
Feature Learning with Raw-Waveform CLDNNs for Voice Activity Detection

Abstract

Voice Activity Detection (VAD) is an important prepro-

cessing step in any state-of-the-art speech recognition system.

Choosing the right set of features and model architecture can

be challenging and is an active area of research. In this pa-

per we propose a novel approach to VAD to tackle both fea-

ture and model selection jointly. The proposed method is based

on a CLDNN (Convolutional, Long Short-Term Memory, Deep

Neural Networks) architecture fed directly with the raw wave-

form. We show that using the raw waveform allows the neural

network to learn features directly for the task at hand, which is

more powerful than using log-mel features, specially for noisy

environments. In addition, using a CLDNN, which takes advan-

tage of both frequency modeling with the CNN and temporal

modeling with LSTM, is a much better model for VAD com-

pared to the DNN. The proposed system achieves over 78% rel-

ative improvement in False Alarms (FA) at the operating point

of 2% False Rejects (FR) on both clean and noisy conditions

compared to a DNN of comparable size trained with log-mel

features. In addition, we study the impact of the model size

and the learned features to provide a better understanding of the

proposed architecture.

1. Introduction

Voice Activity Detection (VAD) refers to the process of identi-

fying segments of speech in an audio utterance [1]. This task

is often a pre-processing stage of an automatic speech recog-

nition (ASR) system to both reduce computation and to guide

the user interface. A typical VAD system uses a frame-level

classifier with acoustic features to make speech/non-speech de-

cisions for each audio frame (every 10ms) [2]. Significant

research has been devoted to finding the optimal features for

this task [3, 4, 5], as well as the best classifier or model to

use [6, 7, 8].

Deep Neural Networks (DNNs) are a commonly used

model for VAD [6]. However, inspired by the advancements

in acoustic modeling for speech, we explore alternative deep

learning architectures for VAD. Convolutional Neural Networks

(CNNs) [9] and Long Short-Term Memory (LSTM) recur-

rent neural networks [10] are popular choices since they have

shown improvements over DNNs for several speech recogni-

tion tasks [11, 12]. The modeling capabilities of these different

architectures are complementary. CNNs are good at reducing

frequency variations, LSTMs are good at sequence modeling,

and DNNs mapping features into a more separable space. To

exploit the complementary traits of these systems, [13] intro-

duced “Convolutional, Long Short-Term Memory, Fully Con-
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nected Deep Neural Networks” (CLDNNs), obtaining better

performance than any of those architectures individually. Since

VAD is a sequence task, we believe that architectures which

model the temporal structure, such as a CLDNN, are better than

a DNN for this task.

Even though the mel-scale was designed to mimic the criti-

cal bands of hearing in the human ear and has been successful in

several speech related tasks, the problem of VAD and noise de-

tection slightly different than speech processing. Thus, since

neural networks are good at learning features, we explore if

learning directly from the raw waveform has benefit for VAD.

In this work, we propose using raw waveform CLDNNs for

VAD [14]. We compare the performance of this system against

a standard DNN system, an LSTM system, and a CLDNN sys-

tem all trained with log-mel features. We demonstrate that this

approach achieves over a 78% relative improvement (in terms

of FA when fixing FR at 2%) on both clean and noisy condi-

tions when compared to a standard DNN trained using log-mel

filterbank energies as input. Furthermore, we analyze these re-

sults and show the benefit of temporal modeling for VAD with

the CLDNN, as well as the importance of learning features for

the task at hand with the raw waveform.

The rest of the paper is as follows. In Section 2 we de-

scribe the CLDNN and raw waveform architectures proposed,

as well as the LSTM and DNN reference architectures. The ex-

perimental setup is described in Section 3. Section 4 is devoted

to presenting and analyzing the results and, finally, Section 5

concludes the paper.

2. Neural Network Architectures for Voice
Activity Detection

In this section we describe the neural network architectures we

compare for VAD, namely DNNs, LSTMs, CLDNNs and raw

waveform CLDNNs. For each architecture we explore the im-

pact of model size and select their configurations to obtain mod-

els of size ∼30k, ∼100k, and ∼200k parameters.

2.1. Baseline - Deep Neural Network

DNNs have been shown to give good performance for VAD [6].

The baseline DNN model used in this paper is a standard feed-

forward fully connected neural network with k hidden layers

and n hidden units per layer. For each hidden layer, a rectified

linear unit (ReLU) function is used. The output layer of our

DNN model is a softmax with 2 units to predict speech and non-

speech. The input into this model is a 40-dimensional log-mel

feature, surrounded by a context of 5 past frames and 5 future

frames. We experimented with larger input context windows,

but it did not affect performance significantly. More details on

this topology for different model sizes can be seen in Table 1.
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DNN model details

# hidden layers 2 3 4

# hidden units per layer 64 128 208

Total number of parameters 32,384 89,344 221,728

Table 1: Details of the different parameters used for the DNN

log-mel model.

2.2. Long Short-Term Memory Recurrent Neural Net-

works

Since LSTMs are good at sequential tasks, we explore if using

a recurrent architecture will help with the sequential nature of

a VAD task. The LSTM VAD architecture is unidirectional and

similar to the architecture described in [15] with k hidden layers

and n hidden units per layer. Note we do not use a projection

layer with the LSTM. More details on this topology can be seen

in Table 2. The input into the LSTM is a single 40-dimensional

log-mel feature. The LSTM is unrolled for 20 time steps for

training with truncated backpropagation through time (BPTT).

In addition, the output state label is delayed by 5 frames, as we

have observed that information about future frames improves

prediction of the current frame.

LSTM model details

# hidden layers 3 3 3

# hidden units per layer 32 64 96

Total number of parameters 29,506 106,114 229,826

Table 2: Details of the different parameters used for the LSTM

log-mel model.

2.3. CLDNN

Convolutional, long short-term memory deep neural networks

(CLDNNs) are a new type of sequential model that have shown

improvements over LSTMs for LVCSR tasks [13]. The idea is

that convolutional layers are good at modeling frequency vari-

ations, LSTMs are good at modeling temporal variations and

DNN layers are good at mapping features to a more separable

space. The CLDNN architecture uses all 3 layers in a unified

framework, helping to combine the benefits of individual lay-

ers.

A diagram of the CLDNN architecture is shown in the

CLDNN module in Figure 1. The input to the CLDNN is a 40-

dimensional log-mel feature. The first layer of the CLDNN ar-

chitecture consists of a frequency convolution layer, with filters

of size 1 × 8 in time ×frequency. Consistent with [9] our

pooling strategy is to use non-overlapping max pooling along

the frequency axis, with a pooling size of 3. The output from

the convolutional layer is passed to a few LSTM layers, and

then to one DNN layer, before predicting 2 output targets. De-

tails for each layer of the CLDNN for different model sizes can

be seen in Table 3.

2.4. Raw Waveform CLDNN

Recently, [14] introduced a raw waveform CLDNN architec-

ture, and showed that it was possible to learn directly from the

raw waveform rather than using log-mel features. The network

was found to learn a frequency representation very similar to

log-mel, but learned for the task at hand. The authors found im-

provements with raw waveform for noisy tasks. Motivated by

this work, and given the large body of research into the appro-

CLDNN model details

Freq convolution

# filter outputs 32 64 64

filter size (freq x time) 8x1 8x1 8x1

pooling size (freq x time) 3x1 3x1 3x1

LSTM layers

# lstm hidden layers 1 2 3

# hidden units per layer 32 64 80

DNN layer

# hidden units 32 64 80

Total number of parameters 37,570 131,642 218,498

Table 3: Details of the different parameters used for the

CLDNN log-mel model.

priate features for VAD, we wanted to see if there was benefit

to learning the features directly in the network.

A block diagram of the raw waveform CLDNN is shown in

Fig. 1. The input into the raw waveform CLDNN is a raw signal

spanning roughly M samples, where M = 35ms . A convolu-

tion layer with P filters is convolved against the input, with each

filter spanning a length of N . Typically we use between 40-128

filters for P and N = 25ms filters. After that, we pool over the

entire length of the convolution (M−N+1). Finally, we apply a

rectified non-linearity, followed by a stabilized logarithm com-

pression, to produce a P -dimensional time-frequency represen-

tation. The output of this is passed to a CLDNN, as described in

the previous section. The time convolution and CLDNN layers

are trained jointly. Details for each layer of the raw waveform

CLDNN for all model sizes can be seen in Table 4.

Convolution 
N x P weights 

Input 
M samples 

Max pooling 
M+N-1 window 
 

Nonlinearity 
log(ReLU(...)) 

1 X P 

convolution output 
(1 x P) 

 

 

nonlinearity output 
(1 x P) tConv

fConv

LSTM

LSTM

LSTM

DNN

output targets

raw waveform

M samples

xt ∈ ℜ
P

Figure 1: Modules of the raw waveform CLDNN: a) Time-

domain Convolution Layer, b) Time convolution and CLDNN

layers

3. Experimental Details

3.1. Dataset

Our experiments are conducted on a noisy training set consist-

ing of 3,800 hours (3 million uterances), where roughly 50% of

the frames correspond to speech and the remaining frames cor-

respond to background noise. This data set was created by arti-

ficially adding noise to clean utterances using a room simulator.
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Raw waveform CLDNN model details

Time convolution

# filter outputs 40 84 128

filter size: 1 x 25ms 1x401 1x401 1x401

pooling size: 1 x 10ms 1x161 1x161 1x161

Freq convolution

# filter outputs 16 64 64

filter size (freq x time) 8x1 13x1 21x1

pooling size (freq x time) 3x1 6x1 9x1

LSTM layers

# lstm hidden layers 2 2 3

# hidden units per layer 16 48 64

DNN layer

# hidden units 16 48 64

Total number of parameters 35,794 124,738 221,938

Table 4: Details of the different parameters used for the raw

waveform CLDNN model.

We added varying degrees of noise and reverberation, such that

the overall SNR is between 5dB and 30dB. The noise sources

are from YouTube, daily life noisy environmental recordings,

car noise, cafeteria noise, and music.

We evaluate our system on a clean and noisy test-sets, con-

sisting of anonymized voice-search queries. Our clean test

set consists of 30 hours of audio, including about 50% speech

frames. Our noisy test set consists of a 20 hours of audio, but

only 15% (about 3 hours) of noisy speech, while the remaining

15 hours including noisy background such as music, car, cafete-

ria noise. These are meant to represent two different use-cases

or applications.

All training and test-sets are anonymized and hand-

transcribed, and are representative of Google’s voice search

traffic.

3.2. Neural Network Training and VAD Evaluation

The proposed LSTM, CLDNN and raw waveform CLDNN sys-

tems will be compared to a reference DNN VAD system. The

input feature for all models but the raw waveform CLDNN

are 40-dimensional log-mel filterbank features, computed every

10ms. All neural networks are trained using the asynchronous

stochastic gradient descent (ASGD) optimization strategy de-

scribed in [16] with the cross-entropy criterion. The CNN and

DNN layers are initialized using the Glorot-Bengio strategy de-

scribed in [17] while the LSTM layers are uniform randomly

initialized to be between -0.02 and 0.02. The learning rates

are exponentially decayed and independently chosen for each

model, and are chosen to be the largest value such that training

remains stable.

4. Results

In this section we present and compare the performance of the

different models. All models are trained on the noisy training

set and results are reported for both clean and noisy test sets.

We have explored different sizes for each model, and the used

parameters are summarized in Tables 1, 2, 3 and 4.

4.1. Comparison of the different models

First, we establish a fair comparison of the proposed meth-

ods with the reference DNN and LSTM-based approaches (i.e.,

LSTM, CLDNN, rawCLDNN) with a comparable number of to-

tal parameters. The systems presented here have been designed

to have roughly 100k parameters and the exact details can be

seen in the second column of the Tables 1, 2, 3 and 4. As shown

in Figs. 2 and 3 the LSTM-based architectures outperform the

DNN for both clean and noisy tasks. Furthermore, we find these

result hold even when using a state machine [7] to smooth out-

puts of the VAD, which shows the importance of having sequen-

tial modeling for VAD on top of a state machine. Moreover,

using raw waveform modeling to learn the features offers im-

provements over the log-mel-based systems in noisy environ-

ments, being consistent with [18] which found more benefits

with raw waveform CLDNNs in noisy environments. Overall,

the raw waveform CLDNN provides a ∼78% and ∼84% rela-

tive improvement in FA over the DNN at the operating point of

2% FR on clean and noisy conditions respectively. In the next

section, we provide a deeper analysis to better understand these

gains.

Figure 2: ROC curve for the different systems with ∼100k pa-

rameters on the clean test set. DNN performs worst, followed

by LSTM while CLDNN and rawCLDNN fall one on top of the

other

Figure 3: ROC curve for the different systems with ∼100k pa-

rameters on the noisy test set. DNN performs worst, followed

by LSTM, then CLDNN and finally, performing the best, raw-

CLDNN
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4.2. Analysis

4.2.1. Benefit of Temporal Modeling

In order to have a better insight of why LSTM-based architec-

tures give improvements over the DNN, we recorded a single

utterance with 3 speech segments in a noisy cafeteria environ-

ment. Fig 4 depicts the posterior probability of SPEECH, as

provided by the different neural networks architectures. As can

be seen in the figure, the output of the DNN system is very

noisy compared to LSTM-based architectures, namely LSTM,

CLDNN and rawCLDNN. Effectively, the LSTM layers in these

architectures help smooth the output due to the recurrent con-

nections in the LSTM which feed the activations from previous

time steps as input to make the decision for the current input.

Again, we should stress that while these figures show frame-

level decisions, we do find that combining the VAD with a fi-

nite state machine still results in sequential models providing

the best performance in terms of FA/FR.

Figure 4: Frame by frame posterior of the different systems in

a single utterance recorded in a noisy environment.

4.2.2. Benefit of Learning Feature Representation

To understand the improvements obtained with the raw wave-

form, Fig. 5 calculates the peak magnitude response for each

filter in our biggest raw waveform CLDNN (details in the third

column of Table 4), and sorts this based on increasing peak fre-

quency. The figure highlights that filterbank learning devotes

more filters to high frequencies compared to the standard mel

filterbanks. This result is in contrast with our findings in [14]

where using a similar architecture for acoustic modeling re-

sulted in the learned filterbanks devoted more filters to lower

frequencies. Since in this case the task is VAD and not acous-

tic modeling, it is possible that having more filters at high fre-

quency regions helps to better discriminate between speech and

noise. This further highlights the importance of learning fea-

tures for the task at hand.

4.3. Impact of total number of parameters

In this section, we analyze the behavior of the 4 architectures

with different number of parameters, namely ∼30k, ∼100k and

∼200k. Table 5 shows the false alarm rate when fixing the

false rejects at 2% for all the four different models and the three

sizes. The details of those models can be seen in Tables 1, 2, 3

and 4. The results show that the raw waveform-based system is

consistently better in noisy conditions achieving 83% and 53%

relative improvement (averaging the three model sizes) com-

pared to DNN and CLDNN respectively. In addition the raw

Figure 5: Center frequencies of learned filterbanks.

waveform-based system is less affected by the size of the model

than the other systems. In clean conditions the performance

of the raw waveform system is slightly worse than the CLDNN

using log-mel as an input but the degradation is very small com-

pared to the improvements in noisy conditions (3% average rel-

ative degradation on clean against 53% relative improvement on

noisy).

FA% (clean/noisy) when fixing FR to 2%

∼30k ∼100k ∼200k

DNN 50.8 / 26.3 50.5 / 25.9 50.3 / 25.3

LSTM 14.6 / 20.4 13.1 / 9.3 12.6 / 10.2

CLDNN 12.5 / 13.5 10.9 / 9.5 10.9 / 7.9

Raw CLDNN 13.1 / 4.7 11.1 / 4.1 11.3 / 4.2

Table 5: False Alarm rates of the different sizes/models when

fixing the False Reject rate to 2%

Finally, since the raw waveform CLDNN uses between 40

to 128 filters, whereas the log-mel based systems always use 40,

we wanted to understand if the improvements in raw waveform

were due to increased feature size. Note that the smallest raw

waveform CLDNN system in Table 5 has also 40 time filters

so that it can be compared more fairly to the other systems.

The table shows that with the same number of filters, the raw

waveform outperforms the other architectures, particularly in

noisy conditions.

5. Conclusions

We presented a novel raw waveform-based model for the VAD

task that shows significant gains over previous models. We

showed that using a sophisticated acoustic model (CLDNN)

fed with the raw waveform trained on a big dataset we can ob-

tain ≥78% relative improvement on clean and noisy conditions

compared to a DNN-based system fed with log mel of equal

size. The results prove that large improvements can be achieved

using temporal modeling and learning the feature representation

from the data.
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