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Abstract

We present a two-step method to speed-up object detec-

tion systems in computer vision that use Support Vector Ma-

chines (SVMs) as classifiers. In a first step we perform fea-

ture reduction by choosing relevant image features accord-

ing to a measure derived from statistical learning theory. In

a second step we build a hierarchy of classifiers. On the

bottom level, a simple and fast classifier analyzes the whole

image and rejects large parts of the background. On the

top level, a slower but more accurate classifier performs

the final detection. Experiments with a face detection sys-

tem show that combining feature reduction with hierarchi-

cal classification leads to a speed-up by a factor of 170 with

similar classification performance.

1 Introduction

Most object detection tasks in computer vision are com-

putationally expensive because of a) the large amount of

input data that has to be processed and b) the use of com-

plex classifiers that are robust against pose and illumination

changes. Speeding-up the classification is therefore of ma-

jor concern when developing systems for real-world appli-

cations. In the following we investigate two methods for

speed-ups: feature reduction and hierarchical classification.

In [3] we presented a system for detecting frontal and

near-frontal views of faces in still gray images. The sys-

tem achieved high detection accuracy by classifying 19�19

gray patterns using a non-linear SVM. However, searching

an image for faces at different scales took several minutes

on a PC—far too long for most real-world applications. One

way to speed-up is to reduce the number of features.

There are basically two types of feature selection meth-

ods in the literature: filter and wrapper methods [1]. Filter

methods are preprocessing steps performed independently

of the classification algorithm or its error criteria; PCA is

an example of a filter method. Wrapper methods attempt

to search through the space of feature subsets using the

criterion of the classification algorithm to select the opti-

mal feature subset. Wrapper methods can provide more

accurate solutions than filter methods [5], but in general

are more computationally expensive. We present a new

wrapper method to reduce the dimensions of both input

and feature space of an SVM. An alternative approach for

speeding-up SVM classification has been proposed in [7]

by reducing the number of support vectors.

Feature reduction is a generic tool that can be applied to

any classification problem. When dealing with a specific

classification task we can use prior knowledge about the

type of data to speed-up classification. Two assumptions

hold for most vision-based object detection tasks: a) The

vast majority of the analyzed patterns in an image belongs

to the background class and b) most of the background pat-

terns can be easily distinguished from the objects. Based on

these two assumptions it is sensible to apply a hierarchy of

classifiers. Fast classifiers remove large parts of the back-

ground on the bottom and middle levels of the hierarchy and

a more accurate but slower classifier performs the final de-

tection on the top level. This idea falls into the framework of

coarse-to-fine template matching [8, 2] and is also related to

biologically motivated work on attention-based vision [4].

More recently a cascade of linear classifiers that have

been trained using AdaBoost has been proposed in [12] for

frontal face detection. This idea is related to ours in the

sense that it combines hierarchical classification with fea-

ture selection. However, in our approach the complexity of

the classifiers in the hierarchy is not only controlled by the

number of features (image resolution) but also by the class

of decision functions (i.e. class of SVM kernel functions).

The bottom level of our hierarchy consists of a linear clas-

sifier that operates on low resolution patterns (9�9) while

the top level consists of a non-linear classifier operating on

higher resolution patterns (19�19).



In Section 2 we give a brief overview on SVM theory

and describe the training and test data used in our experi-

ments. In Section 3 we rank and select features in the input

space. Feature selection in the feature space of the classifier

is described in Section 4. In Section 5 we present the hier-

archical structure of classifiers. The paper is concluded in

Section 6.

2 Background

2.1 Support Vector Machine Theory

An SVM [11] performs pattern recognition for a two-

class problem by determining the separating hyperplane that

has maximum distance to the closest points of the training

set. These closest points are called support vectors. To

perform a non-linear separation in the input space a non-

linear transformation ���� maps the data points � of the in-

put space ��� into a high dimensional space, called feature

space ��� �� � ��. The mapping ���� is represented in the

SVM classifier by a kernel function���� �� which defines an

inner product in ���. Given � examples ����� ��������, the

decision function of the SVM is linear in the feature space

and can be written as:
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The optimal hyperplane is the one with the maximal dis-

tance (in space ���) to the closest points ����� of the train-

ing data. Determining that hyperplane leads to maximizing

the following functional with respect to 
:
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under constraints
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� ���� �. An upper bound on the expected error probability

����� of an SVM classifier is given by [11]:
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where� � �
	 �
�� is the distance between the support vec-

tors and the separating hyperplane and� is the radius of the

smallest sphere including all points ������ ��������� of the

training data in the feature space. In the following, we will

use this bound on the expected error probability to rank and

select features.

2.2 Computational Issues

The only non-linear kernel investigated in this paper is a

second-degree polynomial kernel ������ � �
 � � � ���

which has been successfully applied to various object de-

tection tasks [6, 3]. Eq. (1) shows two ways of computing

the decision function. When using the kernel representation

on the right side of Eq. (1) the number of multiplications re-

quired to calculate the decision function for a second-degree

polynomial kernel is:

�����
�� � ��� �� � �� (4)

where � is the dimension of the input space and � is the

number of support vectors. This number is independent

of the dimensionality of the feature space. It depends on

the number of support vectors which is linear with the

size � of the training data [11]. On the other hand, the

computation of the decision function in the feature space

is independent of the size of training samples, it only

depends on the dimensionality � of the feature space. For

the second-degree polynomial kernel the feature space

��� has dimension � � ������
� and is given by �

� �

�
�
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Thus the number of multiplications required for projecting

the input vector into the feature space and for computing

the decision function is:
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From Eq. (4) and (5) we see that the computation for an

SVM with second-degree polynomial is more efficiently

done in the feature space if the number of support vectors is

bigger than �. This was always the case in our experiments;

the number of support vectors was between � and � times

larger than �. That is why we investigated not only methods

for reducing the number of input features but also methods

for feature reduction in the feature space.

2.3 Training and test sets

In our experiments we used one training and two test

sets. The positive training set contained 2,429 19�19 faces.

The negative training set contained 4,548 randomly selected

non-face patterns. The relatively small size of the training

set affects the classification performance. Experiments in

[3] show that for a given classifier the false positive rate can

be reduced by a factor of 10 by increasing the training set

using bootstrapping methods. In this paper the main goal

was to speed-up a given classifier without loss of classifica-

tion performance. We opted for a small training set in order

to save time during training classifiers in our numerous ex-

periments.

The test set was extracted from the CMU test set 11. We

extracted 472 faces and 23,570 non-face patterns. The non-

face patterns were selected by a linear SVM classifier as the

1The test set is a subset of the CMU test set 1 [9] which consists of 130

images and 507 faces. We excluded 12 images containing line-drawn faces

and non-frontal faces.



non-face patterns most similar to faces. The final evaluation

of our system was performed on the entire CMU test set 1,

containing 118 images. Processing all images at different

scales resulted in about 57,000,000 analyzed 19�19 win-

dows.

3 Dimension reduction in the Input Space

3.1 Ranking Features in the Input Space

In [13] a gradient descent method is proposed to rank the

input features by minimizing the bound of the expectation

of the leave-one-out error of the classifier. The basic idea is

to re-scale the �-dimensional input space by a n�n diagonal

matrix � such that ��

�� is minimized. The new mapping

function is then ����� � ��� � �� and the kernel function

is ������� � ��� � �� � � �� � ������ � ������. The

decision function given in Eq. (1) becomes:
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The maximization problem of Eq. (2) is now given by:
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subject to constraints
��

��� 
��� � 	 and 
 � 
� �
	� � � 
� ���� �. We solve for 
 and � using an iterative pro-

cedure: We initialize � as a vector of ones and then solve

Eq. (7) and for the margin and radius. Using the values for


and � from the above equations and the bound in Eq. (3) we

compute � by minimizing � ��
� ������� �� using a gra-

dient descent procedure. We then start a new iteration of the

algorithm using the �� of the current iteration as initializa-

tion. We applied the ranking method to 283 gray features

generated by preprocessing 19�19 image patterns as de-

scribed in [10]. Additionally we performed tests with PCA

gray features that we obtained by projecting the data points

into the 283 dimensional eigenvector space. PCA was com-

puted on a the combined set of positive and negative sets.

We computed one iteration of the algorithm in all of our ex-

periments. The tests were performed on the small test set

for �	, 
	 and 
		 ranked features. The ROC curves for

second-degree polynomial SVMs are shown in Fig. 1. For


		 features there is no difference between gray and PCA

gray features. For 
	 and �	 features, however, the PCA

gray features gave clearly better results. For this reason we

focused in the remainder of the paper on PCA features only.

An interesting observation is that the ranking of the PCA

features obtained by the above described gradient descent

method was similar to the ranking by decreasing eigenval-

ues.

Figure 1. ROC curves for gray (top) and PCA

gray (bottom) features with the 60, 80 and 100
best ranked features.

3.2 Selecting Features in the Input Space

In Section 3.1 we ranked the features according to their

scaling factors ��. Now the problem is to determine a subset

of the ranked features ���� ��� ���� ���. This problem can be

formulated as finding the optimal subset of ranked features

���� ��� ���� ���� among the � possible subsets, where ��

is the number of selected features. As a measure of the

classification performance of an SVM for a given subset of

ranked features we used again the bound on the expected

error probability.
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To simplify the computation of our algorithm and to avoid

solving a quadratic optimization problem in order to com-

pute the radius �, we approximated2 �� by �� where � is

2We previously normalized all the data in ��� to be in a range between

0 and 1. As a result the points lay within a �-dimensional cube of length�
� in ��� and the smallest sphere including all the data points is upper



Figure 2. Approximation of estimated bound

on the expected error versus number of prin-
cipal components. The values on the �-axis

are not normalized by the number of training

samples.

the dimension of the feature space ���. For a second-degree

polynomial kernel of type �
 � � � ��� we get:
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where �� is the number of selected features3. The estimated

bound on the expected error is shown in Fig. 2. We had no

training error for more than 22 selected features. The esti-

mated bound on the expected error shows a plateau between

30 to 60 features, then it increases steadily.

The bound in Eq. (8) is considered to be a loose bound

on the expected error. To check if the bound is of practi-

cal use for selecting the number of features we performed

tests on the CMU test set. In Fig. 3 we compare the ROC

curves obtained for different numbers of selected features.

The results show that using more than 60 features does not

improve the performance of the system. This observation

coincides with the run of the curve in Fig. 2. However, the

error on the test set does not change significantly for more

than 70 features although the estimated bound on the ex-

pected error shown in Fig. 2 increases. Probably because

our bound gets looser with increasing number of features

through the approximation of � by the dimensionality of

the feature space.

4 Feature Reduction in the Feature Space

In the previous Section we described how to reduce the

number of features in the input space. Now we consider the

bound by
�
��.

3As we used a second-degree polynomial SVM the dimension of the

feature space � � ����� � ����.

Figure 3. ROC curves for different number of
PCA gray features.

problem of reducing the number of features in the feature

space. We use a new method based on the contribution of

the features from the feature space to the decision function

���� of the SVM.
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with � � ���� ���� ���. For a second-degree polyno-

mial kernel with ������ � �
 � � � ���, the feature

space ��� with dimension � � ������
� is given by �� �

�
�
���� � � � �

�
���� �

�
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�
������ � � � �
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��������.

The contribution of a feature ��� to the decision function in

Eq. (10) depends on �� . A straightforward way to order the

features is by ranking 	��	. Alternatively, we weighted �

by the support vectors to account for different distributions

of the features in the training data. The features were

ordered by ranking 	��

�
� ���

�

���	, where ����� denotes

the �-th component of support vector � in feature space

���. For both methods we first trained an SVM with a

second-degree polynomial kernel on �	 PCA gray features

of the input space which corresponds to 

�
 features in

���. We then calculated

���� �
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for all � Support Vectors, where ����� is the decision func-

tion using the � first features according to their ranking.

Note that in contrast to the previously described selection

of features in the input space this method does not require

the retraining of SVMs for different feature sets. The results

in Fig. 4 show that ranking by the weighted components of

� lead to a faster convergence of ���� from Eq. (11) to-

wards 	. Fig. 5 shows the ROC curves for �		 and 
			



Figure 4. Classifying support vectors with

a reduced number of features. The �-axis
shows the number of features, the �-axis is

the mean absolute difference between the

output of the SVM using all features and the
same SVM using the � first features only. The

features were ranked according to the com-
ponents and the weighted components of the

normal vector of the separating hyperplane.

features. As a reference we added the ROC curve for a

second-degree SVM trained on the original �
� gray fea-

tures. This corresponds to
��	�����	�

� � �	� ��� compo-

nents in the feature space. By combining both methods of

feature reduction we could reduce the dimensionality by a

factor of about �	 without loss in performance.

5 Hierarchy of classifiers

5.1 System Overview

In most object detection problems the majority of ana-

lyzed image patches belongs to the background class. Only

a small percentage of these patches look similar to objects

and require a highly accurate classifier to avoid false clas-

sifications. For this reason we developed a 3-level hierar-

chy of classifiers where the computational complexity of

the classifiers increases with each level. By propagating

only those patterns that were classified as faces, we quickly

decrease the amount of data when going up the hierarchy.

The bottom level of our hierarchy consisted of a linear

SVM that was trained on 9�9 face images. On the sec-

ond level we increased the image resolution by a factor of

two (19�19 face patterns) but kept the linear kernel. On

the third level we finally used our best classifier, a non-

linear SVM with a second-degree polynomial kernel that

was trained on 19�19 images. This classifier is highly sen-

sitive to translation. If a face is not centered in the classi-

Figure 5. ROC curves for different dimension

of the feature space.

fication window it is likely to be classified as a non-face.

In order not to miss any faces we search for faces in a small

neighborhood around each detection location that was prop-

agated from the second level. This means that we analyze

16 patterns on level three for each pattern that was classified

as a face on level two. Fig. 9 gives an impression of the

performance of the three individual classifiers; shown are

the detection results for images from the CMU test set 1.

5.2 Experiments

All three classifiers of our hierarchical system were

trained on the same training set of 2,429 faces and 4,548

randomly selected non-face patterns. To train the low-

resolution classifier in the first layer we downscaled the

images from 19�19 to 9�9 pixels. The classifiers in the

first two layers were trained on the gray value features de-

scribed in Section 2.3. The third classifier was trained on

PCA gray features which were determined by the feature

selection techniques described in Sections 3 and 4 (1,000

features in the feature space determined from 60 PCA gray

features of the input space). The ROC curves of the indi-

vidual classifiers are shown in Fig. 6 for CMU test set 1. In

Fig. 8 we show the data flow through the hierarchy for the

CMU test set 1. The first classifier removes more than 90%

of the background. The final classifier is most selective, it

classifies more than 99% of its input patterns as non-faces.

In Fig. 7 we compare the ROC curve of the 3-level system

with the ROC curve of the original single SVM classifier

with second-degree polynomial kernel. The performances

are similar. The average computing time for a 320�240

image is shown in Table 1. We achieved a speed-up by a

factor of 170 compared to the original system.



Figure 6. ROC curves for the three classifiers

of the hierarchical system for the CMU test
set 1.

6 Conclusion and Future Work

In this paper we presented speed-up methods for object

detection systems based on feature reduction and hierarchi-

cal classification. The feature reduction was done by rank-

ing and then selecting PCA gray features according to a

classification criterion that was derived from learning the-

ory. Applied to a face detection system we could remove

��� of the original features without loss in classification

performance. To quickly remove large background parts

of an image we arranged three classifiers with increasing

computational complexity in a hierarchical structure. Ex-

periments with a face detection system show that the com-

bination of feature selection and hierarchical classification

speeds-up the system by a factor of 170 while maintaining

the classification accuracy. In future work we will run ex-

periments on larger training sets, apply feature reduction to

all levels of the hierarchical classifier, and explore ways of

finding the optimal number of levels. We will also perform

experiments with hierarchical training where each classifier

is trained on the outputs of the classifier of the previous

level.
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Figure 8. Data flow for the 3-level hierarchy
of classifiers determined on the CMU test

set 1.

System Typical Speed-up

detection time factor

Single ��� degree 271 s –

polynomial SVM

Single ��� degree 63.8 s 4.25

polynomial SVM

+ Feature reduction

3-Level hierarchy 1.6 s 170

+ Feature reduction

Table 1. Computing time for a 320�240 im-

age processed on a dual Pentium III with
733 MHz. The original image was rescaled

in 5 steps to detect faces at resolutions be-
tween 26�26 and 60�60 pixels.

Figure 9. Detections at each level of the hierarchy.


