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Abstract

Solar flares originate from magnetically active regions (ARs) but not all solar ARs give rise to a flare. Therefore,
the challenge of solar flare prediction benefits from an intelligent computational analysis of physics-based
properties extracted from AR observables, most commonly line-of-sight or vector magnetograms of the active
region photosphere. For the purpose of flare forecasting, this study utilizes an unprecedented 171 flare-predictive
AR properties, mainly inferred by the Helioseismic and Magnetic Imager on board the Solar Dynamics
Observatory (SDO/HMI) in the course of the European Union Horizon 2020 FLARECAST project. Using two
different supervised machine-learning methods that allow feature ranking as a function of predictive capability, we
show that (i) an objective training and testing process is paramount for the performance of every supervised
machine-learning method; (ii) most properties include overlapping information and are therefore highly redundant
for flare prediction; (iii) solar flare prediction is still—and will likely remain—a predominantly probabilistic
challenge.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Neural networks (1933); Solar flares
(1496); Solar activity (1475); Solar active region magnetic fields (1975)

1. Introduction

Solar flares are the most explosive events in the heliosphere,
releasing in an abrupt way up to 1033 erg of energy in a time
interval typically ranging between 10 and 1000 s (Benz 2017).
This energy is previously stored in specific magnetic configura-
tions and, when magnetic reconnection occurs (Priest & Forbes
2002), it is transformed into mass acceleration, heating, and
electromagnetic radiation at all wavelengths. It is also established
that flares are a major space weather agent in the heliosphere
(Schwenn 2006), while, as secondary effects through their
correlation with coronal mass ejections, they induce geospace
and ionospheric disturbances, malfunctions, and impairments on
technologies in the geosphere, such as flight navigation, satellite
communication, and power grid distribution.

Solar flare forecasting is a prominent discipline (Gallagher
et al. 2002; Georgoulis & Rust 2007; Li et al. 2007, 2008;
Schrijver 2007; Barnes & Leka 2008; Wang et al. 2008; Colak
& Qahwaji 2009; Yu et al. 2009; Ahmed et al. 2013; Bobra &
Couvidat 2015; Barnes et al. 2016; McCloskey et al. 2017;
Murray et al. 2017; Sadykov & Kosovichev 2017; Benvenuto
et al. 2018; Huang et al. 2018; Massone et al. 2018; Nishizuka
et al. 2018; Park et al. 2018) within the recent field of space
weather forecasting that relies on the availability of two
ingredients; one observational and one computational. First, it
is well-established that solar active regions (ARs) exclusively
host major flares and therefore flare prediction needs exper-
imental data on AR properties, associated to the photospheric
and coronal magnetic field; however, coronal information has
only recently started being used in the form of EUV images

given as input to a deep learning network by Nishizuka et al.
(2018). Second, this information on AR magnetic properties
can be processed for prediction purposes by means of a
computational method for data analysis; machine learning has
recently offered strong candidates for such methods.
Since February 2010, the Helioseismic and Magnetic Imager

on board the Solar Dynamics Observatory (SDO/HMI;
Scherrer et al. 2012) is providing both line-of-sight and vector
magnetograms of the full solar disk at a (vector magnetogram)

cadence of 12 minutes. SDO/HMI magnetograms can be used
for solar flare prediction according to two different approaches.
First, HMI magnetograms are utilized to calculate a variety of
properties either from the line-of-sight component only, from
the radial component only, or from all three vector components.
Various single-valued quantities, hereafter referred to as
features, can be calculated from these property images through
a variety of techniques (e.g., thresholding, feature recognition,
etc.), such that calculation of one physical property may
provide multiple features as inputs to machine learning (i.e.,
image maximum, total, and moments). Of course, additional
features that are not derived from property images may also
contribute to the input data set. Second, from a deep learning
perspective, HMI images can be given as input to Convolu-
tional Neural Networks that automatically perform a probabil-
istic forecasting. This present paper follows the first approach,
and this is for several reasons. First, we had at our disposal the
property extraction power provided by the algorithms devel-
oped within the Horizon 2020 FLARECAST project (http://
flarecast.eu), which generated data sets of almost 200 features
determined from properties extracted from photospheric SDO/
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HMI vector magnetograms. This database of features probably
represents the highest data dimensionality currently available
for flare forecasting purposes. Second, one of the objectives of
our research was to determine to what extent AR properties are
redundant when forecasting flares, and a straightforward way to
do this is by ranking the extracted features according to their
predictive capability. Finally, so far most publications in flare
prediction utilize feature-based machine-learning methods, so
another objective of this paper is to investigate how data
preparation (and, specifically, the preparation of the training set
in the case of supervised algorithms) impacts the prediction
scores. Specifically, the analysis performed in this paper relies
on two supervised machine-learning algorithms that combine
prediction with feature ranking, namely hybrid LASSO
(Benvenuto et al. 2018) and Random Forest (RF; Breiman
2001). However, two other methods of this kind, namely logit
(Wu et al. 2009) and a support vector machine for classification
(Cortes & Vapnik 1995), have been also applied to the same
data sets for verification purposes, with coherent results.

The content of the paper is as follows. Section 2 overviews
the data analysis procedure, describing in detail the features
used for prediction, the data preparation process, and key
aspects of the machine-learning methods adopted. Section 3
contains the results of the analysis, while Section 4 discusses
these results. Our conclusions are offered in Section 5.

2. Methods

2.1. Data and Features

Our analysis relies on the Near-Realtime Space Weather
HMI Archive Patch (SHARP) data product of the HMI
database (Bobra et al. 2014). These data comprise 2D images
of continuum intensity, the full three-component magnetic field
vector, and the line-of-sight component of each photospheric
HARP. We then made use of property extraction algorithms
developed by the FLARECAST Consortium in order to
construct a property database made of property vectors
comprising up to 171 components. FLARECAST algorithms
first extracted the following 167 features, often duplicating the
property calculation step on Blos and Bradial input data, as per
the findings of Guerra et al. (2018):

1. Schrijver’s R-value (Schrijver 2007): one property
yielding a total of two features.

2. Multifractal structure and function spectrum on a 2D
image: two properties yielding a total of four features.

3. Falconer’s total free magnetic energy proxy WLSG
(Falconer et al. 2008): one property yielding a total of
two features.

4. Sum of the horizontal magnetic gradient, GS, and the
separation of opposite-polarity sunspot subgroups, Sl−f
(Korsos & Erdelyi 2016): two properties yielding a total
of four features.

5. Spectral power indices extracted by means of the Fourier
transform and of a continuous wavelet transform: one
property yielding a total of four features.

6. Magnetic polarity inversion line (MPIL) characteristics:
three properties yielding a total of six features.

7. Effective connected magnetic field strength (Beff): one
property yielding a total of two features.

8. Vertical decay index of potential field: four properties
yielding a total of eight features.

9. Nonneutralized electric currents: one property yielding
one feature.

10. Ising energy (E): one property yielding a total of four
features.

11. Fractal dimension (D): one property yielding a total of
two features.

12. Flow field characteristics: six properties yielding a total
of 16 features.

13. Magnetic helicity and energy injection rate: 14 properties
yielding a total of 14 features.

14. SHARP keywords calculated from their corresponding
vector and line-of-sight magnetograms: 16 properties
yielding a total of 100 features (including the maximum,
total, median, mean, standard deviation, skewness and
kurtosis over the SHARP field-of-view).

SHARP ARs are associated to solar flares of GOES class C1
and above (C1+) and solar flares of GOES class M1 and above
(M1+) by means of a standard procedure. It is first verified
whether the SHARP data contain NOAA-numbered regions
(i.e., sunspot groups) by comparison with NOAA’s daily Solar
Region Summary (SRS) file immediately before the SHARP
observations. Then, if any NOAA number is assigned to the
SHARP data, the process searches the NOAA/SWPC daily
events lists for GOES flares occurring in the same source region
during the entire disk passage. Once the flare association is
realized, the following four details become available for all
flares and these are used in assigning flare outcome labels:

1. GOES peak magnitude (FM).
2. Time difference (in seconds) between the SHARP

observation time and the flare start time (τs).
3. Time difference (in seconds) between the SHARP

observation time and the flare peak time (τp).
4. Time difference (in seconds) between the SHARP

observation time and the flare end time (τe).

Eventually, this analysis provides 167 features extracted from
the HMI images. Four further features come from the NOAA/
SRS database: the mean heliographic longitude and latitude of
each AR, a binary label encoding the presence of a flare in the
past 24 hr and the flare index of events occurring within the
past 24 hr. A summary of all resulting features considered in
the analysis can be found at both the url https://api.flarecast.
eu/property/ui/ and in Tables 3–5 in the Appendix.

2.2. Data Preparation

The experiment designed in this paper relies on supervised
machine learning, which requires appropriate historical sets to
train the prediction networks. To enforce consistency in time
and robustness of our tests, we constructed four training sets,
each one corresponding to a specific forecast issuing time
expressed as universal time [UT], namely 00:00, 06:00, 12:00,
and 18:00. For each issuing time we considered the set of
SDO/HMI images recorded at that time in the range of days
between 2012 September 14 and 2016 April 30, with 24 hr
sampling. While filling up the training set we took care to focus
on ARs rather than on feature vectors. In fact, around two-
thirds of ARs were randomly extracted from the set of all ARs
belonging to a specific issuing time and the 171-dimensional
feature vectors associated to each AR were labeled by
annotating whether a GOES C1+ flare occurred in the next
24 hr. The set of feature vectors associated to the remaining
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one-third of ARs was not labeled and was provided as a test set
for experiments on supervised learning algorithms trained on
the training set. In this manner, training and testing do not
overlap in any way, either in time or in terms of ARs examined.
We finally point out that, for each issuing time, the random,
complete separation of ARs into training and test sets was
replicated 100 times to enable statistical robustness of the
results. A similar procedure was implemented to generate
training sets to use for the prediction of GOESM1+ flares. The
reason why we did not consider the prediction of flares with
class above X is because they are extremely seldom in the
database (less than 0.2% of the overall point-in-time events in
the original training set). C1+ and M1+ flares are around 26%
and 4% of the set content, respectively.

2.3. Prediction and Feature Ranking Methods

Two different machine-learning methods, namely hybrid
LASSO (HLA) and RF are utilized in this paper, for both
performing the binary prediction of the flare occurrence and for
additionally identifying the effectiveness with which the
different features contribute to the prediction.

LASSO methods (Tibshirani 1996) are intrinsically regression
methods and therefore they are not originally conceived for
applications that require a binary YES/NO output. However, in
Benvenuto et al. (2018) a threshold optimization is introduced to
the LASSO outcome in order to realize classification by means of
fuzzy clustering (Bezdek et al. 1984). The idea of HLA is
therefore to use LASSO in the first step in order to promote
sparsity and to realize feature selection; this step provides an
optimal estimate of the model parameters and corresponding
predicted output. In the second step, Fuzzy C-Means is applied for
clustering the predicted output in two classes. The main advantage
of this approach is in the use of fuzzy clustering to automatically
classify the regression output in two classes. Indeed, fuzzy
clustering identifies flaring/nonflaring events with a thresholding
procedure that is data-adaptive and completely operator-indepen-
dent. Details about HLA as implemented in the present paper can
be found in Benvenuto et al. (2018).

RF belongs to the family of the ensemble methods, i.e.,
methods that make use of a combination of different learning
models to increase the classification accuracy. In particular, RF
works as a large collection of decorrelated decision trees. In fact,
here the training set is randomly divided into 10 subsets and for
each subset a separate decision tree is built. Each decision tree is
then used to classify an incoming unlabeled sample. If correctly
implemented, RF can be used as feature rankers. In fact, the
relative depth of a feature used as a decision node in a tree can be
identified as the relative importance of that feature with respect to
the predictability of the target variable. Features used at the top of
the tree contribute to the final prediction decision of a larger
fraction of the input samples. The expected fraction of the samples
they contribute to can thus be used as an estimate of the relative
importance of the features. Details about RF as implemented in
the present paper can be found in Breiman (2001).

Once the two machine-learning methods have been applied
to the input data, predictors are ranked by using recursive
feature elimination (RFE). This iterative procedure can be
summarized as follows:

1. Train the classifier.
2. Compute the ranking for all features.
3. Remove the feature with the smallest ranking.

Details about RFE as implemented in the present paper can be
found in Guyon et al. (2002).

3. Results

The effectiveness of the prediction was assessed by skill
scores computed on the previously unseen test sets. Following
suggestions in Bloomfield et al. (2012), we chose to use the
true skill statistic (TSS) and the Heidke skill score (HSS),
assuming them as representative among skill scores existing in
the literature. This said, although not shown here, we
performed the analysis using the false alarm ratio, probability
of detection, and accuracy metrics, obtaining similar results in
terms of the relative forecasting effectiveness of the two
machine-learning methods. We point out that all these scores
are computed by means of binary predictions applied to the test
set. However, as noted in Section 2.3, LASSO and RF are
regression methods providing as outcome real positive numbers
that can be interpreted in a probabilistic sense and, in our
approach, the transformation of these variables into dichot-
omous yes/no responses is accomplished by applying a fuzzy
clustering technique against the regression outcomes. Other
works typically apply an arbitrary probability threshold, Pth, of
0.5 to create dichotomous forecasts (Leka et al. 2019a, 2019b),
although it should be noted that discriminating thresholds
optimized on TSS should find Pth values close to the
climatology (i.e., the average flare-day rate; Bloomfield et al.
2012; Barnes et al. 2016). Figure 1 shows a comparison
between the thresholding performances of the clustering
technique and the ones provided by the optimization of TSS
and HSS and by the use of an ROC curve. Interestingly, the
two hybrid regression/clustering approaches provide similar
results, which are rather conservative and rather close to the
ones achieved by optimizing the HSS, especially in the case of
the prediction of C1+ flares. Furthermore, the ROC curve
method relies on cutoff values computed by means of the
Youden index (Youden 1950), which formally leads to the
maximization of the TSS; in fact the figure shows that the two
values are always very close and the small differences are just
related to the different numerical way the thresholding-search
schemes were implemented. For C1+ flares, our hybrid
approach results in Pth≈0.4 for both HLA and RF, meaning
that our C1+ TSS values are (probably) more comparable to
those whose probabilities are converted to dichotomous
forecasts using Pth=0.5 (as our Pth lies closer to 0.5 than
the average C1+ flare-day rate of ∼0.26). The situation is more
complex for M1+ flares, however, as the average Pth found by
the fuzzy-clustered HLA method is almost equivalent to that
optimized on TSS (i.e., approaching the average flare-day rate
of 0.04) while for the fuzzy-clustered RF method it instead
occupies greater values that lie between the TSS and HSS
optimized cases.
The averages and standard deviations of the TSS and HSS

values over 100 random realizations of the training/test sets for
both prediction methods are shown in Table 1. In the case of HSS,
the reliability of average values may be challenged by inconsistent
flare/no-flare imbalance ratio across the 100 realizations.
However, we have a posteriori checked the sample statistics of
the 100 random realizations: average flare/no-flare imbalance
ratios across the 100 test sets are ∼0.34 for C1+ events and
∼0.04 for M1+ events, with relative standard deviations that are
<16% and <27% of these values, respectively (reflecting the
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largest relative standard deviations for the four separate UT
issuing times considered here).

Focusing then on the feature ranking process, the boxplots in
Figures 2 and 3 show the top 10 features ordered by their mean
RFE ranking, obtained by HLA and RF over the 100 random
realizations for each of the four forecast issuing times.
Specifically, Figure 2 refers to the prediction of GOES C1+

flares, while Figure 3 refers to the prediction of GOES M1+
flares.
From these results it becomes possible to assess the impact

of feature selection on the prediction performance, by
computing specific skill scores and statistics in a cumulative
way. The panels in Figures 4 and 5 plot the TSS values
obtained by HLA and RF in the case of one specific data set

Figure 1. Probability threshold values, Pth, averaged over the 100 realizations of the training set. In each panel, symbols indicate the approach applied: hybrid fuzzy
clustering (diamonds); HSS optimization (squares); TSS optimization (circles); ROC curve YoudenÕs index optimization (crosses). Top row: prediction of C1+ flares
with LASSO and RF (left and right panels, respectively). Bottom row: prediction of M1+flares with LASSO and RF (left and right panels, respectively).

Table 1

Average TSS- and HSS-values, Along with Applicable Standard Deviations, Over the Outcomes of HLA and RF as Applied Against 100 Random Realizations of the
Training/test Sets

Test Set-C1+ Test Set-C1+ Test Set-M1+ Test Set-M1+

00:00:00UT TSS HSS TSS HSS

HLA 0.48±0.06 0.51±0.05 0.56±0.14 0.27±0.06
RF 0.53±0.05 0.52±0.04 0.48±0.14 0.33±0.09

06:00:00UT TSS HSS TSS HSS

HLA 0.53±0.03 0.54±0.03 0.67±0.05 0.35±0.04
RF 0.54±0.03 0.54±0.03 0.49±0.08 0.42±0.06

12:00:00UT TSS HSS TSS HSS

HLA 0.51±0.04 0.54±0.03 0.66±0.06 0.38±0.04
RF 0.53±0.03 0.53±0.03 0.51±0.09 0.43±0.06

18:00:00UT TSS HSS TSS HSS

HLA 0.54±0.04 0.55±0.03 0.64±0.07 0.39±0.04
RF 0.55±0.03 0.55±0.03 0.53±0.09 0.43±0.06
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realization, while adding one feature at a time, starting from the
feature with the highest ranking, down to the feature with the
tenth highest ranking. A given feature has the same color
throughout each set of plots, for all issuing times.

In order to have a clearer picture of the features that
repeatedly show the highest predictive impact, the histograms
in Figure 6 compute the number of times over the four issuing
times that each feature appears in the top-10 ranking of training
set averages. These plots only present features that reach the
top-10 ranking at least twice out of the four issuing times for a
given machine-learning method and flare class. For the C1+
flare prediction (Figure 6; top row) one sees, for example, that

the past flare history ( flare_index_past) and Schrijver’s
(Schrijver 2007) R-value (r_value_br_logr) consistently appear
for both HLA and RF. This is not the case for the prediction of
M1+ flares (Figure 6; bottom row). It should be noted that the
importance of the specific features may only be due to the
machine-learning method used; it is their consistency of
appearance, however, that is notable.

4. Discussion of Results

We first notice that the maximum values of HSS and TSS
achieved in Table 1 are distinctly different from one, indicating
far from perfect performance. Interestingly, these scores are

Figure 2. Boxplots of the feature ranks provided by RFE as applied against the outcomes of HLA and RF for the 100 realizations of the training set. The panels show
separately the result of the two learning methods (HLA: left column; RF: right column) for the four issuing times considered in the experiment. The focus here is on
the prediction of GOES C1+ flares.
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almost systematically smaller than the ones recently achieved
by methods illustrated in Bobra & Couvidat (2015) and Florios
et al. (2018) that use input data with a significantly smaller
dimensionality. The methods described in those papers are all
supervised, utilize features extracted from HMI data, and
perform predictions in a 24 h window. However, the way data
preparation is performed and, in particular, how the training set
is constructed is significantly different than what is done in the
present paper. In particular:

1. The test sets utilized in this work to assess the
performances of HLA and RF do not contain feature
vectors belonging to ARs with feature vectors contained
in the training sets. Instead, the training sets utilized in

Bobra & Couvidat (2015), and Florios et al. (2018)
combined feature vectors belonging to the same ARs in
the two sets.

2. We constructed four separate training/testing sets, each
corresponding to a specific UT forecast issuing time on
all of the days considered. Our results show reasonably
consistent forecast performance across these four issuing-
time sets. However, the main benefit to this approach is in
the interpretation of the feature selection results.
Identifying key forecasting features through their appear-
ance in all (or most) of the top-10 feature ranking lists
across these four issuing-time sets increases their
robustness through temporal consistency.

Figure 3. Same as Figure 2, with the focus now being on GOES M1+ flares.
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3. The training set utilized in Florios et al. (2018) is populated
with approximately the same number of vectors as the test
set, while in our approach (and in the one followed in Bobra
& Couvidat 2015) the machine-learning methods are trained
with training sets two times more populated than the test sets,
which is more realistic with respect to typical experimental
settings.

4. Our prediction methods are optimized using a fuzzy
clustering technique, while in the other three cases the
input parameters are fixed in such a way to optimize a
specific skill score (namely, the TSS).

In order to assess the impact of these differences against the
methods’ performance, we trained HLA and RF using all 14,931

point-in-time feature vectors distributing them between training
and test sets as was done in Bobra & Couvidat (2015) and Florios
et al. (2018). Specifically, we generated the training and test sets
focusing on feature vectors instead of on ARs, i.e., we randomly
extracted the feature vectors from the database at disposal without
imposing any constraint that forbids feature vectors of the same
AR to populate both the training and the test set (the two sets are
populated as in Bobra & Couvidat 2015, following a 2:1
proportion). Furthermore, we did not care for time consistency
and so we mixed up feature vectors belonging to different issuing
times. Finally, the prediction methods are optimized in such a way
to maximize the TSS. Table 2 shows that TSS increases
significantly in the prediction of C1+ and M1+ flares for both

Figure 4. TSS scores obtained by using just the 10 features with the best rankings in decreasing order, from 1 to 10, for both machine-learning methods and all four
issuing times, in the case of a specific realization of the test set. Features are added one at a time. The plots refer to the prediction of GOES C1+ flares. The dashed
horizontal lines are the TSS values obtained by HLA and RF when applied to all 171 features.

Figure 5. Same as Figure 4, but for GOES M1+ flares.
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HLA and RF and also HSS produced by RF becomes larger,
although less significantly. These scores are now more in line with
the ones obtained in the other two papers, at the same time
showing smaller standard deviations. This leads to the conclusion
that, not surprisingly, also in flare prediction the biases introduced
in the process of training set generation and the way the
algorithms are optimized strongly influence the performance of
supervised methods.

As far as feature ranking is concerned, it is evident from
Figures 2 and 3 that first, features with the best ranking have
the smallest standard deviations, so their impact on prediction
is consistently high, regardless of the splitting of the data used
for training the machine-learning algorithms. In the case of
prediction of GOES C1+ flares, colors largely repeat in all four
panels, telling us that features with highest predictive power are
common to all issuing times considered. This behavior is not as
robust in the case of prediction of GOES M1+ flares, but we
are confident that this is a consequence of the lower occurrence
rate of M1+ flares and the resulting variation in the flare
/no-flare imbalance ratio of the random training sets. A

consistent imbalance ratio is more or less guaranteed for C1+
flares, whose comprehensive statistics over solar cycle 24
ensure a well-balanced training process.
Figures 4 and 5 show that only a small number of features

(up to 10) over the scores of features proposed and/or applied
for flare prediction, are sufficient to achieve maximum
performance of a given machine-learning method. Notice from
these figures that the highest-ranking feature alone (feature 1)
suffices to give TSS and HSS values that are at least half of the
maxima achieved. Up to the fourth feature, the values of TSS
and HSS saturate already, indicating that adding more features
will not improve (and may, in fact, be detrimental to) prediction
performance. Also, provided that flare statistics are sufficient to
deal with the flare/no-flare imbalance ratio in the random
selection of training and test sets, these few best-performing
features are consistent for a given prediction method. In their
study, Bobra & Couvidat (2015) found that the four most
significant features in their analysis were the total unsigned
current helicity, total magnitude of the Lorentz force, total
photospheric magnetic free energy density, and unsigned

Figure 6. Histograms counting the number of times each feature is selected in the top-10 rankings, on average over the 100 random realizations of the test set, for all
issuing times and considering both HLA (left column) and RF (right column) as learning machines. Predictions of GOES C1+ flares and GOESM1+ flares are shown
in the top and bottom rows, respectively.

Table 2

Average TSS- and HSS-values, Along with Applicable Standard Deviations, Over the Outcomes of HLA and RF as Applied Against 100 Random Realizations of the
Training/Test Sets

Test Set-C1+ Test Set C1+ Test Set-M1+ Test Set-M1+

TSS HSS TSS HSS

HLA 0.58±0.01 0.51±0.01 0.70±0.02 0.31±0.03
RF 0.61±0.01 0.56±0.02 0.71±0.03 0.39±0.02
Florios et al. (2018) 0.60±0.01 0.59±0.01 0.74±0.02 0.49±0.01
Bobra & Couvidat (2015) L L 0.76±0.04 0.52±0.04

Note. The training sets have been generated according to the same procedure as in Bobra & Couvidat (2015) and Florios et al. (2018). The scores presented in those
papers are reported in this table.
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vertical current. In our study, Figure 6 shows that features
associated with the unsigned vertical current (i.e., total,
maximum, standard deviation) are among the most temporally
consistent of our best-performing features, particularly for
C1+ flares (its standard deviation is in the top-ten features of
all four UT issuing times for Hybrid LASSO, while its total and
maximum are in the top-10 of three of the four UT issuing
times for RF) and less so for M1+ flares (its standard deviation
is in the top-10 for two of the four UT issuing times). However,
the same figure shows that these predictors may well change
from method to method, which hampers efforts to understand
physically why some features work better than others. Best
performers appear to change also for the prediction of different
flare classes, which is a very interesting finding that
undoubtedly warrants additional investigation in the future.

5. Conclusions

This study employs the highest-dimension data set of
prediction features to date in regards to solar flare forecasting,
while it shows TSS values similar to the better performing
region-by-region forecasting systems in the literature. This
point taken, the actual HSS and TSS values are not identical to
—and may even be somewhat lower than—the respective
values reported in Bobra & Couvidat (2015) and in Florios
et al. (2018), with the latter study using RF applied to
FLARECAST data, as well. The reason is that training and
testing of machine-learning methods in the present study were
not only performed on nonoverlapping data as in previous
studies, but even the solar ARs selected for training and testing
were different. This conclusion seems in line with the
considerations contained in Camporeale (2019), whose careful
assessment of the causality issue identifies this as one of the
crucial aspects impacting the forecasting performances.

The rationale for using hybrid LASSO and RF in this work is
these methods’ ability to perform feature ranking via RFE,
among other methods (i.e., Fisher’s score, Gini index, etc.).
However, there are 26 machine-learning methods implemented
in FLARECAST. Their definitive evaluation is in progress, so
the values of pertinent skill scores may well increase in future
studies utilizing FLARECAST data, in the search for finding
the optimal machine-learning method(s) for the near-realtime
FLARECAST forecasting service. We also understand that a
meaningful methodological next step would be to introduce
deep learning methods in the pipeline. However, interestingly,
the use of these more modern approaches in flare forecasting
does not necessarily imply significantly higher skill scores (see,
e.g., (Nishizuka et al. 2018), where TSS and HSS for the
prediction of M1+ flares are reported as 0.80 and 0.26,
respectively).

What will, most likely, not change in the foreseeable future
are the following two core conclusions of this work.

First, the current range of properties that have been extracted
from the HMI magnetograms show significant redundancy and
no more than 10 features contained in these properties are
sufficient to allow machine-learning methods to achieve
maximum performance.
Second, and perhaps foremost, the maximum values of HSS

and TSS achieved are distinctly different from one, indicating
far from perfect performance. In physical terms, even using the
largest flare prediction data volume assembled to date, we have
not managed to substantially surpass the performance of a
random-chance forecast (as shown by HSS) or to substantially
increase the probability of detection (0.57–0.65 for C1+)

despite an encouragingly low probability of false detection
(∼0.10). The latter two compete against each other to result in
TSS. This is equivalent to saying that flare prediction remains
probabilistic, rather than binary yes/no with a perfect
performance. The core reasons for this may be multiple: first,
we only rely on photospheric magnetic field data, but flares
occur above the line-tied photosphere in the low solar corona.
Second, flares may well be intrinsically stochastic phenomena,
as adopted in a long-standing working hypothesis (Rosner &
Vaiana 1978), shown conclusively by the flares’ time-
dependent Poisson waiting times (Crosby et al. 1998; Wheat-
land & Litvinenko 2002) and interpreted physically via the
concept of self-organized criticality (Lu & Hamilton 1991; Lu
et al. 1993; Vlahos et al. 1995)—see also Aschwanden et al.
(2016) for a comprehensive review.

This study was enabled by the European Union’s Horizon
2020 Research and Innovation Action Flare Likelihood And
Region Eruption foreCASTing (FLARECAST) project, under
grant agreement No. 640216. All authors warmly acknowledge
the support of the FLARECAST project.

Appendix

Here we provide details of the FLARECAST feature labels
used in this work, with short descriptions and references to
their original definition/implementation (or, e.g., detection
methods used in their calculation). Features are grouped in the
following manner: Table 3 contains those features derived from
Blos only and Bradial only (Georgoulis 2005, 2012; Georgoulis
& Rust 2007; Schrijver 2007; Falconer et al. 2008; Hewett
et al. 2008; Ahmed et al. 2010; Mason & Hoeksema 2010;
Georgoulis et al. 2012; Zuccarello et al. 2014; Guerra et al.
2015; Kontogiannis et al. 2018); Table 4 contains those
features requiring all three vectormagnetic field components
(Kusano et al. 2002; Schuck 2008); Table 5 contains only those
features related to the total and mean quantities provided as the
SHARP keywords of Bobra et al. (2014).
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Table 3

FLARECAST B_los- and B_r-derived Feature List with Short Descriptions

Feature Label Description

alpha_exp_fft_blos/alpha, alpha_exp_fft_br/alpha Fourier power spectral index
alpha_exp_cwt_blos/alpha, alpha_exp_cwt_br/alpha Continuous wavelet transform power spectral index

beff_blos/beff, beff_br/beff Effective connected magnetic field strength Beff

decay_index_blos/max_l_over_hmin Max. ratio of MPIL length to min. height of critical decay index
decay_index_br/max_l_over_hmin l/h(ncr)min

decay_index_blos/tot_l_over_hmin, decay_index_br/tot_l_over_hmin Total of all separate MPIL ratios of l/h(ncr)min

decay_index_blos/l_over_minhmin, decay_index_br/l_over_minhmin Ratio of MPIL l/h(ncr)min (for MPIL having lowest h(ncr)min)

decay_index_blos/maxl_over_hmin, decay_index_br/maxl_over_hmin Ratio of MPIL l/h(ncr)min (for longest MPIL)

flare_past Binary flag for occurrence of �1 flare in previous 24 hr
flare_index_past Accumulated GOES flare peak magnitudes in previous 24 hr

frdim_blos/frdim, frdim_br/frdim Fractal dimension

gs_slf/g_s Sum of the horizontal magnetic gradient
gs_slf/slf Separation distance lead. and follow. polarity subgroups

ising_energy_blos/ising_energy, ising_energy_br/ising_energy Ising energy (calculated pixel-by-pixel)
ising_energy_part_blos/ising_energy_part, ising_energy_part_br/ising_energy_part Ising energy (calculated using Beff flux partitions)

lat_hg Heliographic latitude of SHARP centroid
lon_hg Heliographic longitude of SHARP centroid

mf_spectrum_blos/dq, mf_spectrum_br/dq Multifractal generalized correlation dimension spectrum

mpil_blos/max_length, mpil_br/max_length Maximum length of a single MPIL
mpil_blos/tot_length, mpil_br/tot_length Total length of all MPILs
mpil_blos/tot_usflux, mpil_br/tot_usflux Total unsigned flux around all MPILs

r_value_blos_logr, r_value_br_logr Schrijver’s R (log10 form)

sfunction_blos/zq, sfunction_br/zq Multifractal structure function inertial range index

wlsg_blos/value_int, wlsg_br/value_int Falconer’s ( WLL
SG

Table 4

FLARECAST Br,θ,f-derived Feature List with Short Descriptions

Feature Label Description

flow_field_bvec/diver, flow_field_bvec/diver_max, flow_field_bvec/diver_mean Flow field divergence (total, maximum, mean)

flow_field_bvec/shear, flow_field_bvec/shear_max, flow_field_bvec/shear_mean Flow field shear (total, maximum, mean)

flow_field_bvec/v_ mean, flow_field_bvec/v_median Flow field total velocity magnitude (mean, median)

flow_field_bvec/vz_max, flow_field_bvec/vz_mean Flow field vertical velocity magnitude (mean, median)

flow_field_bvec/w_diver, flow_field_bvec/w_diver_max, flow_field_bvec/w_diver_mean Flux-weighted flow field divergence (total, maximum, mean)

flow_field_bvec/w_shear, flow_field_bvec/w_shear_max, flow_field_bvec/w_shear_mean Flux-weighted flow field shear (total, maximum, mean)

helicity_energy_bvec/abs_tot_dedt Abs. val. net vertical Poynting flux
helicity_energy_bvec/abs_tot_dedt_in Abs. val. net vertical Poynting flux (emerg. comp.)
helicity_energy_bvec/abs_tot_dedt_sh Abs. val. net vertical Poynting flux (shear. comp.)
helicity_energy_bvec/abs_tot_dedt_in_plus_sh Emerg. + shear. abs. values net vertical Poynting flux

helicity_energy_bvec/abs_tot_dhdt Abs. val. net vertical helicity flux
helicity_energy_bvec/abs_tot_dhdt_in Abs. val. net vertical helicity flux (emerg. comp.)
helicity_energy_bvec/abs_tot_dhdt_sh Abs. val. net vertical helicity flux (emerg. comp.)
helicity_energy_bvec/abs_tot_dhdt_in_plus_sh Emerg. + shear. abs. values net vertical helicity flux

helicity_energy_bvec/tot_uns_dedt Total unsigned vertical Poynting flux
helicity_energy_bvec/tot_uns_dedt_in Tot. unsign. vertical Poynting flux (emerg. comp.)
helicity_energy_bvec/tot_uns_dedt_sh Tot. unsign. vertical Poynting flux (shear. comp.)
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Table 4

(Continued)

Feature Label Description

helicity_energy_bvec/tot_uns_dhdt Tot. unsign. vertical helicity flux
helicity_energy_bvec/tot_uns_dhdt_in Tot. unsign. vertical helicity flux (emerg. comp.)
helicity_energy_bvec/tot_uns_dhdt_sh Tot. unsign. vertical helicity flux (shear. comp.)

nn_currents/tot_us_cur Total unsigned nonneutralized currents

Table 5

FLARECAST SHARP-keyword Related Feature List with Short Descriptions

Feature Label Description

sharp_kw/gamma/ave, sharp_kw/gamma/stddev Field inclin. ang. (mean, st. dev.)
sharp_kw/gamma/skewness, sharp_kw/gamma/kurtosis Field inclin. ang. (skewn., kurt.)
sharp_kw/gamma/total, sharp_kw/gamma/max, sharp_kw/gamma/median Field inclin. ang. (tot., max., med.)

sharp_kw/ggt45fract % tot. area with shear angle >45°

sharp_kw/hgradbh/ave, sharp_kw/hgradbh/stddev Horiz. grad. Bhor (mean, st. dev.)
sharp_kw/hgradbh/skewness, sharp_kw/hgradbh/kurtosis Horiz. grad. Bhor (skewn., kurt.)
sharp_kw/hgradbh/total, sharp_kw/hgradbh/max, sharp_kw/hgradbh/median Horiz. grad. Bhor (tot, max, med)

sharp_kw/hgradbt/ave, sharp_kw/hgradbt/stddev Horiz. grad. Btot (mean, st. dev.)
sharp_kw/hgradbt/skewness, sharp_kw/hgradbt/kurtosis Horiz. grad. Btot (skewn., kurt.)
sharp_kw/hgradbt/total, sharp_kw/hgradbt/max, sharp_kw/hgradbt/median Horiz. grad. Btot (tot., max., med.)

sharp_kw/hgradbz/ave, sharp_kw/hgradbz/stddev Horiz. grad. Br (mean, st. dev.)
sharp_kw/hgradbz/skewness, sharp_kw/hgradbz/kurtosis Horiz. grad. Br (skewn., kurt.)
sharp_kw/hgradbz/total, sharp_kw/hgradbz/max, sharp_kw/hgradbz/median Horiz. grad. Br (tot., max., med.)

sharp_kw/hz/ave, sharp_kw/hz/stddev Vert. curr. hel. (mean, st. dev.)
sharp_kw/hz/skewness, sharp_kw/hz/kurtosis Vert. curr. hel. (skewn., kurt.)
sharp_kw/hz/total, sharp_kw/hz/max, sharp_kw/hz/median Vert. curr. hel. (tot., max., med.)

sharp_kw/jz/ave, sharp_kw/jz/stddev Vert. curr. (mean, st. dev.)
sharp_kw/jz/skewness, sharp_kw/jz/kurtosis Vert. curr. (skewn., kurt.)
sharp_kw/jz/total, sharp_kw/jz/max, sharp_kw/jz/median Vert. curr. (tot., max., med.)

sharp_kw/rho/ave, sharp_kw/rho/stddev Photosph. excess magn. en. (mean, st. dev.)
sharp_kw/rho/skewness, sharp_kw/rho/kurtosis Photosph. excess magn. en. (skewn., kurt.)
sharp_kw/rho/total, sharp_kw/rho/max, sharp_kw/rho/median Photosph. excess magn. en. (tot., max., med.)

sharp_kw/rhod/ave, sharp_kw/rhod/stddev Photosph. excess magn. en. dens. (mean, st. dev.)
sharp_kw/rhod/skewness, sharp_kw/rhod/kurtosis Photosph. excess magn. en. dens. (skewn., kurt.)
sharp_kw/rhod/total, sharp_kw/rhod/max, sharp_kw/rhod/median Photosph. excess magn. en. dens (tot., max., med.)

sharp_kw/sflux/ave, sharp_kw/sflux/stddev Signed flux (mean, st. dev.)
sharp_kw/sflux/skewness, sharp_kw/sflux/kurtosis Signed flux (skewn., kurt.)
sharp_kw/sflux/total, sharp_kw/sflux/max, sharp_kw/sflux/median Signed flux (tot., max., med.)

sharp_kw/sheargamma/ave, sharp_kw/sheargamma/stddev Btot shear angle (mean, st. dev.)
sharp_kw/sheargamma/skewness, sharp_kw/sheargamma/kurtosis Btot shear angle (skewn., kurt.)
sharp_kw/sheargamma/total, sharp_kw/sheargamma/max, sharp_kw/sheargamma/median Btot shear angle (tot., max., med.)

sharp_kw/snetjzpp/total Sum abs. val. net currents per polarity

sharp_kw/twistp/ave, sharp_kw/twistp/stddev, sharp_kw/twistp/skewness, sharp_kw/twistp/kurtosis Twist parameter (mean, st. dev., skewn., kurt.)
sharp_kw/twistp/total, sharp_kw/twistp/max, sharp_kw/twistp/median Twist parameter (tot., max., med.)

sharp_kw/usflux/ave, sharp_kw/usflux/stddev, sharp_kw/usflux/skewness, sharp_kw/usflux/kurtosis Uns. flux (mean, st. dev., skewn., kurt.)
sharp_kw/usflux/total, sharp_kw/usflux/max, sharp_kw/usflux/median Uns. flux (tot., max., med.)

sharp_kw/ushz/ave, sharp_kw/ushz/stddev, sharp_kw/ushz/skewness, sharp_kw/ushz/kurtosis Uns. vert. curr. hel. (mean, st. dev., skewn., kurt.)
sharp_kw/ushz/total, sharp_kw/ushz/max, sharp_kw/ushz/median Uns. vert. curr. hel. (tot., max., med.)

sharp_kw/usiz/ave, sharp_kw/usiz/stddev, sharp_kw/usiz/skewness, sharp_kw/usiz/kurtosis Uns. vert. curr. (mean, st. dev., skewn., kurt.)
sharp_kw/usiz/total, sharp_kw/usiz/max, sharp_kw/usiz/median Uns. vert. curr. (tot., max., med.)
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