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Abstract

In previous research the Support Vector Data Descrip-
tion is proposed to solve the problem of One-Class clas-
sification. In One-Class classification one set of data,
called the target set, has to be distinguished from the
rest of the feature space. This description should be
constructed such that objects not originating from the
target set, by definition the outlier class, are not ac-
cepted by the data description. In this paper the Sup-
port Vector Data Description is applied to the problem
of image database retrieval. The user selects an exam-
ple image region as target class and resembling images
from a database should be retrieved. This application
shows some of the weaknesses of the SVDD, particu-
larly the dependence on the scaling of the features. By
rescaling features and combining several descriptions
oll well scaled feature sets, performance can be signifi-
cantly improved.

Introduction

When one class of the data is to be distinguished from
the rest of the feature space, a closed boundary around
this set should be defined. This One-Class classifica-
tion is often solved using density estimation or a model
based approach. In this paper we use a method in-

spired by the Support Vector Classifier (Vapnik 1998).
Instead of using a hyperplane to distinguish between
two classes, a hypersphere around the target set is used.
This method is called the Support Vector Data Descrip-

tion (SVDD)(Tax & Duin 1998).
In general the problem of One-Class classification is

harder than the problem of normal Two-Class classifi-
cation. For normal classification tim decision boundary
is supported from both sides by examples of each of
the classes. Because in the case of One-Class classifi-
cation only one set of data is available, only one side
of the boundary is covered. On the basis of one class
it is hard to decide how tight the boundary should fit
around the data in each of the directions. Even harder
to decide is what the optimal scaling of the features
should be to find the best separation of the target and
outlier class.
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To investigate the impact of this problem in a real
application, the SVDD will be applied to an image
database retrieval problem in which the user defines
some interesting and desired image regions, and the
application should retrieve the resembling images from
the database. Only the user indicated regions will be
used in training. The database is given by (Messer 

Kittler 1999). Several features will be available, both
color and texture features. In literature it is well known
that color features perform very well in distinguishing
the target images from the rest of the database(Antani,
Kasturi, & Jain 1998). Some very advanced techniques
for image database retrieval have been used to use both
types of features. A well optimized retrieval procedure,
including automatic feature selection and extraction is

also found in (Messer & Kittler 1999).
In this paper we focus on the problem of the scaling of

the data. First we will explain the Support Vector Data
Description. Some characteristics of the image database

and information about the queries will be given. Then
the results of the queries by the SVDD will be shown

and we conclude with the discussion.

Support Vector Data Description

For description of the domain of a dataset we capture
it with a hypersphere with minimum volume. By min-
imizing the volume of the captured feature space, we
hope to minimize the chance of accepting outliers. In-
spired by the Support Vector Method by Vapnik (see
(Vapnik 1995), or for a more simple introduction (Tax,

de Ridder, & Duin 1997)) one can extend this idea
to determine an arbitrary shaped region in the origi-
nal feature space, the Support Vector Data Description

(SVDD) method (Tax & Duin 1999).
Assume we have a data set containing N data objects,

{xi, i = 1 .... N} and the sphere is described by center a
and radius R. To allow the possibility of outliers in the
training set. the distance from xi to the center a should
not be strictly smaller than R2, but larger distances
should be penalized. Therefore slack variables ~i are

introduced. An error function containing the volume
of the sphere and the distance from the boundary of
the outlier objects is minimized. The constraints that
objects are within the sphere are imposed by applying
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Figure 1: Distance to the center of the hypersphere, mapped back on the input space for a Gaussian kernel. The
darker the color, the smaller the distance. The white dashed line indicates the surface of the hypersphere. The small
circles indicate the support objects.

Lagrange multipliers:

L(R, a, c~i) = e +C Z ~i
i

- - - x, + -
i

with Lagrange multipliers ai _> 0 and % >_ 0. This
function has to be minimized with respect to R, a and

~i and maximized with respect to ai and %.
Setting the partial derivatives of L to R and a to

zero, gives:

From the last equation ai = C- % and because ai >_
0, % _> 0, Lagrange multipliers % can be removed when
we demand that

0 <_ c~i ~ C (3)

Resubstituting these values in the Lagrangian gives
to maximize with respect to c~i:

L = ~-~ai(xi.xi)-Zc~iaj(xi’x j) (4)
i /,j

with 0 <_ ai < C, Y’~i ai = 1.

This function is a standard Quadratic Optimization
problem and it should be maximized with respect to ar
In practice it appeared that a large fraction of the ai
become zero. The objects for which ai > 0 are called
the Support Objects, and these are important in the
computation of the center a. All other objects with

ai = 0 can be disregarded. This can drasticly reduce
the computation.

Object z is accepted when:

i i

= (z. z) - x,) + xj)
, i,j

< R~ (5)

In general this does not give a very tight descrip-
tion. The model of a hypersphere is assumed, which
will not be satisfied in the general case. Analogous to
the method of Vapnik (Vapnik 1998), the inner prod-
ucts (x. y) in equations (4) and (5) can be replaced 
kernel functions K(x. y) which gives a much more flex-
ible method. When the inner products are replaced by

Gaussian kernels for instance, we obtain:

(x. y) -+ K(x. y) = exp(-(x - y)2/s2) 

Equation ~4) now changes into:

L = 1 - ~_~ ~," - ZaiaJ g(xi’xj) (7)
i~j

and and the formula to check if a new object z is within
the sphere (equation (5))becomes:

1 - 2ZaiK(z,x, ) + ZeeiajK(xi,xj) R") (8
i,j

So a more flexible description than the rigid sphere
description is obtained. In figure 1 the resulting data
description is shown for a simple 2D dataset. For dif-
ferent values for the width parameter s in the kernel
(equation (6)) the resulting decision boundary is plot-
ted. Note that the number of support vectors changes
for different s. As shown in (Tax & Duin 1999) rejec-
tion rate of the target set, i.e. the error on the target
set can be estimated by the number of support vectors:

E[P(error)]- #SV
N (9)

where #SI" is the number of support vectors. The num-
ber of support vectors can be regulated by changing the
width parameter s and therefore also the error on the
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target set. The upper bound C on ai can be set when
an assumption oll the fraction of outliers in the target
set is made.

When examples of outliers are available, the SVDD
can be adapted to use these to obtain a tighter descrip-
tion(Ta.x & Duin 1999). Note that we cannot set a priori
restrictions on the error on the outlier class. In general
we only have a good representation of the target class

and the outlier class is per definition everything else.

Image database

Although the SVDD does not assume a certain distri-
bution for the target class, it requires well-scaled data:
distances in feature space should be more or less homo-
geneous. To investigate if this assumption is satisfied in
practical situations, we apply the method to the image
database from Messer(Messer & Kittler 1999). The im-
age database contains 3483 images, ranging from cap-
ture TV images to images from the MPEG-7 test set.
The user chooses interesting regions in a target image.
On the pixels extracted from the selected image patches
an One-Class classifier is trained. Finally the resem-
bling images (both in color and texture) should be re-
trieved from the database. In the practical application
the speed of the retrieval is important, but in this paper
we only focus on the retrieval accuracy.

In figure 2 five test queries are defined (originally
from (Messer & Kittler 1999)). For each of the target
images the user has defined 2 regions. To test the per-
formance of the One-Class classifiers, also 5 to 8 other
target images are defined, which resemble the target
images. To give a ranking of the images, an error has
to be defined. Most importantly the pixels should be
accepted by the description. Furthermore the pixels are
weighted by the distance to the center of the sphere or
the size of the region to which they belong. The errors
which are used, will be explained further in the next
section.

The color and texture features of the image are cal-
culated beforehand to accelerate the query. For each
pixel in each image 33 features are calculated. They
are listed in table 1.

set dim type of feature (7

1 9 discrete cosine transform 1 - 104

2 8 gabor filters 2.103

3 3 energy (green/int/red) 3.10-~

4 3 entropy (green/int/red) 6- 10-2

5 3 mean (green/int/red) 2.10°

6 3 variance (green/int/red) 6- 102
7 4 wavelet transform 1.103

Table 1: List of the 33 features, divided in 7 feature
sets. Last column gives the average standard deviation
of the data obtained from the brick wall region from
the Cathedral image.

To further lower the computational burden in the

processing of the complete image database, all images
are segmented by clustering the pixels in the 33 dimen-
sional feature space. On average about 30 to 50 cluster

centers are obtained for each of the images. Only the
cluster centers, called the indices, are used in the test-
ing. This reduces the images from 300 x 200 pixels to
about 50 indices. The drawback is that only an average
of the cluster is considered and that the variance struc-
ture of the cluster is lost. An example of a clustered
image with indices is given in figure 3.

Figure 3: Clustered (or segmented) Cathedral image,
containing 38 clusters. The cluster centers (indices) and
they approximate positions are given by the dots.

Finally a total retrieval error is defined which is inde-
pendent on the image database size and the definition
of the query. It is the chance that a random method
(a method which just randomly ranks the images hav-
ing an uniform distribution over the whole database)
shows the same ranking as the method under investi-

gation. When the total database consist of M images
and n images are ranked, the distribution of average
rank m of the n images by the random method will be

distributed like:

p(m,n,M)=2((~;t, M+I ., (M--l)2 - 2 ,a" - 12n ]
(10)

where ,g(x; p,a2) is the Normal distribution. In gen-
eral the average ranking obtained by a non-random
method will be better. Integration over m upto the av-
erage rank 7-77 of equation (10) gives an indication how
(un-)likely the results would be in case of a random
method:

Fg(i’iT, n, M) = p(m, n, M)dm (11)
OO

Assume we have an image database containing M =
3500 images, and a query with n = 5 target images
is defined. When the images are ranked (1, 2, 3, 4, 5),

r~ = 3, the error becomes £ = 5.09.10 -15 while for
ranking (1500, 1550, 1600. 1650, 1700) g = 0.2526. The
results of the experiments will be shown in a more read-
able format as logm(g), giving -14.29 and -0.59 re-
spectively.
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Figure 2: Tile five defined queries, Cathedral, Queen, Hut, Flag, Newsreader. each with two user defined regions.

Experiments

In all experiments the Support Vector Data Description
is trained on the user defined regions such that about
10% of the training pixels is expected to fall outside
the description (estimated by equation (9)). The train-
ing time used by the Quadratic Optimization routine
was restricted by using just 200 target objects (i.e. pix-
els randomly drawn from the user defined regions) per
description. Using larger training sets gave sometimes
better results, but required long training times (longer
than 5 minutes).

Normal features

To see how hard the image retieval problem is, first an
SVDD is trained on the original 33 features, without
preprocessing. In table 3 the definitions of the errors
is shown. First it is determined which indices are ac-
cepted by the SVDD. After that the accepted indices
are ranked according to distance to center of the SVDD,
the region size of the index or a combination of both.
Finally these values are summed (of multiplied in error
4) over all indices to obtain a final score for the image.

nr error
1 sum over region sizes of accepted in-

dices
2 sum over distances from accepted in-

dices to centers
3 sum over distance × (l+region size)

4 product over region sizes

Table 3: Errors defined for queries where all features
are used in one SVDD

In the third column in table 2 the results are
shown for the five query images on the complete im-
age database. The results show that the four different
ranking errors (table 3) give about the same perfor-
mance. Results on the Cathedral, Queen and News-
reader queries are acceptable, with all desired images
within the first 250 (clearly better than random guess-
ing). The results oll the Hut and Flag queries on the
other hand are disappointing. It appeared that in the
Hut query only the training image is recognized well

(it is ranked 91,4.5,43 in the four error measures). All
other images are ranked low or are rejected completely.

In the Flag query, most of the desired images are
ranked very high. Only two images are not well recog-
nized. These images are shown in figure 4. It appeared
that these images are rotated over 90 degrees. This
transformation is not considered irrelevant, and there-
fore the images are rejected.

Figure 4: Poorly ranked images in the Flag query.

The last column in table 1 shows the standard devia-
tions of the data extracted from the wall region from the
Cathedral image. Clearly the large difference in scale

of the features can deteriorate the performance of the
SVDD. Therefore the data is rescaled to unit variance

28



all features seperatefeatures outlier objects
name query error no sc. scaling no SC. scaling no sc. scaling
Cathedral 1 -13.01 -12.98 -9.23 -12.31 -12.94 -14.23

2 -13.15 -13.18 -10.57 -7.84 -13.27 -14.23
(5 target 3 -12.87 -12.99 -10.07 -9.88 -12.82 -14.23
images) 4 -13.01 -12.99 -14.03 -13.95 -12.95 -14.23

5 -14.01 -13.95
6 -14.04 o14.11

Queen 1 -12.31 -11.82 -8.64 -12.17 -13.32 -13.49
2 -12.46 -11.11 -13.01 -13.47 -12.45 -13.74

(5 target 3 -12.33 - 11.05 -6.86 -7.13 -12.47 -13.47
images) 4 -12.84 -11.68 -12.63 -13.96 -13.51 -13.59

5 -12.24 -13.72
6 -12.69 -13.96

Hut 1 -4.31 -10.01 -10.28 -12.’23 -4.99 -6.86
2 -4.57 -10.04 -2.93 -4.89 -5.10 -6.86

(5 target 3 -4.40 -10.04 -13.23 -13.15 -5.03 -6.86
images) 4 -4.34 -10.02 -8.17 -6.60 -5.02 -6.86

5 -8.12 -6.57
6 -8.22 -6.60

Flag 1 -4.30 -8.90 -0.09 -7.1$ -6.34 -2.15
2 -2.11 -8.54 -7.10 -15.21 -4.41 -2.14

(8 target 3 -3.04 -8.64 -0.00 -O.O(I -5.69 -2.15
images) 4 -4.41 -8.64 -1.99 -20.$4 -6.59 -2.15

5 -2.10 -17.b~
6 -1.86 -10.07

Newsreader 1 -10.16 -12.22 -1.24 -13.68 -8.69 -14.05
2 -13.19 -13.62 -11.70 -12.98 -12.44 -14.27

(5 target 3 -12.15 -13.65 -0.08 -0.37 -11.47 -14.26
images) 4 -10.46 -13.51 -14.27 -14.29 -9.41 -14.13

5 -14.12 -14.18
6 -14.24 -14.27

Table 2: Query results for the different data processing procedures: one SVDD using all features (normal and scaled
to unit variance), descriptions for seperate feature sets (also normal and scaled) and descriptions trained with outliers.
The final error is defined in equation (11). The ranking errors are defined in tables 3 and 

in the target set and the experiments are repeated. Tile
results are shown in the fourth column in table 2. The
results on the Newsreader and especially the Hut and

Flag query are improved. In most queries just a few
of the desired images are poorly recognized. In some

of the desired Hut images, one of the panels is absent,
or partly obscured by an antenna (see figure 5). In the
Flag query, the most important cue seems to be the
color: the best matching images all contain the bright
flag colours. The texture of the flag is not detected very
well.

distance region
,,

weighted feature indices comb.

to center i’, size train perf sets rule

1 S I.I Ill sum OR

2 ’!

X ~!

X SlAin sum OR

3 X S[lnl sum OR

4 prod sum AND

5 X prod sum AND

6 X prod sul~ AND

Table 4: Errors defined for image ranking in case of
descriptions on separate feature sets

Separating the feature sets

To improve performance, especially in the Flag query,
separate SVDDs are trained on the individual feature
sets (see table 1). It is hoped that it will not only make
training an SVDD easier and more efficient, it will also
give the possibility to use several feature combination
rules. In the Flag query this means that the One-Class
classifier can be forced to use the texture information.

Table 4 shows the definitions of the used errors. The
third column "weighted by train perf.’ indicates that
the ranking is also weighted by how well the extracted
indices from the training image are accepted by the
One-Class classifiers. When all indices of the training
image are rejected by the SVDD’s, the corresponding

feature set gets a low weight. A sum or a product com-
bination over feature sets gives an OR-operation and
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an AND-operation respectively. In the cathedral query
this means the difference between ’blue sky OR brick
wall’ and ’blue sky AND brick wall’.

In tile fifth and sixth column of table 2 the results for
the separate SVDD’s without and with scaling is shown.
The separate feature sets are scaled well and the rescal-
ing does not improve performance very much. The re-

sults are somewhat worse for the Cathedral, Queen and
Newsreader with respect to the original results. Only
when the error contains a product over the feature sets
(errors 4,5,6), performance is improved.

Figure 5: hnage of Hut. with one of the panels partly
occluded by an antenna.

For the Hut image the OR-operation over the feature

sets performs very well. It appeared that in some of the
desired images one of tile panels is partly obscured by an
antenna, thus destroying the texture characterization of
the original panel. An example is shown in figure 5. By
using the OR-operation, the influence of the wrongly
characterized panels can be reduced.

Finally the Flag query still suffers from the same
l)roblems as before. The two desired images which are
rotated 90 degrees are not ranked very high. Best per-
formance is reached using an AND-operation on the
feature sets, while only considering the distance to the

centers to the S\’DD’s.

Training with example outliers

Finally the SVDD was adapted to also include example
outliers in the training. One SVDD in the 33 dimen-
sional feature space was trained, and again ranking er-
rors given in table 3 are used. The results are shown in

cohmms 7 and 8 in table 2. For the Cathedral, Queen
and Newsreader the performance improves a bit, but
for Hut and Flag it deteriorates, especially after scal-
ing! It appears that tim desired images of the Hut and
Flag query are not well clustered, and using example
outliers, the SVDD overtrains over the training image.

Conclusion

The Support Vector Data Description is made to seper-
ate one class of data from the rest of the feature space.
The method depends on well defined distances between
objects and to investigate the influence of ill-defined
distances in the data, the SVDD is applied to the prob-
lem of image database retrieval. In this problem objects

are characterized by color and texture feature with very
different scales.

It appeared that in this application the color feature
is an important feature and that it is well clustered.
Scaling both color and texture features to unit vari-
ance improves performance for image queries in which
color features are most important. For queries where
texture features are more important, the different color
and texture features are better separated and treated
separately. Combining the descriptions from the differ-
ent feature sets opens the possibility of applying AND

and OR operations on the different features. Then a
distinction between ’blue sky AND brick wall’ and ’blue
sky OR brick wall’ can be made. Of course this will re-
quire user input.

A normal operation procedure might therefore be,
that an SVDD is trained on all 33 features, which are
scaled to unit variance. In most cases this gives very
acceptable results, especially when queries are focussed
on color. When the user is not satisfied, data descrip-
tions in seperate feature sets should be trained. The
user then has to indicate how they should be combined
(by AND or OR combinations). Of course this applica-
tion can be improved in several ways. For instance, the
user should be able to reject some of the high scoring
images. These images than can be used as negative ex-
amples for the next query. This is a subject for further

research.

Acknowledgements

We would like to thank Kieron Messer for making avail-
able the image database with all preprocessed images.
This work was partly supported by the Foundation for

Applied Sciences (STW) and the Dutch Organisation
for Scientific Research (NWO).

References
Antani, S.; Kasturi, R.: and Jain, R. 1998. Pattern recogni-
tion methods in image and video databases: past, present
and future. In Advances in Pattern Recognition, Proceed-
ings of SPR’98 and SSPR’98, 31-53. Berlin: IAPR.

Messer, K., and Kittler, J. 1999. A region-based image
database system using colour and texture. Pattern Recog-
nition Letters 20:1323-1330.

Tax, D., and Duin, R. 1998. Outlier detection using classi-
fier instability. In Amin. A.; Dori. D.; Pudil, P.; and Free-
man, H., eds., Advances in Pattern Recognition, Lecture
notes in Computer Science, volume 1451, 593-601. Berlin:
Proc. Joint IAPR Int. Workshops SSPR’98 and SPR’98
Sydney, Australia.

Tax, D., and Duin, R. 1999. Support vector domain
description. Pattern Recognition Letters 20(11-13):1191-
1199.

Tax, D.; de Ridder, D.; and Duin, R. 1997. Support vector
classifiers: a first look. In Proceedings ASCI’97. ASCI.

Vapnik, V. 1995. The Nature of Statistical Learning The-
ory. Springer-Verlag New York, Inc.

Vapnik, V. 1998. Statistical Learning Theory. Wiley.

3O


