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Abstract. Feature models are used to specify members of a product-line. 
Despite years of progress, contemporary tools often provide limited support for 
feature constraints and offer little or no support for debugging feature models. 
We integrate prior results to connect feature models, grammars, and 
propositional formulas. This connection allows arbitrary propositional 
constraints to be defined among features and enables off-the-shelf satisfiability 
solvers to debug feature models. We also show how our ideas can generalize 
recent results on the staged configuration of feature models.  

1   Introduction 

A key technical innovation of software product-lines is the use of features to distinguish 
product-line members. A feature is an increment in program functionality [29]. A 
particular product-line member is defined by a unique combination of features. The set 
of all legal feature combinations defines the set of product-line members [23].  

Feature models define features and their usage constraints in product-lines 
[12][20]. Current methodologies organize features into a tree, called a feature 
diagram (FD), which is used to declaratively specify product-line members [2]. 
Relationships among FDs and grammars [21][13], and FDs and formal models/logic 
programming [7][24][26][27] have been noted in the past, but the potential of their 
integration is not yet fully realized.  

Despite progress, tools for feature models often seem ad hoc; they exhibit odd 
limitations and provide little or no support for debugging feature models. This is to be 
expected when a fundamental underpinning of feature models is lacking. In this 
paper, we integrate prior results to connect FDs, grammars, and propositional 
formulas. This connection enables general-purpose, light-weight, and efficient logic 
truth maintenance systems (LTMSs)[17] to propagate constraints as users select 
features so that inconsistent product specifications are avoided — much like syntax-
directed editors guarantee compilable programs [28]. This connection also allows us 
to use off-the-shelf tools, called satisfiability solvers or SAT solvers [16], to help 
debug feature models by confirming compatible and incomplete feature sets. To our 
knowledge, the use of LTMSs and SAT solvers in feature modeling tools is novel.  

Our approach is tutorial. We believe it is important that researchers and 
practitioners clearly see the fundamental underpinnings of feature models, and that 
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Fig. 1. Feature Diagram Notations 

Fig. 2. A Feature Diagram and its Grammar 
 

light-weight and easy-to-build LTMS algorithms and easy-to-use SAT solvers can 
help address key weaknesses in existing feature model tools and theories  

2   Feature Models 

A feature model is a hierarchically arranged set of features. Relationships between a 
parent (or compound) feature and its child features (or subfeatures) are categorized 
as:  

• And — all subfeatures must be selected,  
• Alternative — only one subfeature can be selected,  
• Or — one or more can be selected,  
• Mandatory — features that required, and  
• Optional — features that are optional.  

Or relationships can have n:m cardinalities: a minimum of n features and at most m 
features can be selected [12]. More elaborate cardinalities are possible [13].  

A feature diagram is a graphical 
representation of a feature model 
[23]. It is a tree where primitive 
features are leaves and compound 
features are interior nodes. Common 
graphical notations are depicted in 
Figure 1.  

Figure 2a is a feature 
diagram. It defines a 
product-line where each 
application contains two 
features r and s, where 
r is an alternative 
feature: only one of G, 
H, and I can be present 
in an application. s is a 
compound feature that 
consists of mandatory features A and C, and optional feature B.  

 

Fig. 3. Parent-Child Relationships in FDs 

The connection between FDs and grammars is due to de Jong and Visser [21]. We 
will use iterative tree grammars. An iterative grammar uses iteration (e.g., one-or-
more t+ and zero-or-more t* constructs) rather than recursion, to express repetition. 
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A tree grammar requires every token to appear in exactly one pattern, and the name 
of every production to appear in exactly one pattern. The root production is an 
exception; it is not referenced in any pattern. More general grammars can be used, but 
iterative trees capture the minimum properties needed for our discussions.  

Figure 3 enumerates the basic hierarchical relationships that can be expressed in a 
feature diagram. Each has a straightforward iterative tree grammar representation:  

• Figure 3a is the production s:e
1 
e

2
...e

n
 assuming all subfeatures are 

mandatory. If a subfeature is optional (as is e
2
), it is surrounded by [brackets]. 

Thus, the production for Figure 3a is s:e
1 
[e

2
]...e

n
.  

• Figure 3b is the production: s:e
1 
| e

2 
|...|e

n
. 

• Figure 3c corresponds to a pair of rules: s:t+; and t:e
1
 |e

2
 |...|e

n
; 

meaning one or more of the e
i
 are to be selected. In general, each non-terminal 

node of a feature diagram is a production. The root is the start production; 
leaves are tokens. Figure 2b is the grammar of Figure 2a. An application defined 
by the feature diagram of Figure 2a is a sentence of this grammar.  

Henceforth, we use the following notation for grammars. Tokens are UPPERCASE and 
non-terminals are lowercase. r+ denotes one or more instances of non-terminal r; 
r* denotes zero or more. [r] and [R] denote optional non-terminal r and optional 
token R. A pattern is a named sequence of (possibly optional 
or repeating) non-terminals  and (possibly optional) 
terminals. Consider the production:  

r : b+ A C  :: First 

     | [D] E F  :: Second ; 

The name of this production is r; it has two patterns 
First and Second. The First pattern has one or more 
instances of b followed by terminals A and C. The Second 
pattern has optional token D followed by terminals E and F.  

Grammars provide a graphics-neutral representation of 
feature models. For example, the grammar of Figure 2b could be displayed by the FD 
of Figure 2a or the GUI of Figure 4. (The GUI doesn’t display features E and F, as 
they are mandatory — nothing needs to be selected). A popular Eclipse plug-in 
provides other possible graphical representations of FDs (tree and wizard-based), all 
of which are derived from a grammar-like specification [2].  

In the next section, we show how iterative tree grammars (or equivalently feature 
diagrams) are mapped to propositional formulas.  

3   Propositional Formulas 

Mannion was the first to connect propositional formulas to product-lines [26]; we 
show how his results integrate with those of Section 2. A propositional formula is a 
set of boolean variables and a propositional logic predicate that constrains the values 
of these variables. Besides the standard ∧, ∨, ¬, ⇒, and ⇔ operations of 
propositional logic, we also use choose

1
(e

1
…e

k
) to mean at most one of the 

 

Fig. 4. GUI Specification 
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expressions e
1
…e

k
 is true. More generally, choose

n,m
(e

1
…e

k
) means at least n and at 

most m of the expressions e
1
…e

k 
are true, where 0≤n≤m≤k.  

A grammar is a compact representation of a propositional formula. A variable of 
the formula is either: a token, the name of a non-terminal, or the name of a pattern. 
For example, the production:  

r : A B  :: P1 

    | C [r1]  :: P2 ;                      (1) 

has seven variables: three {A, B, C} are tokens, two are non-terminals {r, r1}, and 
two are names of patterns {P1, P2}. Given these variables, the rules for mapping a 
grammar to a propositional formula are straightforward.  

Mapping Productions. Consider production r:P
1
|…|P

n
, which has n patterns 

P
1
…P

n
. Production r can be referenced in one of three ways: r (choose one), r+ 

(choose one or more), and r* (choose zero or more). As r* can be encoded as [r+] 
(optionally choose one or more), there are only two basic references: r and r+. The 

propositional formulas for both are listed below.  

  Pattern Formula  
r  r⇔choose

1
(P

1
,…,P

n
) 

r+  r⇔(P
1
∨…∨P

n
)  

Mapping Patterns. A basic term is either a token or a production reference. A 
pattern is a sequence of one or more basic terms or optional basic terms. Let P be the 
name of a pattern and let t

1
...t

n
 be a sequence of basic terms. The formula for P is:  

P⇔t
1 
∧ P⇔t

2 
∧ ... ∧ P⇔t

n 
                                    (2)  

That is, if P is included in a design then terms t
1
...t

n
 are also included, and vice versa. 

Consider pattern Q whose second term is optional: t
1 
[t

2
]...t

n
. The formula for Q is:  

Q⇔t
1 
∧ t

2
⇒Q ∧ ... ∧ Q⇔t

n 
                                    (3) 

That is, if Q is included in a design then terms t
1
 and t

n
 are also included, and vice 

versa. In the case of optional term t
2
, if t

2
 is selected, Q is also selected; however, the 

converse is not true.  

Using these rules, production (1) would be translated to the following formula: 

r⇔choose
1
(P1,P2) ∧ P1⇔A ∧ P1⇔B ∧ P2⇔C ∧ r1⇒P2 

Mapping Grammars. The propositional formula of a grammar is the conjunction of:  
(i) the formula for each production, (ii) the formula for each pattern, and (iii) the 
predicate root=true, where root is the grammar’s start production. The 
propositional formula for the grammar of Figure 2b is:  

e=true ∧ e⇔r ∧ e⇔s ∧ r⇔choose
1
(G,H,I) ∧ s⇔A ∧ B⇒s ∧ s⇔C  

(4) 

dsb
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Contrary to current literature, feature models are generally not context free grammars. 
There are often additional constraints, here called non-grammar constraints, that gov-
ern the compatibility of features. Current tools often limit non-grammar constraints to 
simple exclusion (choosing feature I automatically excludes a given feature list) and 
inclusion (choosing feature I includes or requires a given feature list). We argue 
exclusion and inclusion constraints are too simplistic. In earlier work [4], we 
implemented feature models as attribute grammars enabling us to write constraints of 
the form:  

F implies A or B or C 

This means F needs features A, B, or C or any combination thereof. More often, we 
found that preconditions for feature usage were based not on a single property but on 
sets of properties that could be satisfied by combinations of features, leading to predi-
cates of the form:  

F implies (A and X) or (B and (Y or Z)) or C 

meaning F needs the feature pairs (A,X), (B,Y), (B,Z), or C, or any combination 
thereof. Exclusion constraints had a similar generality. For this reason, we concluded 
that non-grammar constraints should be arbitrary propositional formulas. By mapping 
a grammar to a propositional formula, we now can admit arbitrary propositional 
constraints by conjoining them onto the grammar’s formula. In this way, a feature 
model (grammar + constraints) is a propositional formula.  

An immediate application of these ideas may help resolve a pesky problem in that 
feature models do not have unique representations as feature diagrams. (That is, there 
are multiple ways of expressing the same constraints [12]). It is a daunting task to 
know if two FDs are equivalent; how tools handle redundant representations is left to 
tool implementors [14]. It is possible to show that two FDs are equivalent if their 
propositional formulas are equivalent. See [19] for details.  

4   Logic Truth Maintenance Systems 

Feature models are the basis for declarative domain-specific languages for product 
specifications. As users select features for a desired application, we want the 
implications of these selections to be propagated, so users cannot write incorrect 
specifications. A Logic-Truth Maintenance Systems (LTMS) can used for this purpose.  

A LTMS is a classic AI program that maintains the consequences of a 
propositional formula. An LTMS application is defined by:  

• a set of boolean variables,  
• a set of propositional logic predicates to constrain the values of these 

variables,1 
• premises (assignments to variables that hold universally),  
• assumptions (assignments to variables that hold for the moment, but may be 

later retracted), and  
• inferences (assignments to variables that follow from premises and assump- 

tions).  
                                                           
1  Equivalently, a single predicate can be used which is the conjunction of the input predicates.  
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The activities of an LTMS are to:  

• compute inferences,  
• provide a rationale for variable assignments,  
• detect and report contradictions,  
• retract and/or make new assumptions, and  
• maintain a database of inferences for efficient backtracking.  

A SAT (propositional satisfiability) solver relies on an LTMS to help it search the 
combinatorial space for a set of variable assignments that satisfy all predicates. The 
efficiency of SAT solvers relies on a database of knowledge of previously computed 
inferences to avoid redundant or unnecessary searches [17].  

What makes an LTMS complicated is (a) how it is to be used (e.g., a SAT solver 
requires considerable support) and (b) the number of rules and variables. If the 
number is large, then it is computationally infeasible to recompute inferences from 
scratch; retractions and new assumptions require incremental updates to existing 
assignments. This requires a non-trivial amount of bookkeeping by an LTMS.  

Fortunately, a particularly simple LTMS suffices for our needs. First, the number 
of rules and variables that arise in feature models isn’t large enough (e.g, in the 
hundreds) for performance to be an issue. (Inferences can be recomputed from scratch 
in a fraction of a second). Second, searching the space of possible variable 
assignments is performed manually by feature model users as they select and deselect 
features. Thus, an LTMS that supports only the first three activities previously listed 
is needed. Better still, standard algorithms for implementing LTMSs are well-
documented in AI texts [17]. The challenge is to adapt these algorithms to our needs.  

The mapping of LTMS inputs to feature models is straightforward. The variables 
are the tokens, production names, and pattern names of a grammar. The propositional 
formula is derived from the feature model (grammar + constraints). There is a single 
premise: root=true. Assumptions are features that are manually selected by users. 
Inferences are variable assignments that follow from the premise and assumptions.  

In the next sections, we outline the LTMS algorithms that we have used in building 
our feature modeling tool guidsl, whose use we illustrate in Section 5.  

4.1   LTMS Algorithms  

The Boolean Constraint Propagation (BCP) algorithm is the inference engine of an 
LTMS. Inputs to a BCP are a set of variables {v

1
…v

m
} and a set of arbitrary 

propositional predicates {p
1
…p

n
} whose conjunction p

1
∧…∧p

n
 defines the global 

constraint (GC) on variable assignments (i.e., the formula of a feature model). BCP 
algorithms require the GC to be in conjunctive normal form (CNF) [17]. Simple and 
efficient algorithms convert arbitrary p

j
 to a conjunction of clauses, where a clause is 

a disjunction of one or more terms, a term being a variable or its negation [17].  
BCP uses three-value logic (true, false, unknown) for variable assignments. 

Initially, BCP assigns unknown to all variables, except for premises which it assigns 
true. Given a set of variable assignments, each clause C of GC is either:  

• satisfied: some term is true.  
•  violated: all terms are false.  
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•  unit-open: one term is unknown, the rest are false.  
•  non-unit open: more than one term is unknown and the rest are false.  

A unit-open term enables the BCP to change the unknown assignment to true. Thus, 
if clause C is x∨¬y and x is false and y is unknown, BCP concludes y is false.  

The BCP algorithm maintains a stack S of clauses to examine. Whenever it 
encounters a violated clause, it signals a contradiction (more on this later). Assume 
for now there are no contradictions. The BCP algorithm is simple: it marches through 
S finding unit-open clauses and setting their terms.  

while (S is not empty) { 
c = S.pop(); 
if (c.is_unit_open) { 
   let t be term of c whose value is unknown; 
   set(t); 
} 

   } 

set(t) — setting a term — involves updating the term’s variable’s assignment 
(e.g., if t is ¬y then y is assigned false), pushing unit-open terms onto S, and 
signalling contradictions:  

set variable of t so that t is true; 
for each clause C of GC containing ¬t {  

if (C.is_unit_open) S.push(C); 
else  
if (C.is_violated) signal_contradiction(); 

} 

Invoking BCP on its initial assignment to variables propagates the consequences of 
the premises. For each subsequent assumption, the variable assignment is made and 
BCP is invoked. Let L be the sequence of assumptions (i.e., user-made variable 
assignments). The consequences that follow from L are computed by:  

for each variable l in L { 
set(l); 
BCP(); 

} 

If an assumption is retracted, it is simply removed from L.  

A contradiction reveals an inconsistency in the feature model. When contradictions 
are encountered, they (and their details) must be reported to the feature model 
designers for model repairs.  

Example. Suppose a feature model has the contradictory predicates x⇒y and y⇒¬x. 
If x=true is a premise, BCP infers y=true (from clause x⇒y), and discovers clause 
(y⇒¬x) to be violated, thus signalling a contradiction.  

Explanations for why a variable has a value (or why a contradiction occurs) requires 
extra bookkeeping. Each time BCP encounters a unit-open clause, it keeps a record of 
its conclusions by maintaining a 3-tuple of its actions <conclusion, reason, 
{antecedents}> where conclusion is a variable assignment, reason is the predicate 
(or clause) that lead to this inference, and antecedents are the 3-tuples of variables  
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whose values were referenced. By traversing antecedents backwards, a justification 
for a conclusion can be presented in a human-understandable form.  

Example. The prior example generates a pair of tuples: #1:<x=true, premise, 
{}} and #2:<y=true, x⇒y, {#1}>. The explanation for y=true is: x=true is a 
premise and y=true follows from x⇒y.  

4.2   A Complete Specification  

A product specification (or equivalently, a variable assignment) is complete if the GC 
predicate is satisfied. What makes this problem interesting is how the GC predicate is 
checked. Assume that a user specifies a product by selecting features from a GUI or 
FD. When a feature is selected, the variable for that feature is set to true; a 
deselection sets it to unknown. (Inferencing can set a variable to true or false). 
Under normal use, users can only declare the features that they want, not what they 
don’t want.  

At the time that a specification is to be output, all variables whose values are 
unknown are assumed false (i.e., these features are not to be in the target product). 
The GC is then evaluated with this variable assignment in mind. If the GC predicate is 
satisfied, a valid configuration of the feature model has been specified. However, if a 
clause of GC fails, then either a complete sentence has not yet been specified or 
certain non-grammar constraints are unsatisfied. In either case, the predicate that 
triggered the failure is reported thus providing guidance to the user on how to 
complete the specification. This guidance is usually helpful.  

5   An Example 

We have built a tool, called guidsl, that implements the ideas in the previous 
sections. guidsl is part of the AHEAD Tool Suite [5] a set of tools for product-line 
development that support feature modularizations and their compositions. In the 
following section, we describe a classical product line and the guidsl 
implementation of its feature model.  

5.1   The Graph Product Line (GPL)  

The Graph Product-Line (GPL) is a family of graph applications that was inspired by 
early work on modular software extensibility [29]. Each GPL application implements 
one or more graph algorithms. A guidsl feature model for GPL (i.e., its grammar + 
constraints) is listed in Figure 5, where token names are not capitalized.  

The semantics of the GPL domain are straightforward. A graph is either Directed 
or Undirected. Edges can be Weighted with non-negative numbers or 
Unweighted. A graph application requires at most one search algorithm: depth-first 
search (DFS) or breadth-first search (BFS), and one or more of the following 
algorithms:  
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Algorithm  Required 
Graph Type  

Required 
Weight  

Required 
Search  

Vertex Numbering  Any  Any  
BFS, 
DFS  

Connected Components  Undirected  Any  
BFS, 
DFS  

Strongly Connected 
Components  

Directed  Any  DFS  

Cycle Checking  Any  Any  DFS  

Minimum Spanning 
Tree  

Undirected  Weighted  None  

Shortest Path  Directed  Weighted  None  

Fig. 6. Feature Constraints in GPL 

• Vertex Numbering (Number): A unique number is assigned to each vertex.  
• Connected Components (Connected): Computes the connected components 

of an undirected graph, which are equivalence classes under the reachable-from 
relation. For every pair of vertices x and y in a component, there is a path from 
x to y.  

• Strongly Connected Components (StrongC): Computes the strongly 
connected components of a directed graph, which are equivalence classes under 
the reachable relation. Vertex y is reachable from vertex x if there is a path from 
x to y.  

• Cycle Checking (Cycle): Determines if there are cycles in a graph. A cycle in 
directed graphs must have at least 2 edges, while in undirected graphs it must 
have at least 3 edges.  

• Minimum Spanning Tree (MSTPrim, MSTKruskal): Computes a Minimum 
Spanning Tree (MST), which contains all the vertices in the graph such that the 
sum of the weights of the edges in the tree is minimal.  

• Single-Source Shortest Path (Shortest): Computes the shortest path from a 
source vertex to all other vertices. 

// grammar  
 
GPL : Driver Alg+ [Src] [Wgt] Gtp :: MainGpl ; 
Gtp : Directed | Undirected ; 
Wgt : Weighted | Unweighted ; 
Src : BFS | DFS ; 
Alg : Number | Connected | Transpose StronglyConnected :: StrongC  

| Cycle | MSTPrim | MSTKruskal | Shortest ; 
Driver : Prog Benchmark :: DriverProg ; 

 
%% // constraints 

 
Number implies Src ; 
Connected implies Undirected and Src ; StrongC implies Directed 
and DFS ; 
Cycle implies DFS ; 
MSTKruskal or MSTPrim implies Undirected and Weighted ; 
MSTKruskal or MSTPrim implies not (MSTKruskal and MSTPrim) ; //# 
Shortest implies Directed and Weighted ; 

Fig. 5. GPL Model 

The grammar that defines the order in which GPL features are composed is shown 
in Figure 5. Not all combinations of features are possible. The rules that govern 
compatibilities are taken directly from algorithm texts [11] and are listed in Figure 6. 
These constraints are listed 
as additional propositional 
formulas (below the %% in 
Figure 5). When combined 
with the GPL grammar, a 
feature model for GPL is 
defined. Note: MSTKrus- 
kal and MSTPrim are 
mutually exclusive 
(constraint # in Figure 5); at 
most one can be selected in a 
GPL product.  
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The GUI that is generated from Figure 5 is shown in Figure 7. The state that is shown 
results from the selection of MSTKruskal — the Weighted and Undirected features 
are automatically selected as a consequence of constraint propagation. Further, 
Shortest, MSTPrim, StrongC, Unweighted, and Directed are greyed out, 
meaning that they are no longer selectable as doing so would create an inconsistent 
specification. Using an LTMS to propagate constraints, users can only create correct 
specifications. In effect, the generated GUI is a declarative domain-specific language 
that acts as a syntax-directed editor which prevents users from making certain errors.  

Although not illustrated, guidsl allows additional variables to be declared in the 
constraint section to define properties. Feature constraints can then be expressed in 
terms of properties, like that in [4], to support our observations in Section 3.  

Another useful capability of LTMSs is to provide a justification for automatically 
selected/deselected features. We have incorporated this into guidsl: placing the 
mouse over a selected feature, a justification (in the form of a proof) is displayed. In 
the example of Figure 7, the justification for Undirected being selected is:  

MSTKruskal because set by user 

Undirected because ((MSTKruskal or MSTPrim)) implies 

((Undirected and Weighted)) 

Meaning that MSTKruskal was set by the user, and Undirected is set because the 
selection of MSTKruskal implies Undirected and Weighted. More complex expla-
nations are generated as additional selections are made.  

 

Fig. 7. Generated GUI for the GPL Model 

5.2   Debugging Feature Models  

Debugging a feature model without tool support is notoriously difficult. When we 
debugged feature models prior to this work, it was a laborious, painstaking, and error-
prone effort to enumerate feature combinations. By equating feature models with 
propositional formulas, the task of debugging is substantially simplified.  

An LTMS is helpful in debugging feature models, but only to a limited extent. 
Only if users select the right combination of features will a contradiction be exposed. 
But models need not have contradictions to be wrong (e.g., Number implies 
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Weight). More help is needed. Given a propositional formula and a set of variable 
assignments, a SAT solver can determine whether there is a value assignment to the 
remaining variables that will satisfy the predicate. Thus, debugging scripts in guidsl 
are simply statements of the form <S,L> where L is a list of variable assignments and 
S is true or false. If S is true, then the SAT solver is expected to confirm that L 
is a compatible set of variable assignments; if S is false, the solver is expected to 
confirm that L is an incompatible set of assignments. Additional simple automatic 
tests, not requiring a SAT solver, is to verify that a given combination of features 
defines a product (i.e., a legal and complete program specification). Both the SAT 
solver and complete-specification-tests were instrumental in helping us debug the 
GPL feature model.  

It is straightforward to list a large number of tests to validate a model; test suites 
can be run quickly. (SAT solvers have become very efficient, finding variable 
assignments for thousands of variables in minutes). Although we cannot prove a 
model is correct, we are comforted by the fact that we can now run a much more 
thorough set of tests on our models automatically than we could have performed 
previously.  

6   Staged Configuration Models 

Staged configuration has recently been proposed as an incremental way to 
progressively specialize feature models [13][14]. At each stage, different groups or 
developers make product configuration choices, rather than a configuration being 
specified by one person at one time. Specializations involve the selection or 
deselection of features and adding more constraints (e.g., converting a one-or-more 
selection to single selection).  

Staged configuration is accomplished by (1) simplifying the grammar by 
eliminating choices or making optional choices mandatory, and (2) simplifying the 
non-grammar constraints. Both are required ([14] addresses grammar simplification). 
By limiting changes only to grammars, it is possible to preselect MSTKruskal and 
deselect Unweighted in a staged configuration and adjust the GPL grammar (making 
MSTKruskal mandatory and removing Unweighted). But the resulting model is 
unsatisfiable, as MSTKruskal requires Unweighted.  

A generalization of the GUI presented earlier could be used to accomplish staged 
specifications. Each selectable feature will require a toggle that allows a feature to be 
selected (true), deselected (false), or to postpone its choice to a later stage 
(unknown). In this way, designers can distinguish features that are preselected from 
those that are permanently removed. The LTMS algorithm remains unchanged; 
constraints are propagated as before guaranteeing that the resulting model is 
consistent. Inferred feature selections and deselections can be used to further simplify 
the grammar and its non-grammar constraints.  

More generally, where constraints on non-boolean variables (e.g. performance 
constraints) are part of a feature model, a more general logic, constraint propagation 
algorithms, and predicate simplification algorithms will be needed [15]. However, our 
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work applies to many existing feature models, and we believe that current results on 
staged configuration can be improved for these cases with our suggestions.  

7   Related Work  

There is a great deal of prior work on feature modeling. For brevity, we focus on the 
key papers that are relevant. Some feature modeling tools support arbitrary 
propositional formulas [8][10], but these formulas are validated at product-build time, 
not incrementally as features are selected. We are aware that technologies that 
dynamically prune the design space — similar to that presented in this paper — may 
be known to pockets of researchers in industry (e.g., [1][7][18]), but the basic 
relationship of feature models, attribute grammars, and propositional formulas does 
not seem to be widely appreciated or understood.  

The connection of feature models to grammars is not new. In 1992, Batory and 
O’Malley used grammars to specify feature models [3], and in 1997 showed how 
attribute grammars expressed non-grammar constraints [4]. In 2002, de Jonge and 
Visser recognized that feature diagrams were context free grammars. Czarnecki, 
Eisenecker, et al. have since used grammars to simplify feature models during staged 
configuration [12].  

The connection of product-line configurations with propositional formulas is due to 
Mannion [26]. Beuche [7] and Pure::Variants [27] translate feature models into 
Prolog. Prolog is used as a constraint inference engine to accomplish the role of an 
LTMS. Non-grammar constraints are expressed by inclusion and exclusion 
predicates; while user-defined constraints (i.e., Prolog programs) could be arbitrary. 
We are unaware of tools that follow from [7] to debug feature models.  

Neema, Sztipanovits, and Karsai represent design spaces as trees, where leaves are 
primitive components and interior nodes are design templates [24]. Constraints among 
nodes are expressed as OCL predicates, and so too are resource and performance 
constraints. Ordered binary decision diagrams (OBDDs) are used to encode this 
design space, and operations on OBDDs are used to find solutions (i.e., designs that 
satisfy constraints), possibly through user-interactions.  

Concurrently and independently of our work, Benavides, Trinidad, and Ruiz-
Cortes [6] also noted the connection between feature models and propositional 
formulas, and recognized that handling additional performance, resource, and other 
constraints is a general constraint satisfaction problem (CSP), which is not limited to 
the boolean CSP techniques discussed in this paper. We believe their work is a 
valuable complement to our paper; read together, it is easy to imagine a new and 
powerful generation of feature modeling tools that leverage automated analyses.  

8   Conclusions 

In this paper, we integrated existing results to expose a fundamental connection 
between FDs, grammars, and propositional formulas. This connection has enabled us 
to leverage light-weight, efficient, and easy-to-build LTMSs and off-the-shelf SAT 
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solvers to bring useful new capabilities to feature modeling tools. LTMSs provide a 
simple way to propagate constraints as users select features in product specifications. 
SAT solvers provide automated support to help debug feature models. We believe that 
the use of LTMSs and SAT solvers in feature model tools is novel. Further, we 
explained how work on staged configuration models could be improved by integrating 
non-grammar constraints into a staging process.  

We believe that the foundations presented in this paper will be useful in future 
tools for product-line development.  
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