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FEATURE-ORIENTED IMAGE ENHANCEMENT USING SHOCK FILTERS*

STANLEY OSHERT anp LEONID I. RUDINY

Abstract. Shock filters for image enhancement are developed. The filters use new nonlinear time
dependent partial differential equations and their discretizations. The evolution of the initial image uy(x, y)
as 1= 00 into a steady state solution u(x, y) through u(x, y, 1), t=>0, is the filtering process. The partial
differential equations have solutions which satisfy a maximum principle. Moreover the total variation of
the solution for any fixed #>0 is the same as that of the initial data. The processed image is piecewise
smooth, nonoscillatory, and the jumps occur across zeros of an elliptic operator (edge detector). The
algorithm is relatively fast and easy to program.
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1. Introduction. A basic step in the processing of signals (images, radar, acoustic
signals) is enhancement. By this we mean the removal of blurring.

An elementary example of blurring comes from the degradation of a signal through
some kind of convolution. More precisely, let

x=(xy," ", x,)eR",
and let u(x) be the original real valued function which is blurred through convolution
with a kernel: j(x)

(1.1) wo(x)=j *k u=u *J’=J J(x=y)u(y) dy.

Typically, j has the following properties:
j(x)=0,

(12) j(x)- 0 rapidly as |x|- o0, where |x|=(x}+x3+- - - +x2)"/?,
1.

J‘ j(x)ds=1.
R“
Examples include for any 1> 0:

1
(1.3a) j“)(x) = W o~ (x40 (the heat kernel),

(1.3b) JPx) =72,
7*?(|x]) is strictly decreasing with |x| for |x|<1,
JP(x)=0 if|x|=1,
jeC™.

Then consider for any §=>0
1 ixF)
(2) 2 o A
Js anJ ( 5 )
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920 STANLEY OSHER AND LEONID I. RUDIN

We call j§ a “mollifying” kernel:

1 8 é
(1.3¢) j%”(x)sy {x/—iéx;éi, i= ,---,n],

jP(x)=0 otherwise,
7§ is the “box” kernel.
If we take the Fourier transform of (1.1) we arrive at
(1.4) Wo(£) = J(£)d(&).

To recover u(x), we need to deconvolve, i.e., to reverse the procedure in (1.1). From
(1.4), this amounts to dividing by j(£) and applying the inverse Fourier transform.
The problem with this procedure, otl course, is that this is generally very ill-posed.
Since j is usually relatively smooth, j(£) - 0 rapidly as |£]-> oo, and large frequencies
in Wy(£) get amplified considerably.

The function w(x) is often taken to be band limited, i.e., w(£&)=0 for |£| large
enough, say for |£|> N for each i=1,- - -, n. An important example of this comes
through discretization. Let w,(x) be a grid function defined at grid points

(x:)1=1h,

f=1,"',ﬂ; [_—_(jl’...,]n),
=0,%+1,---,+N; (2N+1)h=1,
x,=Ih,

and suppose wj, is extended to be periodic on the grid with

(1.5)

wi(x+e) = wy(x)

for each ¢,=(0,0,---,1,0,---,0), where the 1 occurs in the ith component, i=

" T‘;lf -grid function has a unique trigonometric interpolant

(1.6) Twy(x) =2 (), "%,

where the sum is taken over the cube: —N=L=N, i=1,---, N and
(1.7) Iwy(x)) = wy(x;)

for each grid point x;.

See, e.g., [7] for a description of this interpolant and its properties.

Thus deconvolution on a grid amounts to multiplying each discrete Fourier
coefficient (,); by (j(1))~". This number typically grows like |/| to some positive
power, or even like the exponential of a positive power of |I|. If w,, is the discretization
of a very smooth function, then the coefficients (w,), decay rapidly—perhaps more
rapidly than the growth in (j(1))~'. However, there is generally high frequency noise
in all this, i.e., the discretization itself can well introduce nonsmooth, but low amplitude,
roundoff errors. Deconvolution in this simple fashion will amplify this noise in a very
unstable manner.

The situation is far worse if the underlying function w, which is sampled on grid
points, is only piecewise continuous—if it has jumps or jumps in derivatives. Then
there exist two problems.

The first is global. It was shown in [9] that there is a global error between the
interpolant Iw, and w which is, e.g., O(h) for functions that have jumps. This is true
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ENHANCEMENT USING SHOCK FILTERS 921

globally, i.e., at any finite distance from the discontinuity. More seriously, any attempt
to approximate w by either a Fourier interpolant Iw,, or a truncated Fourier transform
of w, e.g., by considering

(1.8) pEW(E)

for

will lead to Gibbs’ phenomena. These are 0(1) errors near the discontinuity in w(x),
which do not disappear as m,, m,~> (or h}0). These errors cause the well-known
phenomenon of “ringing”’ in image processing. This is particularly problematic for the
machine processing of images. Thus, an attempt to deconvolve without amplifying
high frequency errors due to noise, by cutting off the high frequencies, will lead to
severe oscillations near the discontinuities of the original function w.

The procedures discussed so far are all linear and/or all involve the Fourier
transform of w. This way of thinking is inherently problematic for the processing of
images that are only piecewise smooth.

We remark that feature-dependent image processing was tried in [18]. There a
filter was used which is the sum of two components—a linear low pass and a linear
high pass filter. This leads to a generally oscillatory procedure of limited practical
value. It does, however, represent a first attempt to perform a context sensitive
enhancement.

It was pointed out in [14], [15] that images are dominated by the geometry of
their features—edges, corners, lines, etc. In fact, the space of functions of bounded
variation appears to be the correct class for image analysis.

In [14] the concepts and techniques developed in the numerical solution of
nonlinear hyperbolic equations were applied for the first time to feature-oriented image
enhancement. There the first experimental shock filter, based on a modification of the
nonlinear Burgers’ equation was used. However, this first shock filter did not incorporate
the crucial feature-detector switch, the total variation preserving (TVP) computational
approach, and the theoretical basis developed herein.

Both subjects (image enhancement, shock calculations) deal with the discrete
representation of discontinuous functions. The relevant concepts include: characteristic
speed, variation diminishing, or essentially nonoscillatory approximations, the need
for nonlinear approximations to linear problems, and compressive methods. See, e.g.,
[1], [13] for overviews of this subject.

In this paper, the first of a series, we develop shock filters for image enhancement.
(Our next paper will consider deconvolution in the presence of noise.) The filters use
nonlinear time-dependent partial differential equations. The evolution of the initial
data uy(x) into a steady state solution u.(x) as t-co through u(x, t), t>0, is the
filtering process. The partial differential equations have solutions that satisfy a
maximum principle and more. In fact, the total variation of the solution for any fixed
positive time is the same as that of the initial data, i.e., the operator is total variation
preserving. The steady state solution is achieved relatively quickly in most cases, and
this is the processed image. The initial data is, of course, the discretization of the
original image.

The processed image is piecewise smooth. In fact, it is a solution of any one of
a class of second-order elliptic partial differential equations in regions of smoothness.
The jumps occur across the zeros of the elliptic operator applied to the initial data.
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922 STANLEY OSHER AND LEONID I. RUDIN

The essential features of the true image are recovered in many cases—these include:
number of jumps, relative size of jumps, and location of jumps. In some more special
cases, given the knowledge of the method of blurring, our results can be made exact
if the blurring (e.g., 8 in (1.3b)) is not too large.

We will draw from experience in the numerical solution of hyperbolic problems
that have discontinuous solutions. Such a problem is exemplified by a scalar conserva-
tion law

(1.9a) u+f(u),=0
to be solved for —co< x <oo(xe R'), t >0 with initial data:
(1.9b) u(x, 0) = ug(x).
If f"# 0, then the solution generally develops discontinuities even for very smooth
up(x).
For a small time the solution is constant along characteristics; i.e.,
(1.10) u(x, 1) =uo(x —f'(u)1)

for t sufficiently small. This means that u is constant along characteristics: x —f'(u)t =
constant. In finite time these characteristics generally intersect and shocks develop,
i.e., the solution becomes a weak solution. This solution is typically piecewise con-
tinuous with jumps across curves satisfying

dx_[f]

dr [u]’
whose [ ] denotes the jump across the curve.
The modern way to solve this problem numerically uses a shock-capturing method.
The solution, shocks and all, is obtained through a single, globally defined algorithm.
We approximate (1.8) by setting up a grid: x; =ih, t" =nAt

i=0,+1,42,---, n=0,1,---.

3

A shock-capturing approximation is, by definition, in conservation form:

n n AI n n
(1.11) Mf+l=u.- —I (8;+|;2_85—1J2),
where
(1.12) g?+u2=3("?—k,'",“?+k+|)

is the numerical flux approximating f(u); g is Lipschitz continuous with:
glu,u, - -+, u)=f(u).

This guarantees that bounded almost everywhere convergent sequences of solutions
to (1.11) will yield weak solutions of (1.9) [8].

Of course, much more than conservation form is needed for a good scheme.
Obvious issues involve stability and convergence. A more subtle issue involves accuracy
in the presence of discontinuities. Schemes which are simple (e.g., linear if f(u) is
linear, f(u) = au) and which do not generate oscillations near discontinuities of the
solution must, of necessity, be only first-order accurate (see, e.g., [2], [6]). Thus they
smear discontinuities badly.

A great deal of successful work has been done to overcome this limitation. See,
e.g., [5], [16], [17]. The goal is to get highly accurate (in regions of smoothness)
methods that resolve discontinuities sharply and accurately in a nonoscillatory way.
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ENHANCEMENT USING SHOCK FILTERS 923

In the next sections we will borrow ideas from shock calculations, modify them
appropriately, and apply them to image enhancement.

The format of this work is as follows.

In § 2, we will discuss a one-dimensional enhancement procedure. We set up a
new partial differential equation (PDE) which acts as our enhancement filter and
describe its (surprising) properties. We then set up a total variation preserving (TVP)
approximation to this PDE, describe its properties, and perform numerical experiments.

In § 3, we extend the procedure of § 2 to two space dimensions, i.e., to real images.
The rigorous mathematical theory of this problem in two dimensions is not as extensive.
However, we do have a local discrete maximum principle for this algorithm. The
numerical schemes seem to yield the described enhancement features. This will be
demonstrated again by numerical experiments on real pictures in § 4.

A big difference between one and two dimensions comes in the freedom of choice
regarding which second-order elliptic operator to use in the enhancement PDE. This
is equivalent to the choice of edge detector used. The zero level curves of this operator
(generalized inflection points) applied to the initial data will give us the location of
the edges of our enhanced image. The final enhanced image will be a piecewise smooth
function that satisfies the homogeneous elliptic equation in regions of smoothness.

The numerical method we use below to enhance images is fast. It is an O(kN)
method. Here N is the number of points (pixels) on the screen and k is the number
of time iterations. In practice, significant improvement occurs very quickly, and there-
fore k is quite small. The method also involves only very local operations—communica-
tion between pixels located more than two or three points apart is nil. Thus the code
parallelizes quite easily.

The method results in a piecewise constant enhanced image in one dimension;
however, as we stated above, the result is a piecewise smooth function which locally
solves a homogeneous elliptic equation in two dimensions. In one dimension we show
below that our enhancement is an exact deconvolution for data that was originally
piecewise constant, then blurred, as long as the edges were not originally too close.
This is true quite independently of the details of the convolution kernel used to blur
the image. We believe a similar result to be true in two dimensions for piecewise
smooth functions that are locally solutions to the above-mentioned elliptic equation.

We mention that any noise in our blurry image will also (unfortunately) be
enhanced by our procedure. We are currently using related nonlinear partial differential
equation type ideas to obtain an edge-preserving noise removal algorithm. We will
report on this in the near future.

Finally, we note that the usefulness of our procedure is limited when a significant
amount of information is lost through the blurring process, i.e., features may merge
or change topologically. In this case we expect to develop and use more sophisticated
shock filters together with information about the blurring degradation parameters.

2. One-dimensional enhancement. We begin by considering the equation
(2.1a) =~ F ()
to be solved for all x, t =0 with initial data:
(2.1b) u(x, 0) = uy(x).
Here the Lipschitz continuous function F satisfies
(i) F(0)=0,

(2.1¢c)
(i) X(u)F(u)=>0, u#0,
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924 STANLEY OSHER AND LEONID 1. RUDIN

where X (u)=1if u>0, X(u)=-1if u<0, X(0)=0.
An example is:

{2'2) u, = _lux|uxx-

This looks at first like an extremely ill-posed problem. The coefficient of u,, is never
positive. In fact it is negative except at extrema of u where it vanishes. This initial
value problem turns out to be well posed, or at least to satisfy the following a priori
estimates (which are true for (2.1a-c) with general F satisfying (2.2))

(1) TVu(-, 1)=TVu(-),
(2.3) (ii) max u(-, t) =max uy(-),

(iii) minu(-, t) =min uy(-).

The intuitive reason for the validity of these estimates is as follows. The solution
to (2.2) stays smooth initially at smooth extrema. Thus, since u, vanishes at these
points, u, also vanishes and maxima and minima stay invariant in time.

This same argument works for

(2.4) Uy = || .

Also the time-reversed version of our approximation to (2.2) (see (2.10a) with the
— sign made +) satisfies a discrete version of (2.3). However, P. L. Lions has pointed
out to us (private communication) that viscosity solutions (see e.g., [19]) to (2.4)
written in conservation form develop singularities immediately at extrema in such a
way that (9/9x)(|u,|u,/2) stays away from zero; the resulting value of u, is then such
that the extrema diminish in magnitude as time increases. The same is true for monotone
conservation form approximations to (2.4), and we have found that the time-reversed
version of such schemes which approximate (2.2) apparently become unstable very
quickly. One such monotone conservation form scheme is described below in (2.21).

Thus, we are not seeking solutions to (2.2) in the class of time-reversed viscosity
solutions. Instead we are committed to variation preservation as a constraint on
solutions of (2.2) in particular, and (2.1a) in general.

We can best exemplify the behavior of this enhancement procedure by taking a
case which is outside our definition, in that F is not Lipschitz continuous. Let

F(u)=X(u).

Then u satisfies:
(2.5a) u,==+u, ifu, #0,
(2.5b) u,=0 if u,=0.

We thus have a simple linear advection equation in which the direction of propagation
changes sign or becomes zero at extrema and at inflection points of u. An interesting
example comes from taking

(2.5¢) uy(x) = cos x.

Then
o
u(x,t)=cos(x—1t) for t<x45,
(2.6) u(x,1)=1 for —t<x<t,

u(x, t)=cos (x+1t) for —;jéx{—t.

This content downloaded from 128.220.220.177 on Mon, 21 Jul 2014 10:55:24 AM
All use subject to JSTOR Terms and Conditions




ENHANCEMENT USING SHOCK FILTERS 925

t=0 =T <t<= = =z
x 2 0 2 x=t x 2
m
==+t x=m+t
x 3 [ g
" N | 1 "
LI | M
T T m
0<t<— - =— x=3—-
2 x=t x 2 5
FiG. 2.1

By symmetry, discontinuities develop at x=(2k+1)3, k=0, +1, +2,- - -.
Finally, at t =7 and for all 1> 7, the enhanced image is:

oo = (—1)" for(2k—1)g4x<(2k+1)—§.

To show that the transformation
Up=> Ux

is an approximate deconvolution, we consider what it does to convolution of a step
function by j§(x) as defined in (1.3b).
Let w(x) be a step function with values

(2.7) wx)=w, in L ={x/x,_»=x<x,,},

where the real line is the union of all these I,’s. Let 0<d =inf, [x,.,,,— X,_,,,]. Finally,
take 0< & <4 be given.
Define

(2.8) uy=j % w.
It is easy to see that
up(x)=w, forx, ,,+8<x<x,:y5—8,
up(x) = (Wyur = w,)js (X = X, 41/2),
for
Xpp12— 6 <X <X,112T 0,

) (2)

ug(x) = (wv+1 — W, {x _xv+l,.-"2)'
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926 STANLEY OSHER AND LEONID 1. RUDIN

Thus, for x between x,.,,,— 8 and x,,,,,+ 8, u, moves strictly monotonically from w,
to w,., after which it becomes constant until x reaches x,.;,,—8. Also u, has only
one inflection point in this interval, and that is at x = x,.,,,,. We have the following
theorem.

- THeorewm 2.1. If F = X in (2.1a), then the transformation u,~ u., with u,=j5 % w
for 8 <4 yields u..= w where w is the step function defined in (2.7). Thus the shock filter
is an exact deconvolution in this case.

Remark (2.1). We are tacitly assuming that the discontinuities developing in (2.1)
occur exactly where we want them—at inflection points of the initial data, where the
characteristics intersect. This is borne out by all our numerical experiments.

Our theory for solutions to (2.1) comes from the following. If we differentiate
(2.1) with respect to x, multiply by X(u,) and integrate the result with respect to x,
we arrive at

F) 3
(2.9) gjluxl=—Jc?—x(uxF(uxx))=0

if u is eventually constant for |x| large. This proof is rigorously true as long as u stays
smooth. Moreover, our discrete approximation has this property for general initial
data. Thus we have the following conjecture.

ConsecTurE 2.1. The evolution equation, (2.1), with uy(x) continuous, has a
unique solution u(x, ) which has jumps only at inflection points of uy(x) and for
which the total variation in x of u(x, t) is invariant in time, as are the location and
value of local extrema.

We now set up a discrete approximation to (2.1) which preserves the variation
and the size and location of extrema. We approximate (2.1) by

A+A_uf')

(2.10a) u:‘+1=u;’—%‘fm{a+u;’, _u;')[F( e

Here m(x, y) is the minmod function defined by

_ [ (sign x) min (|x|,[y]) if xy>0,
(2.10b) 1'1'1{)47,}’]1—{0 if xy=0,
and
(2.10c) Ay =%(up, —u;).

Call F(A,A_u?/h*)=F7?. Then
At t
(@11) A=Al =S ul, A D)+ 5 Im(A u, Aud)|F.

We require (CFL restriction)
At Frs 1
up — i ="
P 2

It is now easy to see that the right side of (2.6) has the same sign as A, u] (and vanishes
if A u] =0). Thus we have

&I n n n n
|A+u?+1| = |A+u?| _; X:‘+1f2|m(A+ui+] , A u; )|F:'+1
(2.12)
AI n n n n
+;’X.'+|,r2 |m(Aul, A_u})|F7,
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ENHANCEMENT USING SHOCK FILTERS 927

where
X;T+l.-"2 =sign A, u;.

By the definition of the minmod function, it follows that

(2.13) Xieralm(Bouien, Aoul)| = xTisolm(Boufsy, Acul)l.

Thus we arrive at:

214 Bt =8| =5 A (8t & )|

Finally

(2.15) TV ") = [A,ul | =T [A,ul] = TV(u").

This is a total variation preserving (TVP) method. Moreover, if u,f;” is a local maximum

n+1

for uj™', then since sign A, u],"' =sign A u] and sign A_u},"' =sign A_u],, then u] is
a local maxima for u;. By the definition of minmod it follows that

n+l n
i Wi
0 0

The same is true for u]."', a local minima. We now have the following theorem.

THEOREM 2.2. The scheme (2.10) enforces a local maximum and minimum prin-
ciple—in fact such local extrema remain unchanged in time. Moreover the scheme is TVP.

Thus, for fixed At, h, as n - o the sequence of discrete solutions has a convergent
subsequence; we call the limit (4™), the discrete processed image. (Uniqueness of the
limit is unclear at this time.)

As At—=0, h—0, the sequence of discrete solutions also has a convergent sub-
sequence (the continuum processed image), and again uniqueness of the limit has not
been proven.

Let

max (x, 0)=x",
min (x,0)=x".

Then it turns out that we may rewrite (2.10a) equivalently as

ul! =u:‘-%t V(A w) )+ () Y (F)
(2.16)

A
—~h-' J(Bow) P+ (Bou) Y (FD)*

If we fix the value of F] to be constant ¢, then (2.16) is Godunov’'s method
approximating

(2.17) u, = —|uc;

see, e.g., [2], [11]. We chose this method because, among three point approximations
to (2.17) that are monotone, this is the most compressive, i.e., the least dissipative [11].
This scheme (2.16) is almost monotone in the sense that if (F})” is a fixed constant
less than or equal to zero or (F}')" is a fixed constant greater than or equal to zero,
then the right-hand side is a nondecreasing function of the u;.

The fact that (2.16) is of the form:

(2.18) ultt =ul g (utey, ul ul ) (FY) "+ g (uly, ul, ul )(F7)',
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928 STANLEY OSHER AND LEONID I. RUDIN

where the right-hand side is a nondecreasing function of its arguments for “frozen™
values of (F}")™, (F?)", and where g"(¢, ¢, ¢) =g (¢, ¢, ¢) =0, for any constant ¢, means
that

(2.19) min (ui_;, uf, uly,) S ui ' =max (ufy, uf, uly).

This provides us with a different local maximum and minimum principle than those
referred to in Theorem 2.2 above.
To approximate (2.4) written in conservation form, i.e., as:

3 qulux)
2.20 = )
( ) “ ax( 2

we might try a conservative scheme

At [A ull (A+u’-'))
2.21 oyt — _
(2.21a) T ‘L( n h )

which is monotone if

(2.21b) m?xi—;[|A+uf|+|A_u?|]§1.
This is guaranteed if
(2.21¢) 4(2—: max |u?[) <1

is true initially.

As At, h -0, this scheme will converge to the viscosity solution of this initial value
problem. If the + is replaced by — in (2.21a), the resulting scheme is extremely unstable.

We repeat, therefore, that the scheme (2.16) is constructed in order to preserve
variation. This immediately takes us far away from the concept of viscosity solutions
for parabolic equations.

In a sense our difference operator is too compressive. Isolated extrema are
unchanged. The procedure, for example, does not remove ‘“‘salt and pepper noise
effects.” In succeeding papers, we shall apply related ideas to the development of
noise removing shock filters.

It is easy to see that discrete piecewise constants are left invariant by (2.10). So
are piecewise linear, continuous profiles with extrema coinciding with the “kinks,”
i.e., jumps in derivative. In order to accept general piecewise linear functions we may

modify F}.

Let

- A A ul! A A u! AA ul

(2.22) Fi= F(m[ 2 mE 0 p? ]),
where minmod of n numbers is defined by induction:
(2.23) ml(x', %%, -+, x")]=m[(x),- - -, x"7"),x"].

Our modified scheme is:

n+1 n At e

(2.24) u"'=uf —-r}!—[m[A_u[’,A+u,-"][F,’-'.
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ENHANCEMENT USING SHOCK FILTERS 929

2.1. Results of one-dimensional implementation of the shock filter. We now present
the computed time evolution of one-dimensional wave forms acted upon by the shock
filter described by the scheme (2.10a). In the following plots the edge switch F in
(2.10a) is taken to be:

(2.25) F =sign (A A_uy).

Plots 1(a)-1(e) demonstrate the enhancement procedure applied to the function
of 1(b) which is a slightly diffused version of the sinusoid in Plot 1(a). The evolution
procedure, with stationary inflection points, which correspond here to zeros of the
function, eventually produces a steady state 1(e) which is a “square wave.” Observe
that the transformation is a continuous process, for otherwise, by knowing the TVP
nature of (2.1a) we could have done the same just by finding inflection points and
extrema and then performing thresholding. However, such an algorithm would result
in a futile exercise if we tried to extend it to a two-dimensional calculation. Furthermore,
(2.1a) will be generalized in a subsequent paper to include reconstruction of higher
derivatives, i.e., to allow growth of the extrema (losing the TVP property); hence no
thresholding could give the desired enhancement (which could be enhancements of
higher derivatives).

The sequence Plot 2(a)-2(f) demonstrates that the edge development process is
not necessarily producing smooth wave forms culminating in a piecewise constant
function, but also that breaks in derivatives (“kinks™) do develop (see 2(b)).

Again the significance of the one-dimensional filter is not just necessarily the
steady state result, but the continuous process it produces. Incidentally, we intend to
experiment with this class of filters on one-dimensional speech-wave forms to determine
if any perceptible speech enhancement results. In this case the transitory solution is
of interest.

3. Two-dimensional enhancement. We now consider the equation
(3.1a) u,=—vul+u, F(L(u))
to be solved for all x, y, and for t =0, with initial data

(3.1b) u(x, y,0) = up(x, y).

Here F(u) satisfies (2.1c). Also & (u) is a second-order, (generally) nonlinear elliptic
operator.

The general idea for the construction of the multidimensional shock filter should
be evident by now.

In both of the equations (2.1a) and (3.1a) we have nonlinear combination of the
propagation term: |Vu|-magnitude of the gradient and an edge-detection term F(£(u))
whose desired behavior involves changing sign across any essential singular feature
so that the local flow field is directed towards the features. Thus the edge formation
and sharpening process will occur at the places where

(3.2a) PL(u)=0.

Thus the choice of #(u) is governed by how faithfully the zero crossings of this
differential operator define edges of the processed image.
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The scheme of D. Marr (well known in computer vision literature) works by
finding zeros of

(3.2b) F(u) =V*(u(x, y) * G(x, y)),

where G(x, y) is a two-dimensional Gaussian. Since the function we are processing
has already been blurred, i.e., convolved with a Gaussian, the choice for an edge
operator would be

(3.2¢) #(u)=u. +u,, (the Laplacian).

The reader is referred to [15] for the rigorous local analysis of this and a host of
other edge-detectors. In [15] an analytical tool (called the numerical analysis of
singularities) is developed in order to evaluate the behavior of “feature detectors” in
the vicinity of singularities. There it is shown that the detector (3.2¢) will entirely miss
any geometrically nontrivial singular boundaries. Since the generalized Laplacian does
not contain any curvature-dependent term, it is curvature insensitive. A somewhat
better version of (3.2¢) is a scheme in which edges are extracted from the zero crossings
of second directional derivatives [4]. We shall skip the polynomial approximation of
[4] and simply set

(3.2d) L(U) =t Uz +2 - ug e, +u,, - ul,

which is simply an expression for the second derivative of u in the direction of the
gradient. _
We finally normalize F(u) by

- F(u)
(3.2¢e) F(u)_1+iF(u)|'
It should be noted here that the enhancement procedure is only as good as the quality
of the feature detector it utilizes. The choice of (3.2d) is governed by a compromise
between the quality of filtering and the computational complexity limitations, for the
shock filter needs to recompute the “edge-switch™ in the beginning of each iteration.

We believe that a superior quality of enhancement should result from the kind of
local feature detectors proposed in [15]. A fast (perhaps wavelet transform based)
“edge” transform is needed.

The estimate analogous to that in (2.9) is unfortunately lacking here. We rederive
a result used in [3] here.

Let V and V- denote gradient and divergence, respectively. Let |(x;, x,)| = Vx} + x3.

We wish to compute

9 yul= TH (8, W 9
atwul_Wul (“xn uyf)_(|vur ax+|Vu| By)( |VU|F(E(U)))
(3.3) =-V. (F(.ﬁf’(u))Vu)-f—F(ff(u))fVuI(V . (;—u"!))

=—V - (F(L(u))Vu)—|VulH(u)F(L(u)).

This content downloaded from 128.220.220.177 on Mon, 21 Jul 2014 10:55:24 AM
All use subject to JSTOR Terms and Conditions




ENHANCEMENT USING SHOCK FILTERS 933

Here 3/(u) is the curvature of level sets, u = constant

N Vu uxxui—Zuxyuxuy+uyyui)
G =7 () - (= |

If we integrate both sides of (3.3) over R?, we arrive at:

a9 )
(3.5) mj |Vuf=—TV|u|=—J' |VulH(u) F(L(u)).
at J g? ot Rr?

For this evolution procedure to be TV bounded at any positive time, it suffices
that —%(u) F(#(u)) be bounded above. Unfortunately, such an estimate is not generally
true.

Parenthetically, we note that if ¥(u) = % (u) (which makes (3.1) anticompressive),
then we are computing level surfaces of a curve being deformed under its mean
curvature (see [3], [12]). We have rederived here in (3.5) a dissipative estimate—decay
of variation in this case.

We will approximate (3.1) by setting up a grid

x,-=fh1, yJ‘ =jh2, !ﬂ="Af,
Lj=0,%1,%£2,---, n=0,1,2,---.
For simplicity of exposition, we will take h, = h, = h. The approximate solution is to

satisfy:
u = u(ih, jh, nAt).

Our first approximation is

(3.6a) upt = uj —éhjs/(m(Aiu;, A ul))+(m(A%uf, A ul))’ Fy(L(u™)).
Here we have defined A, A’ to be the forward and backward difference operators in
the x and y directions. Also F;;(£(u)) = F(Z;(u)), where £ is a discretization of the
second-order edge detector, using central differencing for u,, and u,,, ie., u,=
(1/h*)ATA™ u,, etc. Symmetric differencing for u,, = (1/2h*)(A*A’ + ATA%u) and the
u,, u, terms (if needed) are approximated using the minmod operator.

The CFL restriction is

At 1
(3.6b) sup? F,j(é?(u"))‘éz

A slight modification of this scheme comes from

A ! + v ny— - n
™ = = VAT Y+ (A%up) )+ (AT Y+ (A%uf) )? Fi( ™)
(3.7)

—%J((Aiui})_)zi' ((AZuf)")*+((A%Tuf) )+ (A2uf) ") Fi(L(u")

with the same CFL restriction (3.6b).
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Our main rigorous theoretical results concern (3.7).
(A) For (3.7): Let

n__ n n n n n
M =max {uj, uly j, Uiy, Uijq, Uik,
n = n n n n n
m; =min {uij, Wiy, Wivrj, Uij—1, ul‘_j+l}'

Then, since for fixed constant values of F; =0 and F,]’- =( the scheme is monotone,
we have a local maximum principle (see (2.18), (2.19))

(3.8) mip=ujt'=Mj.
This means that for fixed At, h, as n—» oo there is a convergent subsequence whose

limit is {u*},, the discrete processed image. (Again uniqueness of limits is unknown.)
In addition, if #(u") is such that

(3.9a) ZF(u")=0 at local discrete maxima,

(3.9b) F(u")=0 at local discrete minima,

n

then these extrema are invariant in time, i.e., the values of uj ; at local extrema are
the same as the values of uj ;.
We also have:

(B) For (3.6a): If uj, is a local maximum

n n n n n
Ujj, = max (ui'o—l,jos Uigs1,jgs Wigjg—1s u.‘o,joﬂ),

then it is not increased—in fact

n+1

Uil = U,
The same is true for local minima. .
We also consider an option which replaces F;(£(u")) by F;(£(u"))
Fy=F(m[Lissj0u(uM)),
v, u=-1,0,1.
Thus the processing will leave invariant piecewise continuous approximate solutions of
F(u)=0.

The algorithms described above have been incorporated [20] into U.S. patent
application serial number 456,120.

4. Results of two-dimensional implementation of the shock filter. We demonstrate
the shock-filtering enhancement scheme (3.7) on various standard images from the
USC IPI Image Data Base. In this experiment we first blur a picture with number N,
of iterations of a standard approximation of the diffusion equation (4.1)

(4.1) u,=Au

with At/h*= .25, the largest possible CFL number. Then we show a few iterations of
the shock filter N, with the final one at steady state. The CFL number equals .25 for
the shock filter, the maximal possible under the stability restriction. There are 256 gray
levels for each picture element (pixel). Hence the quantization error is ~4x 107>, If a
simple reversal of (4.1) is attempted, the image blows up geometrically in just a few
iterations (see e.g., [7]).
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A black and white (B & W) (256 x256) picture, Picture 1(a) was chosen for its
visual simplicity and for the clear dependence of its information content on the presence
of singularities. (It is easy to see the difficulties involved in writing a program to count
the candies just from the image P1(b).) Picture 1(b) is the result of blurring by N, =8
iterations of the diffusion equation.

Pictures 1(c), (d) correspond to

N, =9, 18.

An excellent, nonoscillatory piecewise linear reconstruction is evident.

Pictures 2(a)-(c) are the enhancement procedures on a (512x512) B & W “Tank”
image: N; =8, N, =13, i.e., Picture 2(b) is the result of eight blurring iterations, and
Picture 2(c) is the enhanced tank after 13 enhancement steps.

The black and white 256 X 256 “clock™ image (Pictures 3(a), (b)) is chosen because
it has a great deal of small details, including easily perturbed numerals on the clock’s
face. In this experiment the enhancement of the original image (which, we remind the
reader, had 256 gray levels (as did all our examples 1-4)) is performed, i.e., N; =0,
N; =5. The procedure seems to resolve the image beyond its original fidelity, revealing,
for instance, small details on the background photograph. The appearance of ‘“‘jagged”
edges simply means that edges get too compressed for the initial resolution.

The black and white (256 x 256) Pictures 4(a)-(c) with N; =0, N, =35, 11 suggest
resolution beyond the original optical limit. In particular a small “‘gate” appears in
the white building in the background which was not initially apparent there. Again,
it is possible to overenhance part of the image using our methods—the roadside
becomes more jagged as N; increases.

(a) (b)

(c) (d)

PICTURES la-d
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(a)

(b) (c)

PICTURES 2a-¢
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(a) (b)

PICTURES 3a, b

(a) (b)

(c)

PICTURES 4a-c
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(a)

PICTURES 5a, b
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(c)

PICTURE 5c.

Finally, Pictures 5(a)-(c) demonstrate color enhancement on a (512x512)
24 B/pixel image of a lake. Here N, =15 and N, =5. Each separate color plane was
shock filtered. This is less clear in the black-and-white reproductions shown here.

An interesting observations here is that Picture 5(c) appears to be an “impressionis-
tic” version of the original. This “painting-like” quality comes from the fact that the
shock filter (3.7) does not restore details beyond the Ecales lost in the diffusion process
(i.e., features whose edges are not detected by the F(u)), yet all the higher scales get
perfectly enhanced. Thus the result looks like a painting—not a blur!

Acknowledgment. The authors thank Professors Theo Pavlidis and Chris Anderson
for helpful discussions about this subject.
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