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This report compares three feature list sets for capital letters, previously proposed by different investigators, on the
ability of each to predict empirical confusion matrices. Toward this end, several variants of assumed information
processes in recognition were also compared. The best model incorporated: (1) variable feature retrieval probabilities,
(2) a goodness-of-match lower threshold below which guessing determines response, and (3) response bias on guessing
trials. This model, when combined with one particular proposed feature list set, produced stress values of less than 9%
in comparisons to empirical matrices for each of three different Ss. The feature retrieval probability vectors associated
with these minimum-stress predictions were highly correlated (f = .83), suggesting considerable generality of process
and feature sets between 5 s.

In the view of many cognitive psychologists,
perception is understood as an active process of
synthesis (Neisser, 1967; Gibson, 1969). Further, the
role of distinctive attributes, commonly termed features,
is considered fundamental both to perception and to
ongoing information processing in recognition. Neisser
(1967, Chap. 3) presents an excellent review of the
arguments favoring the view that " ... recognition is
mediated, in part, by a hierarchy of 'feature analyzers'
[po 46]." Indeed, the concepts of feature lists and list
processing are ubiquitous sources of theory for cognitive
psychologists who are information-processing oriented, a
status made clear in Frijda's (1972) constructive review

of processes required to simulate long-term memory.
However, until some specific set of feature lists has

been shown to aid in understanding recognition data for
some clearly defined class of stimuli, the feature list
remains an unsupported hypothetical construct in
recognition theory. This potential contribution as an
exemplar increases the intrinsic interest in the discovery
of the feature set people use to recognize the letters of
the alphabet. The attempt to define the features of
capital letters has received attention from several
investigators, most notably Gibson and her associates
(Gibson, 1969; Gibson, Osser, Schiff, & Smith, 1963;
Gibson, Gibson, Pick, & Osser, 1962; Yonas & Gibson,
1967), but also Geyer (1970) and Laughery (1971). The
bases for the feature sets proposed by these investigators
is reviewed later; for the moment, it suffices to say that
each of the three contains substantial degrees of
judgment, clearly needing independent empirical
support.

What constitutes empirical support for a proposed
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feature set? Gibson (1969) reviews three approaches she

and her associates have taken: (1) correlation of
confusion errors and features in common between letter
pairs; (2) a multidimensional scaling analysis of the same
confusion error data, and (3) comparisons of latencies
for same/different judgments for letter pairs with
features in common between the pair. The
multidimensional scaling analysis was reported only out
to three dimensions (features), and even there appeared
to be bogging down in the familiar difficulty that the

dimensions isolated failed to be namable (i.e., were not
identifiable as features). The use of latency data, while

ingenious, introduces a host of explicit and implicit
assumptions that becloud the question of how much
support a given analysis provides. The first approach,
correlation of confusion errors with features in common,
directly engages the assumed underlying processes while
still facilitating unambiguous empirical comparisons. The
strongest support for a feature list set would be
correspondence between the full alphabet confusion
matrix, generated on the basis of feature list
similarities/differences, and empirical confusion
matrices. Fortunately, the empirical data is already at
hand for such comparison. Townsend (1971 a, b) reports
a study that provides full 26-letter confusion matrices
eminently suitable to this purpose. During a series of
tachistoscopic presentations of capital letters, he limited
stimulus duration such that, on the average, correct
recognition occurred half the time. He presented each of
the 26 capital letters 25 times to each of the six Ss to
obtain a 150 trials/row "average S" confusion matrix,
then 150 times to each of two (different) Ss to obtain
two 150 trials/row individual S confusion matrices. This
report analyzes how effective each of the three
aforementioned sets is in predicting Townsend's full
alphabet confusion matrix data, i.e., how well the
confusion matrix generated by feature list
similarities/differences corresponds to his data.
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Table 1
Gibson Feature Set and Lists
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STRA.IGHT

1 HORIZC-:"TAL 1 1 1 t 1 1 1 1

2 VERTICAL 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 DIAGC::,\L (/) 1 1 1 1 1 1 1 1

4 DIAGO:-:AL (\ ) 1 1 1 1 1 1 1 1 1 1

CURVE

5 CLOSED 1 1 1 1 ·1 1

6 OPE~, VERTICAL 1 1
7 OPE:-, 1,0::1 ZO:-.-rAL 1 1 1 1
8 II'TERSEGTIO~ 1 1 1 1 1 1

I
1 1 1 1 1

RED:r.;r:.-\~cy

9 CYCLIC O ~ - \ ~ G E 1 1 1 1 1
10 SYl':,:';::YRY 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DISCO~TI~t:ITY

11 VEi'TICAL 1 1 1 1 1 1 1
11

1 .1 1
12 HORIZO:-.-rAL 1 1 1 1 1

An inherent facet of this study, therefore, is the
explicit definition of the information processes
employed in recognition by feature analysis. The

approach. taken was to investigate several alternatives,
each differing moderately in detailed ways, but similar in
general structure. The intent of this approach was to
permit the exploration of a full range of processing
assumptions, so that a failure of any proposed feature
set to predict empirical data could be attributed to the
inadequacy of the features and not to feature processing
assumptions. This approach mandated that, instead of
one predicted confusion matrix for each set of feature
lists, it would be necessary to generate a (small) number
of related matrices.

This report is organized as follows: The next section
discusses the three feature sets studied, and the
following section defines the information processing
assumptions and the specific alternatives employed.
Successive sections describe methodology, present the
results, and discuss the findings.

FEATURE SETS REPRESENTING
CAPITAL LEITERS

Gibson's Set

Gibson (1969) discussed the basis for selecting a
feature set: "In selecting a list of features, the

experimenter's intuition is the prirlcipal generator, but it
can be assisted by evidence from experimental literature
and by meeting ... the following criteria: (1) the

features had to be critical ones, present in some
members of the [grapheme] set but not in others so as
to present a contrast; (2) they should be relational so as
to be invariant under brightness, size, and perspective

transformations; (3) they should yield a unique pattern
for each grapheme; and (4) the list should be reasonably
economical [pp. 86-87]." She proposes a set of 12
features to represent capital letters (Table 5-5, p.88),
reproduced here as Table I. She notes that the rationale
for selection includes: (1) the neurological research of
Maturana, Lettvin, McCulloch, and Pitts (1960) with
frogs, and Hubel and Wiesel (1962) with cats;
(2) developmental studies with the human (Gibson,
Gibson, Pick, & Osser, 1962; Piaget & Inhelder, 1956);
and (3) stabilized retinal image research (pritchard,
Heron, & Webb, 1960). She reports supportive evidence
from studies designed to test the adequacy of the
proposed feature set, but none of these studies
rigorously specified the information processes presumed
to underlie recognition by feature analysis. Hence,
comparisons to empirical data were limited to 26
letter-pair correlations rather than to the full 676
(26 x 26) comparisons of a confusion matrix. Also, since
the confusion data were obtained for children, there
were no comparisons based on Ss with fully developed
reading capabilities. In contrast, such comparisons are a
major objective of this study.

Laughery's Set

Laughery (1971) reported a theory of short-term
memory (STM) in the form of a computer simulation
model. Stimuli were presented to the model as the list of
features, auditory or visual, he assumed represented
individual capital letters. Inherent to the methodology
of simulation, he did specify rigorously the information
processes assumed to underlie recognition by feature
analyses. His assumptions and those of this investigation
are compatible. However, he ascribed a predominately
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Table 2
Laughery Feature Set and Lists

ID
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6 HOitI ZO::T.\L, E C ' T T C ~ I I 1 I

7 n:LL SL,;::r, reSITIVE 1 1 I 1 1

8 FUl.L SIA~T, 1;;;G.-\TIVE 1 1 1 1 1

9 rrt.i, C!J"VE, CLCSED 1 1
\0 ~:OT csco

11 Fl"LL Cef:':E, OPE::, RIGHT I 1
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18 I xrcssccrr ox I 1

19 two SL'\!':TS, PARI\LLEL 1

o PART SLII.:;r, POSITIVE 1 1 I 1

,

auditory or phonemic basis to STM; thereby, his work
did not directly test the capability of his visual feature

list to predict confusion errors in a recognition
paradigm. (phonemic feature lists are outside the scope
of this report.) Laughery's visual feature lists covered
both capital letters and arabic numerals, a condensed
version employing only the features he ascribed to

capital letters appears as Table 2. (Table 2 involves some
renumbering of this subset of features for computational
convenience, but his definition of features and their

mapping to the alphabet is preserved.)

Geyer's Set

Geyer (1970) reported a theory of iconic storage
(terminology from Neisser, 1967) in the form of a

computer simulation model. As with Laughery's work,

the simulation methodology ensured an explicit

statement of the information processes assumed to

underlie recognition by feature analysis.

Geyer acknowledged that his feature set was based on

Gibson's set with certain deliberate modifications. The

rationale for the changes, implied by his theory of

metacontrast masking, emphasized the importance of

attention to a defined segment (area of the visual

stirn uIation), segmentation being accepted as a
preattentive process in perception. The geometric flavor
of this construct led to the following modifications to

Gibson's feature set: (1) a feature could be present one

or more times in the list representing a letter (e .g., the

letter H has two vertical lines, L only one); (2) a curved
line was a set of one or more curved segments (e.g., four

for the letter 0, only one for the letter J); (3) the
concepts of cyclical redundancy and discontinuity, if

relevant to recognition at all, were matters of analysis,

not basic features; (4) irrternal protrusions (e.g., the
letters Wand M) were area-specific features analogous to
"open." He also discrimirrated between symmetry about

vertical and horizontal axes. These modifications result
in the feature set shown in Table 3.

The prime purpose of his simulation work was to

explicate recognition performance irr metacontrast

masking paradigms, hence that work did not produce
full alphabet confusion matrices generated from

unmasked displays. However, the processes specified in

that effort are entirely compatible with those explored

in this investigation. This study employs processes that

are a modification of his model appropriate to
recognition without masking.

INFORMATION PROCESSES IN RECOGNITION

This report attempts to test proposed sets of feature

lists for capital letters by generating the confusion

matrix consequent to each set. The crucial question for

this approach is, "How reasonable is it that the research

has employed valid assumptions concerning the

processes the human uses to recognize letters?"

Fortunately, our scope is considerably narrowed by the
initial decision to explore feature list processing, but

even so there are alternative processing assumptions.
This study attempted to be complete; each of the

feature sets to be tested was used to generate confusion

matrices in each of the alternative processes which
appear, collectively, to exhaust the set of variants. We

are dealing, therefore, with two categories of
information processing assumptions: (1) those which, it
is argued, are basic to the feature list concept and

(2) those which constitute plausible variants of the basic
model.
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Table 3
Geyer Feature Set and Lists
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Formulation of the SE List

Following stimulation by a letter whose correct list
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Fig. I. General representation of recognition as a three-step
process.

on the other hand, cannot appear spuriously in a
degraded SE list. This assumption originated in earlier
simulation (Geyer, 1970) in keeping with the spirit of a
pandemonium-type model. More elaborate justification
can be offered from inspection of Townsend's
(1971a, b) data, but these arguments are best presented
in terms of model performance. These assumptions
define a model whose essence is shown in Fig. 1. The
assume d underlying psychological processes are
discussed next.

The basic feature list information processing
assumptions, used in all model variants are as follows:
(I) display of arrays of symbolic stimuli result in the
existence of stimulus-evoked (SE) lists; (2) preliminary
(preattentive) processes organize coherent segments
(areas) of the visual field into separate SE lists, which are
the content of the icon and which are available to be
attended to in a central processing channel; (3) in the
central processing channel, SE lists are compared to a set
of lists stored in long-term memory (LTM) by parallel
processes of the general type set forth in the

pandemonium model (Selfridge, 1959);
(4) correspondence of an SE list to an LTM list results in
response selection of the name corresponding to the
matched LTM list.

If an initially clear, unambiguous presentation of a
letter is attended to immediately, then there will be an
identical match of the SE list to one LTM list. Correct
recognition follows, without possibility of confusion.
This is the normal situation for most real-world
presentations of letters; only in medical or psychological
laboratories is it usual to find controlled stimulation at
degraded levels of visual clarity or reduced energetic
intensity. However, precisely these conditions generate
the confusion data by which we can test inferences

concerning feature lists and feature processing. Hence,
the most interesting assumptions of the model concern
processes whereby degraded representations produce
naming responses. Plausible alternatives for these
processes define the variants of the basic model
employed in this research.

All such alternatives share the four assumptions of
information processing noted above, and they share the

additional assumption that the mechanism of stimulus
degradation is that the SE list may not contain all the
information (features) that would have attended a
full-strength stimulation, i.e., features can be "lost" but,
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contains n features, there are 2n possible SE lists. One of
these is the correct list, one is the null list, all others are
the possible combinations with one or more features
being absent, but at least one present. For the letter 0 in
the Gibson list, Table 1, there are four possible SE lists:
(1) both features, 5 and 10, present; (2) Feature 5

present, 10 missing; (3) Feature 5 missing, 10 present;
and (4) both missing, list empty. For a letter assumed to
have six features (e .g., A in the Gibson list, Table 1),
there are 26

= 64 possible SE lists. While combinatorially
complex, the assumed process of SE list formation is

markovian. Each stimulus can result in 2n next states. It

remains to clarify the question of transitional
probabilities, which introduces the first model variant.

10 one case, it was assumed that the probability of a
feature carrying over from presence in a stimulus to
presence in an SE list was the same for all features of the
assumed set. In the other variant, it was assumed that
some features might possess higher probability of being
carried over than others, that individual values of Pi
varied across the set i = 1, N, where N is the total
number of features specified as the feature set (N = 15
for Geyer lists, 12 for Gibson lists, 19 for Laughery
lists).

The first alternative is a very simplistic limiting case.
It appeared deserving of analysis, but .there is no
evidence to support its psychological reality. Implicitly,
features have been assumed to have some underlying
neurological basis, there is no reason to assume that each
neuronal network would build up to the same
probability of availability ("strength") in a stimulation
of marginal intensity, nor that all would persist at the
same probability of availability in a decaying icon.

In either variant, there is a probability (P) vector of N
elements, where N is the number of features employed
in the assumed feature set. In the equal probability
variant, designated EQ, each element, Pi, of this vector
has the same value. In the variable probability variant,
designated VP, the values of Pi may differ. The

probability of not carrying over, qi, is 1 - Pi­
Accordingly, the transitional probability for each SE list

(state) is the product of all Pi for features carrying over
times the product of all qi for features missing.

Processing a Degraded SE List

The examples of processing in this section are based,
arbitrarily, on the Gibson feature set (Table 1). Suppose

that a controlled presentation of the letter E resulted
not in the full list of features exactly denoting an E, i.e.,
1,2,8,9, 10, and 12, but a degraded SE list containing
only 1, 2, 8, and 12 (9 and 10 absent). What response
will be evoked, or what is the probability distribution of
some set of responses? The degraded SE list shares four
features with the six stored as the LTM list for E; it
shares the same four with the five stored as the LTM list
for F; and it contains all three of those stored as an L,
plus an "extra" feature not present in the LTM list

representing L. There are other examples 'of partial
matches, but these three will suffice to illustrate
information processes assumed in this study. All of the
variants of models studied compute a goodness-of-match
ratio by comparison of the SE list to the LTM list for
each letter. For all variants, these comparisons are
presumed to occur in a process basically similar to the
"pandemonium" model (Selfridge, 1969; see also
Neisser, 1967, pp. 74-76, for a summary description). In
such a model, the best match will evoke response
selection to the appropriate LTM list. In this study, the
goodness-of-match comparison of an SE list to each
LTM list is based upon a "hit ratio" (h) computed as
follows: (1) for each feature held in common by the two

lists, the numerator of the ratio is incremented by one;
(2) for each feature in the SE list, but not in the LTM
list, the numerator is decremented by one; (3) the
denominator of the hit ratio is the number of features in
the LTM list.

Assumptions 1 and 2 mean that the numerator of the
hit ratio is a sort of communal content score, albeit one
which reflects the theoretical assumption that features
can be lost, but that intrusion errors are unlikely (i.e.,
are penalized in computing h). Assumption 3 is
consistent with this theoretical assumption in making
the number of features in the LTM list the standard
against which the communal content score is compared,
rather than the number of features in the possibly
degraded SE list.

For an SE list that is an exact replica of an LTM list, h
= 1.0. For the preceding example of a degraded SE list
derived from the stimulus letter E, the following hs
result: (1) for the comparison to E, h =(4 - 0)/6 = .67;
(2) for the comparison to F, h = (4 - 0)/5 = .80; (3) for
the comparison to L, h = (3 - 1)/3 = .67. Response
selection processes differ slightly in different variants of
the model, because some variants include the concept of
a threshold on h, below which response involves
guessing, but in all variants, if the response is not by
guessing, it is via the letter(s) eliciting maximum h. In
this example, the degraded representation of an E would

be named an F.
The preceding discussion has been based upon

processes which do not involve any sequential
dependencies between comparisons, Le., parallel
processing. It may be objected that this is an

unwarranted exclusion of a whole class of models-those
which employ "sorting networks" or "decision trees" to

sequentially test for the presence/absence of features in
some predetermined order. Neisser (1967), argued that a
sequential approach is not appropriate to pattern
recognition. He cited several reasons, including evidence
from his own research, concerning time for searching
through lists for a single or multiple targets. Recent
evidence from Sperling, Budiansky, Spivak, and Johnson
(1972) would appear to reinforce this argument. In
direct recognition of these arguments, this research was
based on the pandemonium concept. However. it should
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empirical confusion matrix (one of the three matrices
reported by Townsend, 1971a, b). This iterative process

begins with an initial solution for P having all Pi set
equal at an arbitrary value. The arbitrary value was set,
based on experience, to produce approximately 50%

correct recognition on the average across the 26 stimulus
letters, because this was the empirical condition
employed by Townsend. However, the approximate
correctness of this setting is of no scientific
consequence, i.e., it does not influence the final

outcome values but merely reduces the number of
iterations, thereby economizing computer time.

For the EQ variants of the model, the iterative process

proceeds, in response to a particular empirical matrix, as
follows: (1) at each iteration, the
markov-chain-generated confusion matrix is determined
for a P vector; (2) the resultant stress is then computed;
(3) the change in stress which would result from an
increase of all elements of the P vector by a factor, G, or
by a decrease by the factor l/G is computed;
(4) whichever change most reduces stress is adopted and
a new iteration begins; (5) if neither alteration of the P
vector reduces stress, then G is reduced further and the
preceding computational steps, 3 through 5, repeated.

G is initially set at a substantial value, 1.16, or a 16%
change. It is successively reduced one-half way toward
1.0, e.g., from 1.16 to 1.08, whenever neither change to
the P vector reduces stress by as much as 1.0 x 10-6

.

When G becomes less than 1.001, i.e., p would change
by less than 0.1%, the process terminates and the
resultant confusion matrix, value for Pi, and minimum
stress is reported.

For the VP variants of the model, the process is
similar, but at each iteration, the effect of changing each

Pi individually by the factors G and l/G is computed;
the change that most reduces stress is incorporated, and
the solution proceeds as for the EQ variant.

The transitional probabilities of the second stage of
the model, i.e., response selection based upon some

particular SE list, do not change as a result of changes in
the transitional probability vector for the first stage. The
second step probabilities are completely determined by
the assumed feature set and response selection rules, i.e.,
the values of the guessing threshold parameters, 1.2 and
T1, and whether or not the formulation includes
response bias.

The solution program was written in FORTRAN IV
for the SUNY at Buffalo CDC 6400.

Procedure

As noted, six model variants were studied: (1) equiprobable
list formation with no guessing response (EQ/NG);
(2) equiprobable list formation with guessing response and no
response bias (EQ/WG-NRB); (3) variable probability of features
in list formation with no guessing response (VP/NG); (4) variable
probabilities of features in list formation with guessing response
and no response bias (VPjWG-NRB); (5) equiprobable list
formation with guessing and provision for response bias
(EQ/WG-RB); and (6) variable probability of features in list

Table 4
Free Parameters of Model Variants/Feature List Combinations

Model Geyer Gibson Laughery

EQfNG 1 1 1
EQfWG 3 3 3
VP/NG 15 12 19
VP/WG 17 14 21

formation with guessing response and response bias effects
(VP(WG-RB). All of these variants were compared to each of the
three confusion matrices reported by Townsend (1971a, b) for
average performance of six Ss, S M.l. and S V.F. Thereby,
effects due to individual S differences could be compared. In all
model variants, each of the three feature sets proposed by Geyer
(1970), Gibson (1969), and Laughery (1971) were studied.
Thereby, each of the six model variants produced a simulated
confusion matrix and resultant unexplained residual variance for
nine conditions, three feature lists by comparison to three data
matrices.

When the model variant that produced least stress values
across list and S comparisons was determined, that model was
then studied with respect to variations in the initially assumed
values for the guessing range parameters, T 2 and T 1 • This study
employed a sampling of feature list by S comparisons to search
for a lower stress by varying T 2 and T i - The redefined guessing
parameter range was then used to rerun that model variant to
obtain an improved solution.

Results

The criterion of model performance was stress,
defined as the fraction of total variance of the empirical
confusion matrix left as the unexplained residual
variance from the prediction of the optimal synthesized
model matrix. For the three empirical matrices, the total
variance data are 6.22 for the average of six Ss data, 7.44
for the M.J. data, and 8.70 for the V.F. data. All stress
values reported hereafter are the fractions of these values
representing the unexplained residual variance.

Table 5 presents the resultant stress for each model
variant, feature list set, and empirical data matrix
comparison. Lines 1-18 of Table 5 present results for
each of the model variants with the guessing threshold

held constant (where employed) at T 1 =0.3, T2 =0.6.
From Lines 1-18, the following may be noted: (1) The

variable probability (VP) configurations are always

superior to the equal Pfobability (EQ). (2) The guessing
threshold variant (WG) is always superior to the purely
deterministic (NG). (3) The variant that incorporates

response bias (RB) is uniformly superior to the variant
without response bias (NRB). (4) Thereby, the variant
with variable probability, guessing threshold, and
response bias (VP/WG·RB) is superior (Lines 15-18).
(5) For the VP/WG-RB variant, the Geyer feature lists
show least stress.

Determination of (Approximately) Optimal
Guessing Threshold Range

The guessing threshold range parameters, T2 and T 1 ,

were originally set on the basis of indications from
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Table 5
Residual Stress for Model Variants

Empirical Comparison Data

Model Variant Six Ss SMJ. SV.F. Average

I EQjNG - Geyer Lists .374 .318 .279 .319
2 EQjNG - Gibson Lists .316 .309 .300 .308
3 EQjNG - Laughery Lists .322 .308 .233 .283

4 EQ/WG-NRB - Geyer Lists .184 .157 .169 .169
5 EQ/WG-NRB - Gibson Lists .235 .233 .225 .231
6 EQ/WG-NRB - Laughery Lists .220 .232 .190 .213

7 VP/NG - Geyer Lists .267 .197 .172 .207
8 VP/NG - Gibson Lists .292 .255 .215 .250
9 VPING - Laughery Lists .236 .239 .148 .203

10 VP/WG-NRB - Geyer Lists .132 .118 .107 .117
11 VP/WG-NRB - Gibson Lists .218 .193 .167 .190
12 VP/WG-NRB - Laughery Lists .156 .156 .107 .137

13 EQjWG-RB - Geyer Lists .145 .144 .153 .147
14 EQjWG-RB - Gibson Lists .223 .217 .197 .211
15 EQjWG-RB - Laughery Lists .191 .208 .160 .184

16 VP/WG-RB - Geyer Lists .112 .105 .102 .106
17 VP/WG-RB - Gibson Lists .204 .187 .164 .183
18 VP/WG-RB - Laughery Lists .141 .147 .104 .129

19 VP/WG-RB (Optimal Range) Geyer Lists .087 .089 .083 .086
20 VP/WG-RB (Optimal Range) Gibson Lists .145 .144 .128 .138

simulation of a different experimental paradigm (Geyer,
1970). However, that study did not include a sensitivity
test of these parametric values. Having determined an
otherwise optimal model configuration, the threshold
range was varied systematically as part of this study. A
threshold range of 0.5 to 0.7 was found to be the best
choice for the Geyer and Gibson lists. The original range
of 0.3 to 0.6 seemed best for the Laughery lists.

Performance of the VPfWG-RB Model with
Approximately Optimal Guessing Threshold Parameters

Performance of this (final) model variant is shown on
Lines 18, 19, and 20 of Table 5. The performance is best
with the Geyer feature lists, comparisons to all three
empirical data matrices yielding stress values of less than
9%. Neither the Laughery nor the Gibson lists yield
stress values less than 10%.

It is worth noting that individual differences between
Ss in the empirical data are substantial. If one of the
three empirical matrices is used as a predictor of the
other two, stress values range from .093 (M.J. as
predictor of V.F.) to .147 (V.F. as predictor of average
of six Ss). The VP/WG·RB model variant and Geyer
feature list set achieves lower stress values for
comparisons to each 5 matrix. This would appear to be
an indication that the model and feature lists were
synthesizing some human cognitive process(es)
indigenous to the perception of capital letters. From this
viewpoint, the degree of similarity of the three optimal P
vectors corresponding to the three empirical confusion
matrices would be indicative of the generality of the
information process assumed. Very different P vectors

would suggest that the different Ss employed different
predominant subsets of features in recognition, whereas
similar P vectors would indicate a generality of feature
dominance across Ss, The Pearson product moment
correlation for the three possible pairings of P vectors
gave correlation coefficients of .872 (p < .001) for
average of six Ss to M.J., .734 (p < .002) for average of
six Ss to V.F., and .885 (p<.OOI) for M.J. to V.F.
These results indicate that a predominant portion of
process variance is common in all three simulations, but
that variations due to individual differences are also
substantial.

DISCUSSION

The results reported indicate that a very explicitly
formulated set of information processes and a particular
feature list set are capable of synthesizing confusion
matrices which show an interesting degree of
correspondence to three different empirical matrices. It

is the explicit formulation of the information processes
which gives these results their interest, however. Prior
work with less structured models has produced lower
levels of unexplained variance than those reported here.
Townsend (1971 a, b) reported on several models, the
most successful of which produced stress values of .033
(average S), .024 (M.J.), and .025 (V.F.). However, this
model employed 350 free parameters in optimizing
stress, using minimal assumptions concerning the
cognitive processes underlying recognition. It is difficult
to compare these results directly with the VP/WG·NRB
model with 17 free parameters.

Townsend's all-or-none (AON) model is to a
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considerable degree analogous in performance to what

one would obtain with our WG-RB model variants if it

were possible to set the guessing state parameters such

that for all SE states that produced h*s having exactly

one arc (to the correct response) h * > T2 = T 1 and that

for all other SE states h * < T2 = T1 (i.e., only the

unambiguously correct LTM comparisons evoked

nonguessing responses). His AON model required 51 free

parameters, and its performance is not very much better

than the VP/WG-RM model performance (see Table 6).
These results suggest that the structure of the latter

model, having only one-third the parametric flexibility,
cannot be completely remote from the optimal
assignment of transition probabilities from stimulus

through SE to LTMC states.
It is possible to compare the performance of these

models to a prediction matrix based upon absolutely no
psychological theory, only knowledge of the

experimentally imposed constraint that stimulus energy
was set such that S would average 50% correct responses.

Using that fact, one can generate a uniform matrix

composed of 0.5 in all main diagonal elements, and of an
equal spreading of the remaining 0.5 response

probability across the other 25 cells of each response

vector. This uniform matrix contains no information

processing assumptions. In any meaningful psychological

context, it is not a model. Nonetheless, it can be used as

a predictor matrix, and as such, it will generate residual

sum squares and stress values in comparison to an

empirical matrix. In comparison to Townsend's

(l97Ia, b) data, the stress values generated are .123 (six

Ss), .144 (S MJ .), and .137 (S V.F .).

At first glance, these values may seem surprisingly

small, at least in comparison to the AON and feature

processing models. However, that would underestimate

the stress reducing power, in the uniform matrix, of

knowing the true value of the average correct

probability. Thereby, the residual contribution to stress

along the main diagonal reflects solely failure to predict

the letter-to-letter variation in correct recognition; the

residual contribution to stress of off-diagonal cells
reflects failure to predict cell-to-cell variation in

confusability of different stimulus-response (SIR) pairs.
Thereby, a model which predicts with less stress along

the main diagonal is making some contribution to
predicting relative recognizability, one which predicts
better for the off-diagonal cells is making some
contribution to relative confusability of different SiR
pairs. Table 6 presents these comparisons to the uniform

matrix for the VP/WG-RB model (with Geyer lists) and

for the AON model.
Viwed in this light, the comparison of the uniform

matrix to the AON model seems eminently sensible. The

AON model, with its powerful parametric emphasis on

correct recognition probabilities, has far superior

performance to the uniform matrix along the main

diagonal. On the other hand, the AON model is scarcely

better than the uniform matrix at predicting confusion

Table 6
Comparative Stress Values

Stress

Main Off
Predictor Diagonal Diagonal Total

Uniform Matrix .055 .082 .137
VP/WG-RB (Geyer Lists) .018 .068 .086
AON, Townsend (1971a, b) .001 .081 .082

cell data. The small improvement is undoubtedly due to
the AON model's capability for considering response

bias, but the smallness of the difference suggests that the

"all-or-none" assumption about recognition is highly

suspecr-Le., that some SIR pairs are indeed more

confusable than others.
On theother hand, the feature processing model is less

superior than the AON model to the uniform matrix

along the main diagonal, but shows a fairly substantial

advantage in predicting confusion errors. These results

also seem reasonable, since the feature retrieval

probability parameters of this model would have become

optimized for best overall prediction of both recognition

and confusion performance, thereby attending to the

relative confusability of SIR pairs.
Finally, many of the less adequate feature processing

model variants and/or assumed feature lists produced
higher stress than the uniform matrix. Analysis of the

main-diagonal and off-diagonal components of stress
would indicate the following: (1) the EQ variants of the
model were notably inferior with respect to both

recognizability and confusability predictions, but more

so for confusability; (2) in general, all of the VP variants
were superior to the uniform matrix with respect to

recognizability predictions; but (3) the assumptions of a

guessing threshold and response bias were needed to

make confusability predictions superior to the uniform

matrix; and (4) even in the VP/WG·RB variant, only the
Geyer lists showed confusability predictions superior to

the uniform matrix.
In summary, the results and these comparisons offer

moderate encouragement; however, it would seem that

Townsend's results with his more heavily parametered

models provide an indication that there is substantial

room for improvement in our present model and/or

feature lists. The key question is whether the problem

lies with the information processes (model) or with the

assumed feature lists. The discussion now takes up the

question of which assumptions it would appear that the

study supported, and which seem to be priority

candidates for ongoing refinement. This discussion

considers first feature list assumptions, then information

processing assumptions.

Feature List Sets'

For model variants using (l) individually variable
feature transition probability and (2) a guessing
threshold, the Geyer feature lists produced lowest stress
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values in comparison to each of the three empirical

matrices. It should be remembered that the Geyer lists

differ from the Gibson lists, from which they were

derived, in only two facets; (1) the repetition of a

feature is explicitly allowed. and (2) a small number of

features were changed to better accommodate a

predominantly geometrical organization of the SE list.

The former "difference" is one which Gibson herself

never addressed directly, therefore it may represent no

difference at all. Information tests with the Gibson lists

modified to incorporate multiple feature entries, but

without the other modifications, did show decreased

stress, although insufficient to close the gap in stress

values reported for the two lists. Further, the Laughery

lists, which were generally second in terms of minimal

stress for the more successful model variants, also

approximated multiple feature entries, albeit by explicit

differentiation and enumeration. Pending further work,

it seems reasonable to understand these findings as

indicating: (1) Features that are phenomenologically

repeated in the stimulus are repeated in the

stimulus-evoked feature list used for recognition

processing. (2) The high correlation of feature

probability vectors across simulation of different Ss

means that when we obtain a more refined definition of

the list of relevant features, it will enjoy considerable

generality between individuals. (3) The modified Gibson

feature list presented in Table 3 as the Geyer list may be

a promising beginning toward the explicit understanding

of the features underlying capital letters.

The Information Processing Model

Th is study strongly supports assumptions of

(1) variable feature probability, (2) a guessing threshold,

and (3) the importance of response bias. The model also

used assumptions which were not tested at all in this

study. In particular, certain assumptions concerning the

goodness-of-fit criterion for the pandemonium-type

transition process from SE state to LTMC state and the

assumption of independence of feature retrieval

probabilities in the transition from stimulus to SE state

require further study. These are discussed in more detail

in the following sections.

Stimulus Evoked List Degradation

This study assumed that degradation of the SE list

could only result from loss of features, that no spurious

intrusions occur. The assumption does seem consistent

with some of the detailed confusion error pairings found

by Townsend, e.g., E is seen as F more often than F is

seen as E. However, dividing the hit criterion by the size

of the LTM list tends toward that result also, so it may

be that noise intrusions are not inimical to simulation

performance. Perhaps noise intrusions should be tried in

future work.

Computation of Goodness-ofFit

This study employed a criterion of maximum hit

ratio, h *(e) (defined previously) as the sole basis for

response selection. The question arises, should other hit
ratios that are nearly as large as h *(e) receive some

weighted portion of the transition probability from SE

list to response selection? Other questions which could

be systematically explored for improved performance of

the model are: (l) Should the hit ratio be decremented

for features in the SE list and not in the LTM

comparison list (as was the case herein)? (2) Should the

denominator of the hit ratio reflect the size of the LIM

comparison list (as was the case herein)?

Independence ofFeature Retrieval Probabilities

All of the reported work assumed that the value for

Pi> the probability of the it h feature carrying over from

the stimulation to the SE list, was independent of the

context of other features also present in the stimulation.

This assumption is more justifiable on the basis of an

initial simplification for efficiency of study than on

psychological grounds. On the latter basis, interactive

facilitation and/or inhibition seems entirely reasonable.

The implications of such a generalization do not appear

to be severe for the formal model, but the solution

process is expected to be seriously complicated.

Nonetheless, this is a promising avenue toward increased

explanatory power. It would seem quite apparent that

this exploration must include not only solution process

development, but that the empirical evidence base must

be generalized to more than one level of energeticness of

stimulation (fraction correct trials averaged across all

letters). Such extension of Townsend's (1971 a, b) work

will also permit potentially interesting comparisons of

the optimal P vectors across different stimulation levels.

APPENDIX A

Consider the basic form of the sorting net; each
branch point is based on a yes-no decision, i.e., in the
case of recognition by features, a present-absent
decision. Inevitably, there are just as many negative
(absent) branches as there are positive (present). At the
bottom of a basic sorting net, there is always one branch
that is the completely empty route, i.e., the complete
absence of features. The apparent efficiency of a
decision tree is dependent upon using these negative
branches as constructive information for decision
making. However, if we assume that an Sf list may fail
to contain some feature from a particular stimulation,
due to the low energy of that stimulation and/or due to
iconic decay prior to formation of the SE list, then a
decision based solely upon absence of that feature will
suppress the possibility of the SE list's being responded
to as a degraded representation of the original stimulus.
It follows that such use of negative decision branches
suppresses symmetrical confusion errors in favor of a
determined selection of one of the presumably
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Fig. 2, Comparative representation of sequential recognition
processes as decision trees without (2A) and with (2B) capability
to accommodate symmetrical confusion errors.
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confusable responses. Elaboration of the network to
eliminate this limitation inherently involves suppressing
the decision potential of the negative branches by adding
logically redundant tests.

A hypothetical example may make this process
clearer. Suppose that a very simple symbol set is
composed from the three features f 1 , f2, and f3 and that
the members of this set are three symbols: SI is
composed of List I ~ (f I ,f2), S2 is composed of List 2 =
(fI h), S3 is composed of List 3 ~ (f2 JJ). The most
efficient possible sequential sorting net, shown in
Fig. 2A, would always sort L(f3) to S3, whereas
presumably it would be more realistic to sort L(f3) to
equal probability of S3 and S2. Similarly, L(f2) would
always be sorted to S3, whereas 53 and SI should be
equally probable, and L(f 1 ) would always sort to S2,
whereas SI and S2 should be equally probable. Finally,
the empty list, Lfblank), would always sort to S3.
whereas SI, S2, and S3 should be equiprobable. To
correct these deficiencies, the "redundant" tests shown
in Fig. 2B are needed.

The point of this discussion is that the elaborated
network analogous to Fig. 2B for recognition of capital
letters would produce transitional predictions for the SE
to LTMC states which cannot be distinguished from the
parallel process model presented in this paper. Thereby,
it is true that for the data used in this study, and for the
purpose of investigating the merits of particular feature
sets, no loss in generality is implied by assuming a
parallel process.

APPENDIX B

Details of the model and problem formulation are as
follows: Let (I) <t> denote the ordered set of features: f l ,

f2, "', fN • where N denotes the number in the set;
(2) Pi denote the feature retention probability that if
feature f; exists in a stimulus list, then it will be present
in the resultant stimulus-evoked (SE) list; (3) SI denote
the list of features characterizing the [th letter in the
alphabet: (4) J(SI) denote a list (or sublist of features
present in the stimulus list characterization of the [th

letter and present in a resulting SE list (state): (5) K(SI)
denote the list (or sublist ) of features present in the
stimulus list characterizing the Ith letter and not present
in the resulting SE corresponding to J(SI); (6) e[J(S.)]
denote the SE state corresponding to the set of features
1(SI); (7) tl,J(Sl) denote the one-step transition
probflbility from the [t.h letter to the SE state e[J(SI)];
(8) tJ(SI),L denote the one-step transition probability
from SE state e[J(SI)] to the Lth LTMC state; (9) T).L
denote the two-step transition probability from the [th

letter (state) through the SE lists (states) to the Lth
LTMC (state); (10) rl.L denote the empirical response
probability in the confusion matrix from Stimulus
Letter I to Response Letter L: (II) ht e.L) denote the
hit-ratio of the SE state and the (LTMC) letter L; and
(12) f denote the mean of the empirical response
coefficients. Then the transition probabilities are defined
as follows:

T1.L = ~ [t1,J(SI) . t~(SI) L] (2)
all '

J(SI)

= ~ [t~(Sl)'L' 1T Pi 1T (I - PIt)] (3)
all J(SI> K(SI)

J(S 1)

for each (Ll.).

For the no-guessing variants of the model, the L ~

o LTMC state is empty, and T e.L also represents the
three-step transitional probability from Stimulus Letter I

to Response Letter L, T~,L'
With guessing allowed, in addition to the 26 states, L

= 1, 2, "', 26, corresponding to the response letters A
through Z, respectively, the state L = 0 is included in the
model to permit guessing responses. "Guessing" is
effected by the insertion of two thresholds, I ~ T 2 ~ T 1

~ 0 into the transition probabilities.
For each SE state e, compute the hit ratio h( e,L) and

let h*(e) = max[h(e,L)] over all response states L: then
for each Sf state, the transition probabilities are defined
as follows:

For each Sf state e[J(Se)] with h*(e) > T 2 ,

(1)

for each stimulus letter and Sf state: and

for each of the M response letter

states L with hre.L) = h*te)

all other L

(4a)

l4b)
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(5c)
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(6a)

L = 1, 2, 3, .•• , 26

all other L

for L = 0

for L = 0

all other L

o

For each SE state e[l(SI)] with h*(e) < T 1>

h*(e) - T 1 for each of theM response letter

M(T
2

-Td statesLwithh(e,L)=h*(e) (5a)

where

I~ (rl,L - T I,d if ~ (rn - T1,d > 0
1=1 1= 1

€L = (9)

o otherwise

The range of guessing is controlled by varying the

interval (T 1 ,T 2). "No guessing" in the model is achieved

by setting T 1 = T2 = 0 in the above formulas.

If no response bias is permitted, then transitions from

the L = 0 LTMC state to each of the L = I to 26
response states all have probabilities of 1/26. On the

other hand, if response bias is present, the set of

three-step transition probabilities with response bias

TtL is computed from the following formulae

where the response bias associated with letter L (bL ) is

defined as

The ensuing optimization problem is to determine the

vector P of feature probabilities (p 1 , P2, "', PN) which

minimizes the objective stress function,

(10)
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