was 

also adjusted to k = 24 , in order to maintain the size of the 

filter in a comparable time length (about 0.5s) while switch-

ing from a 50 to 40 Hz sampling rate. This configuration was 

used to train the final version of the CNN feature extractor for 

the IMU on the UCI-HAR dataset as a 3-CNN with k = 24 

and f = 24 , where f is the number of filters used in the first 

layer. In the final structure for the second and third layers, 48 

and 96 filters were used respectively; doubling the number 

of filters after each convolution, while using max-pooling to 

maintain the feature map to an equivalent size. The weights of 

the CNN were frozen at this stage. The CNN feature extractor 

obtained was used to process accelerometer and gyroscope 

data from the Extrasensory. Since the goal of our case study 

was to reuse the obtained pre-trained classifier, the use of 

dropout was introduced for model training at this stage, in an 

attempt of further reducing overfitting phenomena (Srivastava 

et al. 2014). A dropout layer (with rate set to 0.5) was added 

after each convolutional layer.

4.1.3  Audio case

The performance of the CNNs was evaluated on a large-

scale dataset (Mesaros et  al. 2017). The DCASE 2017 

1 http://archi ve.ics.uci.edu/ml/datas ets/Smart phone -Based +Recog 

nitio n+of+Human +Activ ities +and+Postu ral+Trans ition s.

http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
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development dataset consists of recordings from various 

acoustic scenes, all having distinct recording locations. For 

each recording location, 3–5 minute long audio recordings 

were captured. The original recordings were then split into 

segments with a length of 10 s. The total number of record-

ings were 4680, sampled at 44.1 kHz and were split into 

four folds (75/25 train/validation split). Given that our final 

goal was to train the network architectures on the DCASE 

2017 development dataset and test it on the Extrasensory 

dataset (Vaizman et al. 2017), the MFCCs were extracted. 

The MFCCs were selected given that they are the most com-

mon features used in the fields of speech recognition and 

environmental sound recognition, and also since they are 

provided by the Extrasensory authors. The raw audio was not 

provided due to privacy issues. For the case of the MFCC 

feature extraction, the default sampling rate (44.1 kHz) of 

the DCASE dataset was used.

The number of MFCCs was 13 (including the 0th coef-

ficient), the Fast Fourier Transform (FFT) window size was 

2048, with a hop length of 1024 (50% overlap). This resulted 

in a 13 × 431 matrix per recording. Additionally, the mean 

and standard deviation of the MFCCs were calculated for 

each recording, resulting in a 13 × 1 vector. The main rea-

son for selecting the aforementioned FFT window param-

eters, was that to match the same features extracted for the 

Extrasensory dataset. Therefore, a 1D CNN was used as the 

core architecture. The architecture was kept simple, based 

on the nature of the input data (mean and standard devia-

tion of each MFCC). Three 1D convolutional layers were 

used, each followed by a max-pooling operation. The first 

layer had f = 32 filters, the second 48 and the third 120. 

The kernel size was set to k = 2 . Each convolutional layer 

used the ReLU (Nair and Hinton 2010) activation function 

and the Adam optimizer was used, with an initial learning 

rate of 0.01. The network was set to train for 100 epochs 

and an early-stopping function was set that would stop the 

training if the validation loss was not improved after seven 

consecutive epochs. As with the IMU sensor, the weights of 

the CNN were frozen after the last max-pooling operation.

For these experiments two cases were considered. The 

first one has the aforementioned filter sizes and for the sec-

ond case, we set the filter size to be 32 across all convolu-

tional operations.

4.2  Step 2: Evaluation on real‑world data

Evaluation in real-world conditions of the CNN feature 

extractors trained in the previous step was conducted using 

the Extrasensory dataset (Vaizman et al. 2017), including 

data from the smartphone inertial sensors (accelerometer 

and gyroscope) and audio recorded with the embedded 

microphone.

4.2.1  IMU case

Final classification on the Extrasensory was performed 

training an RF model taking auto-CNN features as input. At 

this stage, the optimization of hyperparameters of the RF 

model was performed. First, using a random search, with 

different hyperparameters (including number of estimators, 

max depth of each tree etc.).2 Results were used to nar-

row the search, and to perform a grid search on a restricted 

number of combinations. The resulting model was used to 

simulate use of the pre-trained CNN feature extractor in a 

real-world scenario. This final validation (step 2 of the case 

study) was performed using the 5-fold validation provided 

with the Extrasensory (using 48 participants as test and 12 

as validation).3 The test on the Extrasensory data is much 

more challenging than the UCI-HAR. Given that the Extra-

sensory dataset was recorded in free-living conditions, the 

position of the smartphone is not constrained, which intro-

duces further variability due to users having different habits, 

for instance between users keeping the smartphone in their 

trouser pocket or in their bag. The set of target activities is 

not the same. In this test, the aim was to use the CNN fea-

tures to detect: lying, sitting, walking, running and cycling. 

A set of target activities that allows comparison with Vaiz-

man et al. (2017) on the same dataset. The cycling class is 

typically more problematic, since it has often been reported 

as conflicting with the walking class (Incel et al. 2013). That 

is the case especially for users keeping the smartphone in 

their trouser pocket, where walking and cycling can end 

up generating similar patterns in the signal. The Extrasen-

sory dataset is also representative of multiple devices, and 

mobile operating systems (Android and iOS). Finally, the 

Extrasensory dataset is highly imbalanced; a characteristic 

that is quite common in real-world datasets where balance 

between classes is not guaranteed, with respect to the case, 

for instance, of collecting data following a script. Class 

imbalance was addressed at the training stage by balancing 

the classes using undersampling, i.e., using random elimina-

tion of samples from the majority classes (lying and sitting). 

In the final evaluation, as in Vaizman et al. (2017) balanced 

accuracy, defined as macro-average recall (Pedregosa et al. 

2011), was used to evaluate results, given that simple accu-

racy (ratio between correct and wrong classifications) can 

be biased in highly-imbalanced datasets. Evaluation on the 

Extrasensory was performed using the 5-fold partition pro-

vided with the dataset using 48 participants as training and 

2 https ://sciki t-learn .org/stabl e/modul es/gener ated/sklea rn.ensem ble.

Rando mFore stCla ssifi er.html.
3 Out of the 60 users of the extrasensory dataset, for 3 subjects no 

gyroscope data are available. The test was therefore limited to the 

remaining 57.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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12 as test at each fold. Note, that in both cases (Extrasensory 

and UCI-HAR) the split into train test sets was performed 

using different subjects for training and testing, thus guaran-

teeing no overlap between the training and test set.

4.2.2  Audio case

Regarding the audio data, we focused on the classification 

performance of the 1D CNN network in an “unseen”, during 

training, dataset. The hosts of the Extrasensory dataset pro-

vided the 13 MFCC features extracted per frame. The data-

set, however, contained recordings where the feature vector 

per recording was larger than the (≈ 430) × 13 , as described 

in the original paper (Vaizman 2017). Therefore, we worked 

with the 13 mean and 13 standard deviation MFCCs that 

were extracted per recording.

The target classes used for the experiment were related to 

the location of the user (indoor, outdoor and vehicle environ-

ment). As in the IMU case, it was assumed that the audio 

could be distorted based on the placement of the smart-

phone, e.g., in the pocket of the user. Specifically, regarding 

the indoor environments we selected the classes as seen in 

Table 1.

Since, our goal was to have the same types of classes 

with the pre-trained network on the DCASE 2017 devel-

opment dataset, one could argue that the grouping of the 

Extrasensory classes is quite arbitrary. Nevertheless, since 

we do not have access to raw audio, classes such as ‘AT A 

PARTY’ could be either in an indoor or outdoor environ-

ment. Regarding the Extrasensory dataset, two users out of 

the 60 did not have audio data and were therefore eliminated 

from our experiments. For the evaluation, we used the pro-

vided 5-fold setup.

4.3  Environment

All experiments were conducted using Keras (Chollet et al. 

2015), with TensorFlow (Abadi et al. 2015) as back-end. 

The RF model and evaluation metrics were implemented 

using sklearn (Pedregosa et al. 2011). The python source 

code of the project is available as git repository (Cruciani 

et al. 2019c).

5  Results

This section reports results obtained for the IMU and audio 

case. Results are reported for each case, firstly presenting 

the training of the CNN feature extractor (step 1 of our case 

study), and then presenting results of the tests performed on 

the Extrasensory dataset, evaluating the pre-trained CNN 

features in combination with an RF model, for the IMU 

case, and for the audio case without fine-tuning in realistic 

conditions. Results regarding the first step are complemented 

with some plots, visualizing class separation in the feature 

space, with varying configurations and hyperparameters. 

The visualization provides an additional insight that helped 

to analyse results as reported in the discussion Section.

5.1  IMU results

5.1.1  Step 1: IMU CNN feature extractor

As described in Sect. 4, the evaluation started testing an 

increasing number of layers, while maintaining a small num-

ber of filters, and small kernel size, refer to Fig. 5a. The 

figure shows the plots of the first three principal components 

obtained using PCA on the feature space defined by the fea-

tures produced by the CNN. To improve readability of the 

figure, samples belonging to the lying class were excluded 

from the plot, since points belonging to that class were 

located far from all the other classes. Increasing the number 

layers n, the accuracy of models was observed to increase. 

The 3-CNN and the 4-CNN were the best performing mod-

els, with no significant difference between the two, despite 

the complexity added by the extra layer in the latter case. 

Consequently, the 3-CNN model was used to explore use of 

larger kernel sizes. Figure 5b shows the same plot maintain-

ing the number of layers fixed and increasing the size of the 

kernel. The set of target activities in UCI-HAR consists of: 

lying, sitting, standing, walking, walking upstairs, walking 

downstairs (plus postural transitions). Two groups can be 

identified in this set: static activities (lying, sitting, stand-

ing) and dynamic activities. Larger kernel sizes of 24 and 

32 (corresponding to approximately 0.5 s) were observed 

to improve discrimination between dynamic activities. This 

can be due to the periodic nature of the walking patterns, 

for which larger kernel sizes (able to capture at least the 

duration of a step) generate a more informative feature map, 

compared to smaller kernels.4 Similarly, increasing the num-

ber of filters led to performance improvements up to f = 24 . 

Further increase of the number of filters did not produce 

significant changes.

Figure  6 presents the confusion matrices obtained 

with the updated UCI-HAR dataset including transitions 

as NULL class. Table 2 presents the classification report 

obtained. These results were obtained using the 128 × 8 

model, i.e., taking as input the three axes of accelerometer 

and gyroscope, and the 3D magnitude of the accelerometer 

and gyroscope signal.

4 Note that the window size used for segmentation in the UCI-HAR 

dataset is of 128 samples, in order to capture at least a complete stride 

cycle of two steps (Anguita et al. 2013).
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5.1.2  Step 2: IMU evaluation in realistic conditions

The CNN feature extractor trained in the previous step was 

then employed in the final step of the case study, evaluat-

ing its use in real-world settings on the Extrasensory data-

set. Figure 7 presents the confusion matrix obtained using 

the RF model taking as input the auto CNN features. The 

set of target activities was set to lying, sitting, walking, 

running and cycling to allow comparison of results with 

Vaizman et al. (2017).

A simplified target activity set was also considered, com-

bining the lying and sitting class into the idle state. The 

confusion matrix resulting from the 5-fold evaluation on the 

Extrasensory dataset is reported in Fig. 8.

Finally, Table 3 presents the classification report obtained 

for the 5-fold validation on the Extrasensory dataset.

5.2  Audio results

This section describes the results, using the 1D CNN archi-

tecture, that were obtained in the DCASE 2017 development 

dataset and the Extrasensory dataset.

5.2.1  Step 1: Training audio CNN feature extractor

Regarding the training of the CNN architecture, two case 

scenarios were examined and the precision, recall and 

F-score were calculated. The training and testing was per-

formed on the DCASE 2017 development dataset, using the 

default 4-fold cross-validation setup.

We notice that while the difference in the macro-aver-

age of the metrics is very small (Tables 4 and 5), the PCA 

plot (Fig. 9) demonstrates that we can distinguish the out-

door classes with the vehicle and indoor. This means that 

when increasing the number of filters, the network can 

pay attention to more details in the signal, similarly to a 

Table 1  Grouping of the extrasensory dataset classes

IN A MEETING, LOC main workplace, INDOORS

SLEEPING, OR indoors, LOC home,

IN CLASS, EATING, COOKING,

LAB WORK, COMPUTER WORK,

AT SCHOOL, SURFING THE INTERNET,

WATCHING TV, DOING LAUNDRY,

WASHING DISHES, CLEANING,

FIX restaurant, AT A PARTY, ELEVATOR,

TOILET

OR outside, SHOPPING, LOC beach OUTDOORS

BICYCLING, ON A BUS, IN A CAR, VEHICLE

DRIVE-I AM THE PASSENGER,

DRIVE-I AM THE DRIVER

Fig. 5  PCA for the IMU sensor on feature space obtained by increasing the number of layers 1-CNN, 2-CNN, and 4-CNN (a); and b increasing 

the kernel size k = 2 , k = 8 and k = 32
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computer vision problem, where the network learns finer 

details of an image.

5.2.2  Step 2: Audio evaluation in realistic conditions

The purpose of this experiment was to evaluate a pre-trained 

model on unseen data during training. The DCASE 2017 

development dataset consists of 15 classes that were grouped 

in three main classes (indoor, outdoor and vehicle). On the 

other hand, the Extrasensory data is a much larger dataset, 

consisting of 52 classes. The dataset contains information 

not only about the activity of the user (e.g., walking), how-

ever, also about the location of the user (e.g., at a party). We 

noticed that there was not a one-to-one matching between 

the classes of the two datasets, despite the grouping into 

three classes. The results are summarized in Table 6. The 

indoor class had the largest precision and this is due to the 

fact that most of the classes were grouped as indoors, hence 

the imbalanced dataset.

6  Discussion

The case study allowed the assessment of the effect of the 

main hyperparameters and CNN configurations on their fea-

ture learning abilities. The experiment provided a good over-

view of the main elements affecting feature learning abilities 

of a CNN for HAR. The results obtained in the first step of 

the case study highlighted how CNNs can perform at least 

as good as the best HCF, while providing a standardized 

Table 2  Precision, Recall and F-Score obtained with the 3-CNN 

( k = 32 and f = 24 ) and including transitions for the IMU case

The values in bold indicate the global average for all classes, to high-

light the values as total results
aMacro average

Activity Precision Recall F-Score

Walking 0.9979 0.9576 0.9773

W. Upstairs 0.9784 0.9701 0.9742

W. Downstairs 0.9265 0.9952 0.9596

Sitting 0.8867 0.7273 0.7991

Standing 0.7862 0.9191 0.8474

Lying 0.9963 1.0000 0.9982

Transition 0.9933 0.9198 0.9551

Averagea 0.9379 0.9198 0.9302

Fig. 6  Confusion matrix (a), and normalized confusion matrix (b) obtained with the final 3-CNN model with k = 24 and f = 24 , for the set of 

target activities including transitions for the IMU case

Fig. 7  Normalized confusion matrix of Fold 2 evaluating the RF 

model using the pre-trained CNN feature extractor for the IMU case
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manner to accomplish the feature extraction step. On the 

other hand, the use of CNNs requires a training phase, mak-

ing it subject to the cold-start problem. In this case study, 

CNN feature learning methods for audio and IMU cases 

were examined, and the use of a pre-trained CNN feature 

extractor was evaluated on a real-world dataset. The final 

evaluation on a real-world dataset allowed CNN automatic 

features to be tested under realistic circumstances. Overall, 

the test in realistic conditions highlighted the challenges of 

dealing with uncontrolled environments; for both the IMU 

and the audio case.

6.1  IMU

With respect to (Ronao and Cho 2016), where a similar 

analysis of CNN for HAR was examined, in this work, the 

more challenging case of a set of target activities includ-

ing a NULL class was considered. While performing final 

training of the CNN feature extractor, it was noticed that 

SGD, although requiring a larger number of training epochs 

(compared to Adam), allowed training of the model with a 

higher accuracy on the test set, leading to 93.03% F-Score 

in the more challenging set of target activities including the 

transitions as NULL class. The analysis helped to identify a 

suitable CNN architecture providing required feature learn-

ing capabilities while aiming at keeping the complexity of 

the model under control. Building on results of the first step, 

a 3 layer CNN was identified and used as feature extractor in 

the second step. The architecture identified was tested on a 

large public available real world-dataset. Working with real-

world datasets, as previously mentioned, introduces multiple 

variables that may affect accuracy performance. Such vari-

ables are usually under-represented in datasets collected in 

controlled environments. Despite the gap in accuracy meas-

ured in the first, and in the second step using real-world data, 

obtained results on the Extrasensory dataset using the pre-

trained CNN were in line with (Vaizman et al. 2017); where 

HCFs were used on the same dataset, using the same input 

sensors (accelerometer and gyroscope), and with the same 

set of target activities. The measured balanced accuracy was 

55.38% and 67.51% considering the idle (sitting/lying) class.

6.2  Audio

Despite the reported recognition accuracy obtained for the 

audio case, we have shown that it is possible to perform a 

reasonable inference in an unseen environment, especially 

for the case of the indoor class. The performance of the 

network in the unseen training dataset, was affected by the 

Fig. 8  5-Fold validation on extrasensory dataset using the Idle class 

for the IMU case

Table 3  Precision, Recall and F-Score obtained on the Extrasensory 

dataset

The values in bold indicate the global average for all classes, to high-

light the values as total results
aMacro average

Activity Precision Recall F-Score

Idle 0.9906 0.8907 0.9380

Walking 0.4330 0.7710 0.5546

Running 0.2328 0.6518 0.3430

Cycling 0.2135 0.3870 0.2752

Averagea 0.4675 0.6751 0.5277

Table 4  Precision, Recall and F-Score obtained on the DCASE 2017 

development dataset with the 3-CNN k = 2 , and the same number of 

filters for the AUDIO case

The values in bold indicate the global average for all classes, to high-

light the values as total results
aMacro average

Activity Precision Recall F-Score

Indoor 0.9475 0.8811 0.9131

Outdoor 0.8808 0.9282 0.9039

Vehicle 0.8920 0.9263 0.9088

Averagea 0.9067 0.9119 0.9086

Table 5  Precision, Recall and F-Score obtained on the DCASE 2017 

development dataset with the 3-CNN k = 2 , and increasing number of 

filters for the AUDIO case

The values in bold indicate the global average for all classes, to high-

light the values as total results
aMacro average

Activity Precision Recall F-Score

Indoor 0.9493 0.9151 0.9319

Outdoor 0.8897 0.9308 0.9098

Vehicle 0.9260 0.9231 0.9246

Averagea 0.9217 0.9230 0.9221
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different sampling rate (44.1 kHz for the DCASE 2017 

development dataset and 22 kHz for the Extrasensory data-

set). The pre-trained network captured information that was 

present at higher frequencies, for instance at approximately 

22 kHz, whereas the Extrasensory dataset could go up to 11 

kHz (Nyquist theorem). Furthermore, the performance can 

be explained by the fact that the classes, where the DCASE 

dataset was grouped were not the same as in the Extrasen-

sory dataset and the environments that were collected were 

much different, in terms of the acoustic conditions (reverber-

ation, smartphone in pocket, smartphone’s microphone qual-

ity). This justifies the problem that exists in the audio-based 

event recognition, where it is not possible to achieve a high 

recognition accuracy when testing in a new environment that 

contains different classes from the ones the algorithm was 

trained for. Therefore, there is a strong need for architectures 

that could be robust in terms of recognition accuracy, in an 

open set (data that have not been seen during the training).

7  Conclusion

We examined the use of CNN as feature learning method 

for HAR. Both IMU and audio-based HAR were consid-

ered. The experiments were conducted following a case 

study of two steps in which: (1) a CNN feature extractor is 

trained on a dataset collected in a controlled environment; 

subsequently, (2) the obtained pre-trained feature extractor 

is tested on a second real-world dataset evaluating its use as 

feature extractor in realistic condition. Results at all stages 

confirmed that CNNs can challenge the state-of-the-art 

HCF-based approaches, while providing a standardized and 

automated way to accomplish the feature learning step. At 

the same time, the use of a pre-trained CNN feature extrac-

tor can address the problem of the cold-start affecting CNN 

based approaches; although results obtained highlighted the 

multiple challenges of dealing with real-world data.

The goal of this work was primarily to provide an illus-

trative example of using a CNN pre-trained feature extrac-

tor, rather than providing a comprehensive analysis of all 

hyperparameters and configurations. Therefore, the opti-

mization of models undertaken presents some limitations. 

For instance, while architectures with different numbers of 

convolutional layers and kernel sizes for the convolution 

were examined, only the ReLU activation function was used. 

Other activation functions may be considered in future stud-

ies. Similarly, the learning rate was kept to the Keras default 

value of 0.001.

Despite these limitations, the experiment provided a 

good overview of the use of CNN for HAR covering the 

effect of the main hyperparameters on discrimination of tar-

get activities on the feature space. As in more mature DL 

Fig. 9  PCA for the audio sensor on feature space obtained using the same (right plot) and different filter sizes between the layers (left plot)

Table 6  Precision, Recall and F-Score obtained on the Extrasensory 

dataset, for the 1D CNN trained on the DCASE 2017 development 

dataset for the AUDIO case

The values in bold indicate the global average for all classes, to high-

light the values as total results
a Macro average

Activity Precision Recall F-Score

Indoor 0.8928 0.2775 0.4235

Outdoor 0.0320 0.3840 0.0591

Vehicle 0.1004 0.3957 0.1602

Averagea 0.3417 0.3524 0.2142
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applications, such as computer vision, we can expect the use 

of pre-trained CNN models to become more common in the 

future. Pre-trained models can be used simply to initialize 

weights, or directly to extract features from raw data as in 

our case. Future work will include further investigation on 

CNN as feature learning method in order to develop reusable 

models for both IMU and audio-based HAR.
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