
H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 7 – 20, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Feature Models, Grammars, and Propositional Formulas

Don Batory

Department of Computer Sciences,
University of Texas at Austin,

Austin, Texas 78712
batory@cs.utexas.edu

Abstract. Feature models are used to specify members of a product-line.
Despite years of progress, contemporary tools often provide limited support for
feature constraints and offer little or no support for debugging feature models.
We integrate prior results to connect feature models, grammars, and
propositional formulas. This connection allows arbitrary propositional
constraints to be defined among features and enables off-the-shelf satisfiability
solvers to debug feature models. We also show how our ideas can generalize
recent results on the staged configuration of feature models.

1 Introduction

A key technical innovation of software product-lines is the use of features to distinguish
product-line members. A feature is an increment in program functionality [29]. A
particular product-line member is defined by a unique combination of features. The set
of all legal feature combinations defines the set of product-line members [23].

Feature models define features and their usage constraints in product-lines
[12][20]. Current methodologies organize features into a tree, called a feature
diagram (FD), which is used to declaratively specify product-line members [2].
Relationships among FDs and grammars [21][13], and FDs and formal models/logic
programming [7][24][26][27] have been noted in the past, but the potential of their
integration is not yet fully realized.

Despite progress, tools for feature models often seem ad hoc; they exhibit odd
limitations and provide little or no support for debugging feature models. This is to be
expected when a fundamental underpinning of feature models is lacking. In this
paper, we integrate prior results to connect FDs, grammars, and propositional
formulas. This connection enables general-purpose, light-weight, and efficient logic
truth maintenance systems (LTMSs)[17] to propagate constraints as users select
features so that inconsistent product specifications are avoided — much like syntax-
directed editors guarantee compilable programs [28]. This connection also allows us
to use off-the-shelf tools, called satisfiability solvers or SAT solvers [16], to help
debug feature models by confirming compatible and incomplete feature sets. To our
knowledge, the use of LTMSs and SAT solvers in feature modeling tools is novel.

Our approach is tutorial. We believe it is important that researchers and
practitioners clearly see the fundamental underpinnings of feature models, and that

dsb
Software Product Line Conference 2005 (See update on page 4)

8 D. Batory

Fig. 1. Feature Diagram Notations

Fig. 2. A Feature Diagram and its Grammar

light-weight and easy-to-build LTMS algorithms and easy-to-use SAT solvers can
help address key weaknesses in existing feature model tools and theories

2 Feature Models

A feature model is a hierarchically arranged set of features. Relationships between a
parent (or compound) feature and its child features (or subfeatures) are categorized
as:

• And — all subfeatures must be selected,
• Alternative — only one subfeature can be selected,
• Or — one or more can be selected,
• Mandatory — features that required, and
• Optional — features that are optional.

Or relationships can have n:m cardinalities: a minimum of n features and at most m
features can be selected [12]. More elaborate cardinalities are possible [13].

A feature diagram is a graphical
representation of a feature model
[23]. It is a tree where primitive
features are leaves and compound
features are interior nodes. Common
graphical notations are depicted in
Figure 1.

Figure 2a is a feature
diagram. It defines a
product-line where each
application contains two
features r and s, where
r is an alternative
feature: only one of G,
H, and I can be present
in an application. s is a
compound feature that
consists of mandatory features A and C, and optional feature B.

Fig. 3. Parent-Child Relationships in FDs

The connection between FDs and grammars is due to de Jong and Visser [21]. We
will use iterative tree grammars. An iterative grammar uses iteration (e.g., one-or-
more t+ and zero-or-more t* constructs) rather than recursion, to express repetition.

 Feature Models, Grammars, and Propositional Formulas 9

A tree grammar requires every token to appear in exactly one pattern, and the name
of every production to appear in exactly one pattern. The root production is an
exception; it is not referenced in any pattern. More general grammars can be used, but
iterative trees capture the minimum properties needed for our discussions.

Figure 3 enumerates the basic hierarchical relationships that can be expressed in a
feature diagram. Each has a straightforward iterative tree grammar representation:

• Figure 3a is the production s:e
1
e

2
...e

n
 assuming all subfeatures are

mandatory. If a subfeature is optional (as is e
2
), it is surrounded by [brackets].

Thus, the production for Figure 3a is s:e
1
[e

2
]...e

n
.

• Figure 3b is the production: s:e
1
| e

2
|...|e

n
.

• Figure 3c corresponds to a pair of rules: s:t+; and t:e
1
 |e

2
 |...|e

n
;

meaning one or more of the e
i
 are to be selected. In general, each non-terminal

node of a feature diagram is a production. The root is the start production;
leaves are tokens. Figure 2b is the grammar of Figure 2a. An application defined
by the feature diagram of Figure 2a is a sentence of this grammar.

Henceforth, we use the following notation for grammars. Tokens are UPPERCASE and
non-terminals are lowercase. r+ denotes one or more instances of non-terminal r;
r* denotes zero or more. [r] and [R] denote optional non-terminal r and optional
token R. A pattern is a named sequence of (possibly optional
or repeating) non-terminals and (possibly optional)
terminals. Consider the production:

r : b+ A C :: First

 | [D] E F :: Second ;

The name of this production is r; it has two patterns
First and Second. The First pattern has one or more
instances of b followed by terminals A and C. The Second
pattern has optional token D followed by terminals E and F.

Grammars provide a graphics-neutral representation of
feature models. For example, the grammar of Figure 2b could be displayed by the FD
of Figure 2a or the GUI of Figure 4. (The GUI doesn’t display features E and F, as
they are mandatory — nothing needs to be selected). A popular Eclipse plug-in
provides other possible graphical representations of FDs (tree and wizard-based), all
of which are derived from a grammar-like specification [2].

In the next section, we show how iterative tree grammars (or equivalently feature
diagrams) are mapped to propositional formulas.

3 Propositional Formulas

Mannion was the first to connect propositional formulas to product-lines [26]; we
show how his results integrate with those of Section 2. A propositional formula is a
set of boolean variables and a propositional logic predicate that constrains the values
of these variables. Besides the standard ∧, ∨, ¬, ⇒, and ⇔ operations of
propositional logic, we also use choose

1
(e

1
…e

k
) to mean at most one of the

Fig. 4. GUI Specification

10 D. Batory

expressions e
1
…e

k
 is true. More generally, choose

n,m
(e

1
…e

k
) means at least n and at

most m of the expressions e
1
…e

k
are true, where 0≤n≤m≤k.

A grammar is a compact representation of a propositional formula. A variable of
the formula is either: a token, the name of a non-terminal, or the name of a pattern.
For example, the production:

r : A B :: P1

 | C [r1] :: P2 ; (1)

has seven variables: three {A, B, C} are tokens, two are non-terminals {r, r1}, and
two are names of patterns {P1, P2}. Given these variables, the rules for mapping a
grammar to a propositional formula are straightforward.

Mapping Productions. Consider production r:P
1
|…|P

n
, which has n patterns

P
1
…P

n
. Production r can be referenced in one of three ways: r (choose one), r+

(choose one or more), and r* (choose zero or more). As r* can be encoded as [r+]
(optionally choose one or more), there are only two basic references: r and r+. The

propositional formulas for both are listed below.

 Pattern Formula
r r⇔choose

1
(P

1
,…,P

n
)

r+ r⇔(P
1
∨…∨P

n
)

Mapping Patterns. A basic term is either a token or a production reference. A
pattern is a sequence of one or more basic terms or optional basic terms. Let P be the
name of a pattern and let t

1
...t

n
 be a sequence of basic terms. The formula for P is:

P⇔t
1
∧ P⇔t

2
∧ ... ∧ P⇔t

n
 (2)

That is, if P is included in a design then terms t
1
...t

n
 are also included, and vice versa.

Consider pattern Q whose second term is optional: t
1
[t

2
]...t

n
. The formula for Q is:

Q⇔t
1
∧ t

2
⇒Q ∧ ... ∧ Q⇔t

n
 (3)

That is, if Q is included in a design then terms t
1
 and t

n
 are also included, and vice

versa. In the case of optional term t
2
, if t

2
 is selected, Q is also selected; however, the

converse is not true.

Using these rules, production (1) would be translated to the following formula:

r⇔choose
1
(P1,P2) ∧ P1⇔A ∧ P1⇔B ∧ P2⇔C ∧ r1⇒P2

Mapping Grammars. The propositional formula of a grammar is the conjunction of:
(i) the formula for each production, (ii) the formula for each pattern, and (iii) the
predicate root=true, where root is the grammar’s start production. The
propositional formula for the grammar of Figure 2b is:

e=true ∧ e⇔r ∧ e⇔s ∧ r⇔choose
1
(G,H,I) ∧ s⇔A ∧ B⇒s ∧ s⇔C

(4)

dsb
Text Box
note that the formula for pattern r is incorrect above. It should be:(r <=> (P1v...vPn)) and atmost1(P1,...Pn) (**)The formula (choose1()<=>r) is true when multiple Pi are true and r is false. The corrected formula is never true when multiple Pi are true. Please consult reference [17], p278 for a definition of atmost1() (see TAXONOMY). The GUIDSL tool described in this paper has always implemented (**).

dsb
Text Box
see note at bottom of this page

 Feature Models, Grammars, and Propositional Formulas 11

Contrary to current literature, feature models are generally not context free grammars.
There are often additional constraints, here called non-grammar constraints, that gov-
ern the compatibility of features. Current tools often limit non-grammar constraints to
simple exclusion (choosing feature I automatically excludes a given feature list) and
inclusion (choosing feature I includes or requires a given feature list). We argue
exclusion and inclusion constraints are too simplistic. In earlier work [4], we
implemented feature models as attribute grammars enabling us to write constraints of
the form:

F implies A or B or C

This means F needs features A, B, or C or any combination thereof. More often, we
found that preconditions for feature usage were based not on a single property but on
sets of properties that could be satisfied by combinations of features, leading to predi-
cates of the form:

F implies (A and X) or (B and (Y or Z)) or C

meaning F needs the feature pairs (A,X), (B,Y), (B,Z), or C, or any combination
thereof. Exclusion constraints had a similar generality. For this reason, we concluded
that non-grammar constraints should be arbitrary propositional formulas. By mapping
a grammar to a propositional formula, we now can admit arbitrary propositional
constraints by conjoining them onto the grammar’s formula. In this way, a feature
model (grammar + constraints) is a propositional formula.

An immediate application of these ideas may help resolve a pesky problem in that
feature models do not have unique representations as feature diagrams. (That is, there
are multiple ways of expressing the same constraints [12]). It is a daunting task to
know if two FDs are equivalent; how tools handle redundant representations is left to
tool implementors [14]. It is possible to show that two FDs are equivalent if their
propositional formulas are equivalent. See [19] for details.

4 Logic Truth Maintenance Systems

Feature models are the basis for declarative domain-specific languages for product
specifications. As users select features for a desired application, we want the
implications of these selections to be propagated, so users cannot write incorrect
specifications. A Logic-Truth Maintenance Systems (LTMS) can used for this purpose.

A LTMS is a classic AI program that maintains the consequences of a
propositional formula. An LTMS application is defined by:

• a set of boolean variables,
• a set of propositional logic predicates to constrain the values of these

variables,1
• premises (assignments to variables that hold universally),
• assumptions (assignments to variables that hold for the moment, but may be

later retracted), and
• inferences (assignments to variables that follow from premises and assump-

tions).

1 Equivalently, a single predicate can be used which is the conjunction of the input predicates.

12 D. Batory

The activities of an LTMS are to:

• compute inferences,
• provide a rationale for variable assignments,
• detect and report contradictions,
• retract and/or make new assumptions, and
• maintain a database of inferences for efficient backtracking.

A SAT (propositional satisfiability) solver relies on an LTMS to help it search the
combinatorial space for a set of variable assignments that satisfy all predicates. The
efficiency of SAT solvers relies on a database of knowledge of previously computed
inferences to avoid redundant or unnecessary searches [17].

What makes an LTMS complicated is (a) how it is to be used (e.g., a SAT solver
requires considerable support) and (b) the number of rules and variables. If the
number is large, then it is computationally infeasible to recompute inferences from
scratch; retractions and new assumptions require incremental updates to existing
assignments. This requires a non-trivial amount of bookkeeping by an LTMS.

Fortunately, a particularly simple LTMS suffices for our needs. First, the number
of rules and variables that arise in feature models isn’t large enough (e.g, in the
hundreds) for performance to be an issue. (Inferences can be recomputed from scratch
in a fraction of a second). Second, searching the space of possible variable
assignments is performed manually by feature model users as they select and deselect
features. Thus, an LTMS that supports only the first three activities previously listed
is needed. Better still, standard algorithms for implementing LTMSs are well-
documented in AI texts [17]. The challenge is to adapt these algorithms to our needs.

The mapping of LTMS inputs to feature models is straightforward. The variables
are the tokens, production names, and pattern names of a grammar. The propositional
formula is derived from the feature model (grammar + constraints). There is a single
premise: root=true. Assumptions are features that are manually selected by users.
Inferences are variable assignments that follow from the premise and assumptions.

In the next sections, we outline the LTMS algorithms that we have used in building
our feature modeling tool guidsl, whose use we illustrate in Section 5.

4.1 LTMS Algorithms

The Boolean Constraint Propagation (BCP) algorithm is the inference engine of an
LTMS. Inputs to a BCP are a set of variables {v

1
…v

m
} and a set of arbitrary

propositional predicates {p
1
…p

n
} whose conjunction p

1
∧…∧p

n
 defines the global

constraint (GC) on variable assignments (i.e., the formula of a feature model). BCP
algorithms require the GC to be in conjunctive normal form (CNF) [17]. Simple and
efficient algorithms convert arbitrary p

j
 to a conjunction of clauses, where a clause is

a disjunction of one or more terms, a term being a variable or its negation [17].
BCP uses three-value logic (true, false, unknown) for variable assignments.

Initially, BCP assigns unknown to all variables, except for premises which it assigns
true. Given a set of variable assignments, each clause C of GC is either:

• satisfied: some term is true.
• violated: all terms are false.

 Feature Models, Grammars, and Propositional Formulas 13

• unit-open: one term is unknown, the rest are false.
• non-unit open: more than one term is unknown and the rest are false.

A unit-open term enables the BCP to change the unknown assignment to true. Thus,
if clause C is x∨¬y and x is false and y is unknown, BCP concludes y is false.

The BCP algorithm maintains a stack S of clauses to examine. Whenever it
encounters a violated clause, it signals a contradiction (more on this later). Assume
for now there are no contradictions. The BCP algorithm is simple: it marches through
S finding unit-open clauses and setting their terms.

while (S is not empty) {
c = S.pop();
if (c.is_unit_open) {
 let t be term of c whose value is unknown;
 set(t);
}

 }

set(t) — setting a term — involves updating the term’s variable’s assignment
(e.g., if t is ¬y then y is assigned false), pushing unit-open terms onto S, and
signalling contradictions:

set variable of t so that t is true;
for each clause C of GC containing ¬t {

if (C.is_unit_open) S.push(C);
else
if (C.is_violated) signal_contradiction();

}

Invoking BCP on its initial assignment to variables propagates the consequences of
the premises. For each subsequent assumption, the variable assignment is made and
BCP is invoked. Let L be the sequence of assumptions (i.e., user-made variable
assignments). The consequences that follow from L are computed by:

for each variable l in L {
set(l);
BCP();

}

If an assumption is retracted, it is simply removed from L.

A contradiction reveals an inconsistency in the feature model. When contradictions
are encountered, they (and their details) must be reported to the feature model
designers for model repairs.

Example. Suppose a feature model has the contradictory predicates x⇒y and y⇒¬x.
If x=true is a premise, BCP infers y=true (from clause x⇒y), and discovers clause
(y⇒¬x) to be violated, thus signalling a contradiction.

Explanations for why a variable has a value (or why a contradiction occurs) requires
extra bookkeeping. Each time BCP encounters a unit-open clause, it keeps a record of
its conclusions by maintaining a 3-tuple of its actions <conclusion, reason,
{antecedents}> where conclusion is a variable assignment, reason is the predicate
(or clause) that lead to this inference, and antecedents are the 3-tuples of variables

14 D. Batory

whose values were referenced. By traversing antecedents backwards, a justification
for a conclusion can be presented in a human-understandable form.

Example. The prior example generates a pair of tuples: #1:<x=true, premise,
{}} and #2:<y=true, x⇒y, {#1}>. The explanation for y=true is: x=true is a
premise and y=true follows from x⇒y.

4.2 A Complete Specification

A product specification (or equivalently, a variable assignment) is complete if the GC
predicate is satisfied. What makes this problem interesting is how the GC predicate is
checked. Assume that a user specifies a product by selecting features from a GUI or
FD. When a feature is selected, the variable for that feature is set to true; a
deselection sets it to unknown. (Inferencing can set a variable to true or false).
Under normal use, users can only declare the features that they want, not what they
don’t want.

At the time that a specification is to be output, all variables whose values are
unknown are assumed false (i.e., these features are not to be in the target product).
The GC is then evaluated with this variable assignment in mind. If the GC predicate is
satisfied, a valid configuration of the feature model has been specified. However, if a
clause of GC fails, then either a complete sentence has not yet been specified or
certain non-grammar constraints are unsatisfied. In either case, the predicate that
triggered the failure is reported thus providing guidance to the user on how to
complete the specification. This guidance is usually helpful.

5 An Example

We have built a tool, called guidsl, that implements the ideas in the previous
sections. guidsl is part of the AHEAD Tool Suite [5] a set of tools for product-line
development that support feature modularizations and their compositions. In the
following section, we describe a classical product line and the guidsl
implementation of its feature model.

5.1 The Graph Product Line (GPL)

The Graph Product-Line (GPL) is a family of graph applications that was inspired by
early work on modular software extensibility [29]. Each GPL application implements
one or more graph algorithms. A guidsl feature model for GPL (i.e., its grammar +
constraints) is listed in Figure 5, where token names are not capitalized.

The semantics of the GPL domain are straightforward. A graph is either Directed
or Undirected. Edges can be Weighted with non-negative numbers or
Unweighted. A graph application requires at most one search algorithm: depth-first
search (DFS) or breadth-first search (BFS), and one or more of the following
algorithms:

 Feature Models, Grammars, and Propositional Formulas 15

Algorithm Required
Graph Type

Required
Weight

Required
Search

Vertex Numbering Any Any
BFS,
DFS

Connected Components Undirected Any
BFS,
DFS

Strongly Connected
Components

Directed Any DFS

Cycle Checking Any Any DFS

Minimum Spanning
Tree

Undirected Weighted None

Shortest Path Directed Weighted None

Fig. 6. Feature Constraints in GPL

• Vertex Numbering (Number): A unique number is assigned to each vertex.
• Connected Components (Connected): Computes the connected components

of an undirected graph, which are equivalence classes under the reachable-from
relation. For every pair of vertices x and y in a component, there is a path from
x to y.

• Strongly Connected Components (StrongC): Computes the strongly
connected components of a directed graph, which are equivalence classes under
the reachable relation. Vertex y is reachable from vertex x if there is a path from
x to y.

• Cycle Checking (Cycle): Determines if there are cycles in a graph. A cycle in
directed graphs must have at least 2 edges, while in undirected graphs it must
have at least 3 edges.

• Minimum Spanning Tree (MSTPrim, MSTKruskal): Computes a Minimum
Spanning Tree (MST), which contains all the vertices in the graph such that the
sum of the weights of the edges in the tree is minimal.

• Single-Source Shortest Path (Shortest): Computes the shortest path from a
source vertex to all other vertices.

// grammar

GPL : Driver Alg+ [Src] [Wgt] Gtp :: MainGpl ;
Gtp : Directed | Undirected ;
Wgt : Weighted | Unweighted ;
Src : BFS | DFS ;
Alg : Number | Connected | Transpose StronglyConnected :: StrongC

| Cycle | MSTPrim | MSTKruskal | Shortest ;
Driver : Prog Benchmark :: DriverProg ;

%% // constraints

Number implies Src ;
Connected implies Undirected and Src ; StrongC implies Directed
and DFS ;
Cycle implies DFS ;
MSTKruskal or MSTPrim implies Undirected and Weighted ;
MSTKruskal or MSTPrim implies not (MSTKruskal and MSTPrim) ; //#
Shortest implies Directed and Weighted ;

Fig. 5. GPL Model

The grammar that defines the order in which GPL features are composed is shown
in Figure 5. Not all combinations of features are possible. The rules that govern
compatibilities are taken directly from algorithm texts [11] and are listed in Figure 6.
These constraints are listed
as additional propositional
formulas (below the %% in
Figure 5). When combined
with the GPL grammar, a
feature model for GPL is
defined. Note: MSTKrus-
kal and MSTPrim are
mutually exclusive
(constraint # in Figure 5); at
most one can be selected in a
GPL product.

16 D. Batory

The GUI that is generated from Figure 5 is shown in Figure 7. The state that is shown
results from the selection of MSTKruskal — the Weighted and Undirected features
are automatically selected as a consequence of constraint propagation. Further,
Shortest, MSTPrim, StrongC, Unweighted, and Directed are greyed out,
meaning that they are no longer selectable as doing so would create an inconsistent
specification. Using an LTMS to propagate constraints, users can only create correct
specifications. In effect, the generated GUI is a declarative domain-specific language
that acts as a syntax-directed editor which prevents users from making certain errors.

Although not illustrated, guidsl allows additional variables to be declared in the
constraint section to define properties. Feature constraints can then be expressed in
terms of properties, like that in [4], to support our observations in Section 3.

Another useful capability of LTMSs is to provide a justification for automatically
selected/deselected features. We have incorporated this into guidsl: placing the
mouse over a selected feature, a justification (in the form of a proof) is displayed. In
the example of Figure 7, the justification for Undirected being selected is:

MSTKruskal because set by user

Undirected because ((MSTKruskal or MSTPrim)) implies

((Undirected and Weighted))

Meaning that MSTKruskal was set by the user, and Undirected is set because the
selection of MSTKruskal implies Undirected and Weighted. More complex expla-
nations are generated as additional selections are made.

Fig. 7. Generated GUI for the GPL Model

5.2 Debugging Feature Models

Debugging a feature model without tool support is notoriously difficult. When we
debugged feature models prior to this work, it was a laborious, painstaking, and error-
prone effort to enumerate feature combinations. By equating feature models with
propositional formulas, the task of debugging is substantially simplified.

An LTMS is helpful in debugging feature models, but only to a limited extent.
Only if users select the right combination of features will a contradiction be exposed.
But models need not have contradictions to be wrong (e.g., Number implies

 Feature Models, Grammars, and Propositional Formulas 17

Weight). More help is needed. Given a propositional formula and a set of variable
assignments, a SAT solver can determine whether there is a value assignment to the
remaining variables that will satisfy the predicate. Thus, debugging scripts in guidsl
are simply statements of the form <S,L> where L is a list of variable assignments and
S is true or false. If S is true, then the SAT solver is expected to confirm that L
is a compatible set of variable assignments; if S is false, the solver is expected to
confirm that L is an incompatible set of assignments. Additional simple automatic
tests, not requiring a SAT solver, is to verify that a given combination of features
defines a product (i.e., a legal and complete program specification). Both the SAT
solver and complete-specification-tests were instrumental in helping us debug the
GPL feature model.

It is straightforward to list a large number of tests to validate a model; test suites
can be run quickly. (SAT solvers have become very efficient, finding variable
assignments for thousands of variables in minutes). Although we cannot prove a
model is correct, we are comforted by the fact that we can now run a much more
thorough set of tests on our models automatically than we could have performed
previously.

6 Staged Configuration Models

Staged configuration has recently been proposed as an incremental way to
progressively specialize feature models [13][14]. At each stage, different groups or
developers make product configuration choices, rather than a configuration being
specified by one person at one time. Specializations involve the selection or
deselection of features and adding more constraints (e.g., converting a one-or-more
selection to single selection).

Staged configuration is accomplished by (1) simplifying the grammar by
eliminating choices or making optional choices mandatory, and (2) simplifying the
non-grammar constraints. Both are required ([14] addresses grammar simplification).
By limiting changes only to grammars, it is possible to preselect MSTKruskal and
deselect Unweighted in a staged configuration and adjust the GPL grammar (making
MSTKruskal mandatory and removing Unweighted). But the resulting model is
unsatisfiable, as MSTKruskal requires Unweighted.

A generalization of the GUI presented earlier could be used to accomplish staged
specifications. Each selectable feature will require a toggle that allows a feature to be
selected (true), deselected (false), or to postpone its choice to a later stage
(unknown). In this way, designers can distinguish features that are preselected from
those that are permanently removed. The LTMS algorithm remains unchanged;
constraints are propagated as before guaranteeing that the resulting model is
consistent. Inferred feature selections and deselections can be used to further simplify
the grammar and its non-grammar constraints.

More generally, where constraints on non-boolean variables (e.g. performance
constraints) are part of a feature model, a more general logic, constraint propagation
algorithms, and predicate simplification algorithms will be needed [15]. However, our

18 D. Batory

work applies to many existing feature models, and we believe that current results on
staged configuration can be improved for these cases with our suggestions.

7 Related Work

There is a great deal of prior work on feature modeling. For brevity, we focus on the
key papers that are relevant. Some feature modeling tools support arbitrary
propositional formulas [8][10], but these formulas are validated at product-build time,
not incrementally as features are selected. We are aware that technologies that
dynamically prune the design space — similar to that presented in this paper — may
be known to pockets of researchers in industry (e.g., [1][7][18]), but the basic
relationship of feature models, attribute grammars, and propositional formulas does
not seem to be widely appreciated or understood.

The connection of feature models to grammars is not new. In 1992, Batory and
O’Malley used grammars to specify feature models [3], and in 1997 showed how
attribute grammars expressed non-grammar constraints [4]. In 2002, de Jonge and
Visser recognized that feature diagrams were context free grammars. Czarnecki,
Eisenecker, et al. have since used grammars to simplify feature models during staged
configuration [12].

The connection of product-line configurations with propositional formulas is due to
Mannion [26]. Beuche [7] and Pure::Variants [27] translate feature models into
Prolog. Prolog is used as a constraint inference engine to accomplish the role of an
LTMS. Non-grammar constraints are expressed by inclusion and exclusion
predicates; while user-defined constraints (i.e., Prolog programs) could be arbitrary.
We are unaware of tools that follow from [7] to debug feature models.

Neema, Sztipanovits, and Karsai represent design spaces as trees, where leaves are
primitive components and interior nodes are design templates [24]. Constraints among
nodes are expressed as OCL predicates, and so too are resource and performance
constraints. Ordered binary decision diagrams (OBDDs) are used to encode this
design space, and operations on OBDDs are used to find solutions (i.e., designs that
satisfy constraints), possibly through user-interactions.

Concurrently and independently of our work, Benavides, Trinidad, and Ruiz-
Cortes [6] also noted the connection between feature models and propositional
formulas, and recognized that handling additional performance, resource, and other
constraints is a general constraint satisfaction problem (CSP), which is not limited to
the boolean CSP techniques discussed in this paper. We believe their work is a
valuable complement to our paper; read together, it is easy to imagine a new and
powerful generation of feature modeling tools that leverage automated analyses.

8 Conclusions

In this paper, we integrated existing results to expose a fundamental connection
between FDs, grammars, and propositional formulas. This connection has enabled us
to leverage light-weight, efficient, and easy-to-build LTMSs and off-the-shelf SAT

 Feature Models, Grammars, and Propositional Formulas 19

solvers to bring useful new capabilities to feature modeling tools. LTMSs provide a
simple way to propagate constraints as users select features in product specifications.
SAT solvers provide automated support to help debug feature models. We believe that
the use of LTMSs and SAT solvers in feature model tools is novel. Further, we
explained how work on staged configuration models could be improved by integrating
non-grammar constraints into a staging process.

We believe that the foundations presented in this paper will be useful in future
tools for product-line development.

Acknowledgements. I thank Ben Kuipers and Ray Mooney for directing me to the
literature on LTMSs. I gratefully acknowledge the helpful comments from the
referees, Mark Grechanik, Jack Sarvela, and Jack Greenfield. I thank Daniel Le Berre
for his help with the SAT4J solver. I also thank Jun Yuan, Karim Jamal, and Maria
Zolotova for their help in building guidsl.

References

[1] American Standard, http://www.americanstandard-us.com/planDesign/
[2] M. Antkiewicz and K. Czarnecki, “FeaturePlugIn: Feature Modeling Plug-In for

Eclipse”, OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop, 2004.
[3] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software

Systems with Reusable Components”, ACM TOSEM, October 1992.
[4] D. Batory and B.J. Geraci, “Composition Validation and Subjectivity in GenVoca

Generators”, IEEE TSE, February 1997, 67-82.
[5] D. Batory, AHEAD Tool Suite, www.cs.utexas.edu/users/schwartz/ATS.html
[6] D. Benavides, P. Trinidad, and A. Ruiz-Cortes, “Automated Reasoning on Feature

Models”, Conference on Advanced Information Systems Engineering (CAISE), July
2005.

[7] D. Beuche, “Composition and Construction of Embedded Software Families”, Ph.D.
thesis, Otto-von-Guericke-Universitaet, Magdeburg, Germany, 2003.

[8] Big Lever, GEARS tool, http://www.biglever.com/
[9] BMW, http://www.bmwusa.com/

[10] Captain Feature, https://sourceforge.net/projects/captainfeature/
[11] T.H. Cormen, C.E. Leiserson, and R.L.Rivest. Introduction to Algorithms, MIT

Press,1990.
[12] K. Czarnecki and U. Eisenecker. Generative Programming Methods, Tools, and

Applications. Addison-Wesley, Boston, MA, 2000.
[13] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing Cardinality-based Feature

Models and their Specialization”, Software Process Improvement and Practice, 2005
10(1).

[14] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged Configuration Through
Specialization and Multi-Level Configuration of Feature Models”, Software Process
Improvement and Practice, 10(2), 2005.

[15] K. Czarnecki, private correspondence, 2005.
[16] N. Eén and N. Sörensson, “An extensible SAT solver”. 6th International Conference on

Theory and Applications of Satisfiability Testing, LNCS 2919, p 502-518, 2003.
[17] K.D. Forbus and J. de Kleer, Building Problem Solvers, MIT Press 1993.
[18] Gateway Computers. http://www.gateway.com/index.shtml

20 D. Batory

[19] M. Grechanik and D. Batory, “Verification of Dynamically Reconfigurable Applica-
tions”, in preparation 2005.

[20] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi, Software Factories: Assembling
Applications with Patterns, models, Frameworks and Tools, Wiley, 2004.

[21] M. de Jong and J. Visser, “Grammars as Feature Diagrams”.
[22] D. Streitferdt, M. Riebisch, I. Philippow, “Details of Formalized Relations in Feature

Models Using OCL”. ECBS 2003, IEEE Computer Society, 2003, p. 297-304.
[23] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. “Feature-Oriented Domain

Analysis (FODA) Feasibility Study”. Technical Report, CMU/SEI-90TR-21, November
1990.

[24] S. Neema, J. Sztipanovits, and G. Karsai, “Constraint-Based Design Space Exploration
and Model Synthesis”, EMSOFT 2003, LNCS 2855, p. 290-305.

[25] R.E. Lopez-Herrejon and D. Batory, “A Standard Problem for Evaluating Product-Line
Methodologies”, GCSE 2001, September 9-13, 2001 Messe Erfurt, Erfurt, Germany.

[26] M. Mannion, “Using first-order logic for product line model validation”. 2nd Software
Product Line Conf. (SPLC2), #2379 in LNCS, 176–187, 2002.

[27] Pure-Systems, “Technical White Paper: Variant Management with pure::variants”,
www.pure-systems.com, 2003.

[28] T. Teitelbaum and T. Reps, “The Cornell Program Synthesizer: a Syntax-Directed
Programming Environment”, CACM, v.24 n.9, p.563-573, Sept. 1981.

[29] P. Zave, “FAQ Sheet on Feature Interactions”, www.research.att.com/~pamela/faq.html

