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Feature Screening via Distance Correlation Learning
Runze LI, Wei ZHONG, and Liping ZHU

This article is concerned with screening features in ultrahigh-dimensional data analysis, which has become increasingly important in
diverse scientific fields. We develop a sure independence screening procedure based on the distance correlation (DC-SIS). The DC-SIS
can be implemented as easily as the sure independence screening (SIS) procedure based on the Pearson correlation proposed by Fan and
Lv. However, the DC-SIS can significantly improve the SIS. Fan and Lv established the sure screening property for the SIS based on
linear models, but the sure screening property is valid for the DC-SIS under more general settings, including linear models. Furthermore,
the implementation of the DC-SIS does not require model specification (e.g., linear model or generalized linear model) for responses or
predictors. This is a very appealing property in ultrahigh-dimensional data analysis. Moreover, the DC-SIS can be used directly to screen
grouped predictor variables and multivariate response variables. We establish the sure screening property for the DC-SIS, and conduct
simulations to examine its finite sample performance. A numerical comparison indicates that the DC-SIS performs much better than the SIS
in various models. We also illustrate the DC-SIS through a real-data example.

KEY WORDS: Sure independence screening; Sure screening property; Ultrahigh dimensionality; Variable selection.

1. INTRODUCTION

Various regularization methods have been proposed for fea-
ture selection in high-dimensional data analysis, which has
become increasingly frequent and important in various re-
search fields. These methods include, but are not limited to,
the LASSO (Tibshirani 1996), the smoothly clipped absolute
deviation (SCAD) (Fan and Li 2001; Kim, Choi, and Oh 2008;
Zou and Li 2008), the least angle regression (LARS) algorithm
(Efron et al. 2004), the elastic net (Zou and Hastie 2005; Zou and
Zhang 2009), the adaptive LASSO (Zou 2006), and the Dantzig
selector (Candes and Tao 2007). All these methods allow the
number of predictors to be greater than the sample size, and
perform quite well for high-dimensional data.

With the advent of modern technology for data collection,
researchers are able to collect ultrahigh-dimensional data at
relatively low cost in diverse fields of scientific research. The
aforementioned regularization methods may not perform well
for ultrahigh-dimensional data due to the simultaneous chal-
lenges of computational expediency, statistical accuracy, and
algorithmic stability (Fan, Samworth, and Wu 2009). These
challenges call for new statistical modeling techniques for
ultrahigh-dimensional data. Fan and Lv (2008) proposed the
sure independence screening (SIS) and showed that the Pear-
son correlation ranking procedure possesses a sure screening
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property for linear regressions with Gaussian predictors and re-
sponses. That is, all truly important predictors can be selected
with probability approaching one as the sample size diverges
to ∞. Hall and Miller (2009) extended the Pearson correlation
learning by considering polynomial transformations of predic-
tors. To rank the importance of each predictor, they suggested
a bootstrap procedure. Fan, Samworth, and Wu (2009) and Fan
and Song (2010) proposed a more general version of indepen-
dent learning, which ranks the maximum marginal likelihood
estimators or the maximum marginal likelihood for generalized
linear models. Fan, Feng, and Song (2011) considered nonpara-
metric independence screening in sparse ultrahigh-dimensional
additive models. They suggested estimating the nonparametric
components marginally with spline approximation, and ranking
the importance of predictors using the magnitude of nonpara-
metric components. They also demonstrated that this procedure
possesses the sure screening property with vanishing false selec-
tion rate. Zhu et al. (2011) proposed a sure independent ranking
and screening (SIRS) procedure to screen significant predictors
in multi-index models. They further showed that under linear-
ity condition assumption on the predictor vector, the SIRS en-
joys the ranking consistency property (i.e., the SIRS can rank
the important predictors at the top asymptotically). Ji and Jin
(2012) proposed the two-stage method: screening by Univariate
thresholding and cleaning by Penalized least squares for Select-
ing variables, namely UPS. They further theoretically demon-
strated that under certain settings, the UPS can outperform the
LASSO and subset selection, both of which are one-stage ap-
proaches. This motivates us to develop more effective screening
procedures using two-stage approaches.

In this article, we propose a new feature screening proce-
dure for ultrahigh-dimensional data based on distance corre-
lation (DC). Székely, Rizzo, and Bakirov (2007) and Székely
and Rizzo (2009) showed that the DC of two random vectors
equals to zero if and only if these two random vectors are inde-
pendent. Furthermore, the DC of two univariate normal random
variables is a strictly increasing function of the absolute value of
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the Pearson correlation of these two normal random variables.
These two remarkable properties motivate us to use the DC for
feature screening in ultrahigh-dimensional data. We refer to our
SIS procedure based on the DC as the DC-SIS. The DC-SIS can
be implemented as easily as the SIS. It is equivalent to the SIS
when both the response and the predictor variables are normally
distributed. However, the DC-SIS has appealing features that ex-
isting screening procedures, including SIS, do not possess. For
instance, none of the aforementioned screening procedures can
handle grouped predictors or multivariate responses. The pro-
posed DC-SIS can be directly employed for screening grouped
variables, and can be directly used for ultrahigh-dimensional
data with multivariate responses. Feature screening for multi-
variate responses and/or grouped predictors is of great interest in
pathway analyses. As in Chen et al. (2011), pathway here means
sets of proteins that are relevant to specific biological functions
without regard to the state of knowledge concerning the inter-
play among such protein. Since proteins may work interactively
to perform various biological functions, pathway analyses com-
plement the marginal association analyses for individual protein,
and aim to detect a priori defined set of proteins that are asso-
ciated with phenotypes of interest. There is a surged interest in
pathway analyses in the recent literature (Ashburner et al. 2000;
Mootha et al. 2003; Subramanian et al. 2005; Tian et al. 2005;
Bild et al. 2006; Efron and Tibshirani 2007; Jones et al. 2008).
Thus, it is of importance to develop feature screening procedures
for multivariate responses and/or grouped predictors.

We systematically study the theoretical properties of the DC-
SIS, and prove that the DC-SIS possesses the sure screening
property in the terminology of Fan and Lv (2008) under very
general model settings, including linear regression models, for
which Fan and Lv (2008) established the sure screening property
of the SIS. The sure screening property is a desirable property
for feature screening in ultrahigh-dimensional data. Even impor-
tantly, the DC-SIS can be used for screening features without
specifying a regression model between the response and the
predictors. Compared with the model-based screening proce-
dures (Fan and Lv 2008; Fan, Samworth, and Wu 2009; Wang
2009; Fan and Song 2010; Fan, Feng, and Song 2011), the DC-
SIS is a model-free screening procedure. This virtue makes the
proposed procedure robust to model misspecification. This is a
very appealing feature of the proposed procedure in that it may
be very difficult to specify an appropriate regression model for
the response and the predictors with little information about the
actual model in ultrahigh-dimensional data.

We conduct Monte Carlo simulation studies to numerically
compare the DC-SIS with the SIS and the SIRS. Our simulation
results indicate that the DC-SIS can significantly outperform the
SIS and the SIRS under many model settings. We also assess the
performance of the DC-SIS as a grouped variable screener, and
the simulation results show that the DC-SIS performs very well.
We further examine the performance of the DC-SIS for feature
screening in ultrahigh-dimensional data with multivariate re-
sponses; simulation results demonstrate that screening features
for multiple responses jointly may have a dramatic advantage
over screening features with each response separately.

The rest of this article is organized as follows. In Section 2, we
develop the DC-SIS for feature screening and establish its sure
screening property. In Section 3, we examine the finite sample

performance of the DC-SIS via Monte Carlo simulations. We
also illustrate the proposed methodology through a real-data ex-
ample. This article concludes with a brief discussion in Section
4. All technical proofs are given in Appendices A and B.

2. INDEPENDENCE SCREENING USING DC

2.1 Some Preliminaries

Székely, Rizzo, and Bakirov (2007) advocated using the DC
for measuring dependence between two random vectors. To
be precise, let φu(t) and φv(s) be the respective characteristic
functions of the random vectors u and v, and φu,v(t, s) be the
joint characteristic function of u and v. They defined the distance
covariance between u and v with finite first moments to be the
nonnegative number dcov(u, v) given by

dcov2(u, v) =
∫

Rdu+dv

‖φu,v(t, s) − φu(t)φv(s)‖2w(t, s) dt ds,

(2.1)

where du and dv are the dimensions of u and v, respectively, and

w(t, s) = {
cdu

cdv
‖t‖1+du

du
‖s‖1+dv

dv

}−1
,

with cd = π (1+d)/2/�{(1 + d)/2}. Throughout this article, ‖a‖d

stands for the Euclidean norm of a ∈ Rd , and ‖φ‖2 = φφ̄ for
a complex-valued function φ, with φ̄ being the conjugate of φ.
The DC between u and v with finite first moments is defined as

dcorr(u, v) = dcov(u, v)√
dcov(u, u)dcov(v, v)

. (2.2)

Székely, Rizzo, and Bakirov (2007) systematically studied the
theoretical properties of the DC.

Two remarkable properties of the DC motivate us to use it in
a feature screening procedure. The first one is the relationship
between the DC and the Pearson correlation coefficient. For two
univariate normal random variables U and V , with the Pearson
correlation coefficient ρ, Székely, Rizzo, and Bakirov (2007)
and Székely and Rizzo (2009) showed that

dcorr(U,V )

=
{
ρ arcsin(ρ)+

√
1−ρ2−ρ arcsin(ρ/2)−

√
4−ρ2+1

1+π/3−√
3

}1/2

,

(2.3)

which is strictly increasing in |ρ|. This property implies that
the DC-based feature screening procedure is equivalent to the
marginal Pearson correlation learning for linear regression with
normally distributed predictors and random error. In such a
situation, Fan and Lv (2008) showed that the Pearson correlation
learning has the sure screening property.

The second remarkable property of the DC is dcorr(u, v) = 0
if and only if u and v are independent (Székely, Rizzo, and
Bakirov 2007). We note that two univariate random variables U
and V are independent if and only if U and T (V ), a strictly mono-
tone transformation of V , are independent. This implies that a
DC-based feature screening procedure can be more effective
than the marginal Pearson correlation learning in the presence
of nonlinear relationship between U and V . We will demon-
strate in the next section that a DC-based screening procedure
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is a model-free procedure in that one does not need to specify a
model structure between the predictors and the response.

Székely, Rizzo, and Bakirov (2007, remark 3) stated that

dcov2(u, v) = S1 + S2 − 2S3,

where Sj , j = 1, 2, and 3, are defined as:

S1 = E{‖u − ũ‖du
‖v − ṽ‖dv

},
S2 = E{‖u − ũ‖du

}E{‖v − ṽ‖dv
}, and (2.4)

S3 = E{E(‖u − ũ‖du
| u)E(‖v − ṽ‖dv

| v)},
where (̃u, ṽ) is an independent copy of (u, v).

Suppose that {(ui , vi), i = 1, . . . , n} is a random sample from
the population (u, v). Székely, Rizzo, and Bakirov (2007) pro-
posed to estimate S1, S2, and S3 through the usual moment
estimation. To be precise,

Ŝ1 = 1

n2

n∑
i=1

n∑
j=1

‖ui − uj‖du
‖vi − vj‖dv

,

Ŝ2 = 1

n2

n∑
i=1

n∑
j=1

‖ui − uj‖du

1

n2

n∑
i=1

n∑
j=1

‖vi − vj‖dv
, and

Ŝ3 = 1

n3

n∑
i=1

n∑
j=1

n∑
l=1

‖ui − ul‖du
‖vj − vl‖dv

.

Thus, a natural estimator of dcov2(u, v) is given by

d̂cov
2
(u, v) = Ŝ1 + Ŝ2 − 2Ŝ3.

Similarly, we can define the sample distance covariances
d̂cov(u, u) and d̂cov(v, v). Accordingly, the sample DC between
u and v can be defined by

d̂corr(u, v) = d̂cov(u, v)√
dcov(u, u)dcov(v, v)

.

2.2 An Independence Ranking and Screening
Procedure

In this section, we propose an independence screening proce-
dure built upon the DC. Let y = (Y1, . . . , Yq)T be the response
vector with support �y , and x = (X1, . . . , Xp)T be the predic-
tor vector. We regard q as a fixed number in this context. In
an ultrahigh-dimensional setting, the dimensionality p greatly
exceeds the sample size n. It is thus natural to assume that only a
small number of predictors are relevant to y. Denote by F (y | x)
the conditional distribution function of y given x. Without spec-
ifying a regression model, we define the index set of the active
and inactive predictors by

D = {k : F (y | x) functionally depends on Xk for some

y ∈ �y},
I = {k : F (y | x) does not functionally depend on Xk for any

y ∈ �y}. (2.5)

We further write xD = {Xk : k ∈ D} and xI = {Xk : k ∈ I}, and
refer to xD as an active predictor vector and its complement xI
as an inactive predictor vector. The index subset D of all active
predictors or, equivalently, the index subset I of all inactive
predictors, is the objective of our primary interest. Definition

(2.5) implies that y⊥⊥xI | xD, where ⊥⊥ denotes statistical in-
dependence. That is, given xD, the remaining predictors xI are
independent of y. Thus, the inactive predictors xI are redundant
when the active predictors xD are known.

For ease of presentation, we write

ωk = dcorr2(Xk, y), and ω̂k = d̂corr
2
(Xk, y),

for k = 1, . . . ,p, based on a random sample {xi , yi}, i =
1, . . . , n. We consider using ωk as a marginal utility to rank the
importance of Xk at the population level. We use the DC because
it allows for arbitrary regression relationship of y onto x, regard-
less of whether it is linear or nonlinear. The DC also permits
univariate and multivariate responses, regardless of whether it
is continuous, discrete, or categorical. In addition, it allows for
groupwise predictors. Thus, this DC-based screening procedure
is completely model-free. We select a set of important predictors
with large ω̂k . That is, we define

D̂� = {k : ω̂k ≥ cn−κ , for 1 ≤ k ≤ p},
where c and κ are prespecified threshold values, which will be
defined in Condition (C2) in the subsequent section.

2.3 Theoretical Properties

Next, we study the theoretical properties of the proposed
independence screening procedure built upon the DC. The fol-
lowing conditions are imposed to facilitate the technical proofs,
although they may not be the weakest ones.

(C1) Both x and y satisfy the subexponential tail probability
uniformly in p. That is, there exists a positive constant
s0 such that for all 0 < s ≤ 2s0,

sup
p

max
1≤k≤p

E
{
exp

(
s‖Xk‖2

1

)}
< ∞, and

E
{
exp

(
s‖y‖2

q

)}
< ∞.

(C2) The minimum DC of active predictors satisfies

min
k∈D

ωk ≥ 2cn−κ ,

for some constants c > 0 and 0≤κ < 1/2.

Condition (C1) follows immediately when x and y are bounded
uniformly, or when they have a multivariate normal distribution.
The normality assumption has been widely used in the area of
ultrahigh-dimensional data analysis to facilitate the technical
derivations; see, for example, Fan and Lv (2008) and Wang
(2009).

Next we explore Condition (C2). When x and y have mul-
tivariate normal distribution, (2.3) gives an explicit relation-
ship between the DC and the squared Pearson correlation. For
simplicity, we write dcorr(Xk, y) = T0 (|ρ(Xk, y)|), where T0(·)
is strictly increasing given in (2.3). In this situation, Condi-
tion (C2) requires essentially that min

k∈D
|ρ(Xk, y)| ≥ Tinv(2cn−κ ),

where Tinv(·) is the inverse function of T0(·). This is parallel to
condition 3 of Fan and Lv (2008) where it is assumed that
min
k∈D

|ρ(Xk, y)| ≥ 2cn−κ . This intuitive illustration implies that

Condition (C2) requires that the marginal DC of active predic-
tors cannot be too small, which is similar to condition 3 of Fan
and Lv (2008). We remark here that, although we illustrate the
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intuition by assuming that x and y are multivariate normal, we
do not require this assumption explicitly in our context. The
following theorem establishes the sure screening property for
the DC-SIS procedure.

Theorem 1. Under Condition (C1), for any 0 < γ < 1/2 − κ ,
there exist positive constants c1 > 0 and c2 > 0 such that

Pr

(
max

1≤k≤p

∣∣ω̂k − ωk

∣∣ ≥ cn−κ

)
≤ O(p[exp{−c1n

1−2(κ+γ )} + n exp(−c2n
γ )]). (2.6)

Under Conditions (C1) and (C2), we have that

Pr
(D ⊆ D̂�

)≥1−O(sn[exp{−c1n
1−2(κ+γ )} + n exp(−c2n

γ )]),

(2.7)

where sn is the cardinality of D.

The sure screening property holds for the DC-SIS under
milder conditions than that for the SIS (Fan and Lv 2008) in
that we do not require the regression function of y onto x to be
linear. Thus, the DC-SIS provides a unified alternative to ex-
isting model-based sure screening procedures. Compared with
the SIRS, the DC-SIS can effectively handle grouped predictors
and multivariate responses.

To balance the two terms on the right-hand side of (2.6), we
choose the optimal order γ = (1 − 2κ)/3; then, the first part of
Theorem 1 becomes

Pr
(

max
1≤k≤p

|ω̂k − ωk| ≥ cn−κ
)

≤ O(p[exp{−c1n
(1−2κ)/3}]),

for some constant c1 > 0, indicating that we can handle the non-
polynomial (NP) dimensionality of order log p = o(n(1−2κ)/3).
If we further assume that Xk and y are bounded uniformly in p,
then we can obtain without much difficulty that

Pr

(
max

1≤k≤p
|ω̂k − ωk| ≥ cn−κ

)
≤ O(p[exp{−c1n

1−2κ}]).

In this case, we can handle the NP dimensionality log p =
o(n1−2κ ).

3. NUMERICAL STUDIES

In this section, we assess the performance of the DC-SIS by
Monte Carlo simulation. Our simulation studies were conducted
using R code. We further illustrate the proposed screening pro-
cedure with an empirical analysis of a real-data example.

In Examples 1–3, we generate x = (X1, X2, . . . , Xp)T from
normal distribution with zero mean and covariance matrix

 = (σij )p×p, and the error term ε from standard normal distri-
bution N (0, 1). We consider two covariance matrices to assess
the performance of the DC-SIS and to compare with existing
methods: (1) σij = 0.8|i−j | and (2) σij = 0.5|i−j |. We fix the
sample size n to be 200 and vary the dimension p from 2000 to
5000. We repeat each experiment 500 times, and evaluate the
performance through the following three criteria:

(1) S: the minimum model size to include all active pre-
dictors. We report the 5%, 25%, 50%, 75%, and 95%
quantiles of S out of 500 replications.

(2) Ps : the proportion that an individual active predictor is
selected for a given model size d in the 500 replications.

(3) Pa: the proportion that all active predictors are selected
for a given model size d in the 500 replications.

The S is used to measure the model complexity of the resulting
model of an underlying screening procedure. The closer to the
minimum model size the S is, the better the screening procedure
is. The sure screening property ensures that Ps and Pa are both
close to one when the estimated model size d is sufficiently large.
We choose d to be d1 = [n/ log n], d2 = 2[n/ log n], and d3 =
3[n/ log n] throughout our simulations to empirically examine
the effect of the cutoff, where [a] denotes the integer part of a.

Example 1. This example is designed to compare the finite
sample performance of the DC-SIS with the SIS (Fan and Lv
2008) and the SIRS (Zhu et al. 2011). In this example, we
generate the response from the following four models:

(1.a): Y = c1β1X1 + c2β2X2 + c3β31(X12 < 0)

+ c4β4X22 + ε,

(1.b): Y = c1β1X1X2 + c3β21(X12 < 0) + c4β3X22 + ε,

(1.c): Y = c1β1X1X2 + c3β21(X12 < 0)X22 + ε,

(1.d): Y = c1β1X1 + c2β2X2 + c3β31(X12 < 0)

+ exp(c4|X22|)ε,

where 1(X12 < 0) is an indicator function.
The regression functions E(Y | x) in models (1.a)–(1.d)

are all nonlinear in X12. In addition, models (1.b) and
(1.c) contain an interaction term X1X2, and model (1.d)
is heteroscedastic. Following Fan and Lv (2008), we
choose βj = (−1)U (a + |Z|) for j = 1, 2, 3, and 4, where
a = 4 log n/

√
n, U ∼ Bernoulli(0.4) and Z ∼ N (0, 1). We set

(c1, c2, c3, c4) = (2, 0.5, 3, 2) in this example to challenge the
feature screening procedures under consideration. For each
independence screening procedure, we compute the associated
marginal utility between each predictor Xk and the response
Y . That is, we regard x = (X1, . . . , Xp)T ∈ Rp as the predictor
vector in this example.

Tables 1 and 2 present the simulation results for S, Ps , and
Pa . The performances of the DC-SIS, SIS, and SIRS are quite
similar in model (1.a), indicating that the SIS has a robust per-
formance if the working linear model does not deviate far from
the underlying true model. The DC-SIS outperforms the SIS and
the SIRS significantly in models (1.b)–(1.d). Both the SIS and
the SIRS have little chance to identify the important predictors
X1 and X2 in models (1.b) and (1.c), and X22 in model (1.d).

Example 2. We illustrate that the DC-SIS can be directly used
for screening grouped predictors. In many regression problems,
some predictors can be naturally grouped. The most common
example that contains group variables is the multifactor analysis
of variance (ANOVA) problem, in which each factor may have
several levels and can be expressed through a group of dummy
variables. The goal of ANOVA is to select important main effects
and interactions for accurate predictions, which amounts to the
selection of groups of dummy variables. To demonstrate the
practicability of the DC-SIS, we adopt the following model:

Y = c1β1X1+c2β2X2+c3β3{1(X12 < q1)

+ 1.5 × 1(q1 ≤X12 < q2) + 2 × 1(X12 ≥ q3)} + c4β4X22 + ε,

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 0
8:

03
 1

7 
O

ct
ob

er
 2

01
2 



Li, Zhong, and Zhu: Distance-Correlation-Based SIS 1133

Table 1. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out of 500 replications in Example 1

S SIS SIRS DC-SIS

Model 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

Case 1: p = 2000 and σij = 0.5|i−j |

(1.a) 4.0 4.0 5.0 7.0 21.2 4.0 4.0 5.0 7.0 45.1 4.0 4.0 4.0 6.0 18.0
(1.b) 68.0 578.5 1180.5 1634.5 1938.0 232.9 871.5 1386.0 1725.2 1942.4 5.0 9.0 24.5 73.0 345.1
(1.c) 395.9 1037.2 1438.0 1745.0 1945.1 238.5 805.0 1320.0 1697.0 1946.0 6.0 10.0 22.0 59.0 324.1
(1.d) 130.5 611.2 1166.0 1637.0 1936.5 42.0 304.2 797.0 1432.2 1846.1 4.0 5.0 9.0 41.0 336.2

Case 2: p = 2000 and σij = 0.8|i−j |

(1.a) 5.0 9.0 16.0 97.0 729.4 5.0 9.0 18.0 112.8 957.1 4.0 7.0 11.0 31.2 507.2
(1.b) 26.0 283.2 852.0 1541.2 1919.0 103.9 603.0 1174.0 1699.2 1968.0 5.0 8.0 11.0 17.0 98.0
(1.c) 224.5 775.2 1249.5 1670.0 1951.1 118.6 573.2 1201.5 1685.2 1955.0 7.0 10.0 15.0 38.0 198.3
(1.d) 79.0 583.8 1107.5 1626.2 1930.0 50.9 300.5 728.0 1368.2 1900.1 4.0 7.0 17.0 73.2 653.1

Case 3: p = 5000 and σij = 0.5|i−j |

(1.a) 4.0 4.0 5.0 6.0 59.0 4.0 4.0 5.0 7.0 88.4 4.0 4.0 4.0 6.0 34.1
(1.b) 165.1 1112.5 2729.0 3997.2 4851.5 560.8 1913.0 3249.0 4329.0 4869.1 5.0 11.8 45.0 168.8 956.7
(1.c) 1183.7 2712.0 3604.5 4380.2 4885.0 440.4 1949.0 3205.5 4242.8 4883.1 7.0 17.0 53.0 179.5 732.0
(1.d) 259.9 1338.5 2808.5 3990.8 4764.9 118.7 823.2 1833.5 3314.5 4706.1 4.0 5.0 15.0 77.2 848.2

Case 4: p = 5000 and σij = 0.8|i−j |

(1.a) 5.0 10.0 26.5 251.5 2522.7 5.0 10.0 28.0 324.8 3246.4 5.0 8.0 14.0 69.0 1455.1
(1.b) 40.7 639.8 2072.0 3803.8 4801.7 215.7 1677.8 3010.0 4352.2 4934.1 5.0 8.0 11.0 21.0 162.0
(1.c) 479.2 1884.8 3347.5 4298.5 4875.2 297.7 1359.2 2738.5 4072.5 4877.6 8.0 12.0 22.0 83.0 657.9
(1.d) 307.0 1544.0 2832.5 4026.2 4785.2 148.2 672.0 1874.0 3330.0 4665.2 4.0 7.0 21.0 165.2 1330.0

where q1, q2, and q3 are the 25%, 50%, and 75% quantiles of
X12, respectively. The variables X with the coefficients ci’s and
βi’s are the same as those in Example 1. We write

x̃12 = {1(X12 < q1), 1(q1 ≤ X12 < q2), 1(q2 ≤ X12 < q3)}T

These three variables naturally become a group.
The predictor vector in this example becomes x =
(X1, . . . , X11, x̃12, X13, . . . , Xp)T∈ Rp+2. We remark here that
the marginal utility of the grouped variable x̃12 is defined by

ω̂12 = d̂corr
2
(̃x12, Y ).

The 5%, 25%, 50%, 75%, and 95% percentiles of the minimum
model size S are summarized in Table 3. These percentiles
indicate that with very high probability, the minimum model
size S to ensure the inclusion of all active predictors is small.
Note that [n/ log(n)] = 37. Thus, almost all Pss and Pas of
the DC-SIS equal 100%. All active predictors, including the
grouped variable x̃12, can almost perfectly be selected into the
resulting model across all three different model sizes. Hence,
the DC-SIS is efficient to select the grouped predictors.

Example 3. In this example, we investigate the performance
of the DC-SIS with multivariate responses. The SIS proposed
by Fan and Lv (2008) cannot be directly applied for such
settings. In contrast, the DC-SIS is ready for screening the active
predictors by the nature of DC. In this example, we generate
y = (Y1, Y2)T from normal distribution with mean zero and
covariance matrix 
y|x = (σx,ij )2×2, where σx,11 = σx,22 = 1
and σx,12 = σx,21 = σ (x). We consider two scenarios for the
correlation function σ (x):

(3.a):

σ (x) = sin
(
βT

1 x
)
,

where β1 = (0.8, 0.6, 0, . . . , 0)T.

(3.b):

σ (x) =
{

exp
(
βT

2 x
) − 1

}{
exp

(
βT

2 x
) + 1

} ,

where β2 = (2 − U1, 2 − U2, 2 − U3, 2 − U4, 0, . . . , 0)T

with Ui’s being independent and identically distributed (iid)
according to uniform distribution Uniform[0, 1].

Tables 4 and 5 present the simulation results. Table 4 implies
that the DC-SIS performs reasonably well for both models (3.a)
and (3.b) in terms of model complexity. Table 5 indicates that the
proportions that the active predictors are selected into the model
are close to one, which supports the assertion that the DC-SIS
processes the sure screening property. It implies that the DC-
SIS can identify the active predictors contained in correlations
between multivariate responses. This may be potentially useful
in gene coexpression analysis.

Example 4. The cardiomyopathy microarray dataset was
once analyzed by Segal, Dahlquist, and Conklin (2003) and Hall
and Miller (2009). The goal is to identify the most influential
genes for overexpression of a G protein-coupled receptor (Ro1)
in mice. The response Y is the Ro1 expression level, and the pre-
dictors Xk’s are other gene expression levels. Compared with
the sample size n = 30 in this dataset, the dimension p = 6319
is very large.

The DC-SIS procedure ranks two genes, labeled as
Msa.2134.0 and Msa.2877.0, at the top. The scatterplots of
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Table 2. The proportions of Ps and Pa in Example 1. The user-specified model sizes are d1 = [n/ log n], d2 = 2[n/ log n], and d3 = 3[n/ log n]

SIS SIRS DC-SIS

Ps Pa Ps Pa Ps Pa

Model Size X1 X2 X12 X22 All X1 X2 X12 X22 All X1 X2 X12 X22 All

Case 1: p = 2000 and σij = 0.5|i−j |

(1.a) d1 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.95 1.00 0.94 1.00 1.00 0.97 1.00 0.96
d2 1.00 1.00 0.98 1.00 0.97 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.98 1.00 0.98
d3 1.00 1.00 0.98 1.00 0.98 1.00 1.00 0.97 1.00 0.97 1.00 1.00 0.99 1.00 0.98

(1.b) d1 0.08 0.07 0.97 1.00 0.03 0.02 0.03 0.98 1.00 0.00 0.72 0.70 0.99 1.00 0.58
d2 0.12 0.13 0.98 1.00 0.06 0.05 0.05 0.99 1.00 0.01 0.85 0.84 1.00 1.00 0.76
d3 0.15 0.17 0.99 1.00 0.07 0.06 0.06 0.99 1.00 0.01 0.89 0.88 1.00 1.00 0.82

(1.c) d1 0.12 0.13 0.01 0.99 0.00 0.04 0.03 0.51 1.00 0.01 0.93 0.93 0.77 1.00 0.65
d2 0.17 0.18 0.03 0.99 0.00 0.07 0.05 0.67 1.00 0.01 0.97 0.96 0.84 1.00 0.79
d3 0.21 0.21 0.05 0.99 0.00 0.09 0.08 0.75 1.00 0.02 0.98 0.97 0.89 1.00 0.84

(1.d) d1 0.42 0.22 0.14 0.42 0.02 1.00 0.98 0.87 0.05 0.04 1.00 0.91 0.81 0.99 0.73
d2 0.48 0.29 0.22 0.50 0.03 1.00 0.99 0.91 0.10 0.09 1.00 0.94 0.87 1.00 0.82
d3 0.56 0.32 0.26 0.54 0.04 1.00 0.99 0.93 0.12 0.11 1.00 0.96 0.92 1.00 0.88

Case 2: p = 2000 and σij = 0.8|i−j |

(1.a) d1 1.00 1.00 0.63 1.00 0.63 1.00 1.00 0.62 1.00 0.62 1.00 1.00 0.78 1.00 0.77
d2 1.00 1.00 0.71 1.00 0.72 1.00 1.00 0.70 1.00 0.69 1.00 1.00 0.84 1.00 0.84
d3 1.00 1.00 0.77 1.00 0.78 1.00 1.00 0.75 1.00 0.75 1.00 1.00 0.86 1.00 0.86

(1.b) d1 0.12 0.13 0.81 1.00 0.06 0.04 0.04 0.88 1.00 0.02 0.97 0.98 0.92 1.00 0.88
d2 0.19 0.19 0.86 1.00 0.12 0.07 0.07 0.91 1.00 0.03 0.99 0.99 0.95 1.00 0.94
d3 0.22 0.23 0.88 1.00 0.15 0.09 0.11 0.93 1.00 0.06 1.00 0.99 0.96 1.00 0.96

(1.c) d1 0.17 0.16 0.03 0.99 0.00 0.04 0.04 0.53 1.00 0.02 1.00 1.00 0.75 1.00 0.75
d2 0.22 0.22 0.06 1.00 0.01 0.08 0.08 0.71 1.00 0.03 1.00 1.00 0.85 1.00 0.86
d3 0.27 0.27 0.10 1.00 0.03 0.10 0.10 0.81 1.00 0.05 1.00 1.00 0.90 1.00 0.90

(1.d) d1 0.44 0.38 0.11 0.45 0.03 1.00 1.00 0.73 0.05 0.04 0.99 0.98 0.68 1.00 0.67
d2 0.51 0.46 0.18 0.53 0.05 1.00 1.00 0.81 0.09 0.08 1.00 0.98 0.76 1.00 0.75
d3 0.55 0.49 0.22 0.57 0.06 1.00 1.00 0.84 0.14 0.11 1.00 0.99 0.80 1.00 0.80

Case 3: p = 5000 and σij = 0.5|i−j |

(1.a) d1 1.00 1.00 0.94 1.00 0.94 1.00 0.99 0.92 1.00 0.92 1.00 0.99 0.96 1.00 0.95
d2 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.97 1.00 0.97
d3 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.98 1.00 0.98

(1.b) d1 0.06 0.06 0.94 1.00 0.02 0.02 0.02 0.96 1.00 0.00 0.59 0.60 0.98 1.00 0.46
d2 0.09 0.09 0.96 1.00 0.03 0.03 0.03 0.97 1.00 0.01 0.72 0.72 0.99 1.00 0.61
d3 0.12 0.10 0.97 1.00 0.04 0.05 0.04 0.98 1.00 0.01 0.79 0.78 0.99 1.00 0.68

(1.c) d1 0.06 0.06 0.01 0.99 0.00 0.03 0.02 0.30 1.00 0.00 0.86 0.87 0.61 1.00 0.41
d2 0.10 0.10 0.02 1.00 0.00 0.04 0.03 0.45 1.00 0.00 0.92 0.93 0.69 1.00 0.57
d3 0.12 0.12 0.02 1.00 0.00 0.05 0.05 0.53 1.00 0.00 0.94 0.95 0.73 1.00 0.64

(1.d) d1 0.39 0.21 0.11 0.40 0.01 1.00 0.97 0.82 0.02 0.02 0.99 0.87 0.74 0.99 0.65
d2 0.44 0.24 0.14 0.45 0.01 1.00 0.98 0.88 0.04 0.03 0.99 0.90 0.81 0.99 0.75
d3 0.48 0.28 0.17 0.47 0.02 1.00 0.99 0.90 0.06 0.05 0.99 0.92 0.85 1.00 0.79

Case 4: p = 5000 and σij = 0.8|i−j |

(1.a) d1 1.00 1.00 0.55 1.00 0.55 1.00 1.00 0.55 1.00 0.55 1.00 1.00 0.70 1.00 0.69
d2 1.00 1.00 0.61 1.00 0.62 1.00 1.00 0.61 1.00 0.61 1.00 1.00 0.76 1.00 0.76
d3 1.00 1.00 0.67 1.00 0.67 1.00 1.00 0.64 1.00 0.64 1.00 1.00 0.80 1.00 0.80

(1.b) d1 0.10 0.09 0.74 1.00 0.05 0.02 0.02 0.83 1.00 0.00 0.94 0.94 0.90 1.00 0.82
d2 0.12 0.13 0.81 1.00 0.07 0.03 0.04 0.87 1.00 0.01 0.97 0.97 0.93 1.00 0.89
d3 0.15 0.16 0.84 1.00 0.10 0.05 0.06 0.90 1.00 0.02 0.98 0.98 0.95 1.00 0.92

(1.c) d1 0.10 0.10 0.02 0.98 0.00 0.02 0.03 0.34 1.00 0.00 1.00 1.00 0.64 1.00 0.63
d2 0.13 0.14 0.04 0.99 0.01 0.04 0.04 0.50 1.00 0.01 1.00 1.00 0.74 1.00 0.74
d3 0.16 0.18 0.05 0.99 0.01 0.05 0.05 0.61 1.00 0.02 1.00 1.00 0.79 1.00 0.79

(1.d) d1 0.42 0.32 0.09 0.40 0.01 1.00 1.00 0.66 0.02 0.01 0.99 0.97 0.63 0.98 0.59
d2 0.48 0.39 0.12 0.44 0.02 1.00 1.00 0.74 0.04 0.03 0.99 0.97 0.70 1.00 0.68
d3 0.51 0.42 0.15 0.46 0.02 1.00 1.00 0.78 0.05 0.04 0.99 0.98 0.73 1.00 0.71
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Table 3. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out of 500 replications in Example 2

p = 2000 p = 5000

S 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

σij = 0.5|i−j | 4.0 4.0 4.0 5.0 12.0 4.0 4.0 4.0 6.0 16.1
σij = 0.8|i−j | 4.0 5.0 7.0 9.0 15.2 4.0 5.0 7.0 9.0 21.0

Table 4. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out of 500 replications in
Example 3

p = 2000 p = 5000

S Model 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

σij = 0.5|i−j | (3.a) 4.0 9.0 18.0 39.3 112.3 6.0 22.0 48.0 95.3 296.4
(3.b) 6.0 19.0 43.0 92.0 253.1 14.0 45.0 92.5 198.8 571.6

σij = 0.8|i−j | (3.a) 2.0 3.0 6.0 12.0 40.0 2.0 6.0 14.0 32.0 98.0
(3.b) 4.0 4.0 4.0 6.0 10.0 4.0 4.0 5.0 8.0 18.1

Table 5. The proportions of Ps and Pa in Example 3. The user-specified model sizes are d1 = [n/ log n], d2 = 2[n/ log n], and d3 = 3[n/ log n]

p = 2000 p = 5000

(3.a) (3.b) (3.a) (3.b)

Ps Pa Ps Pa Ps Pa Ps Pa

Size X1 X2 All X1 X2 X3 X4 All X1 X2 All X1 X2 X3 X4 All

d1 0.95 0.76 0.74 0.71 0.98 0.98 0.72 0.47 0.79 0.49 0.42 0.48 0.91 0.90 0.53 0.20
σij = 0.5|i−j | d2 0.98 0.90 0.90 0.85 0.99 0.99 0.85 0.71 0.93 0.70 0.67 0.67 0.97 0.97 0.71 0.45

d3 1.00 0.95 0.95 0.91 0.99 1.00 0.90 0.81 0.97 0.81 0.80 0.75 0.98 0.99 0.78 0.55
d1 0.98 0.95 0.94 1.00 1.00 1.00 1.00 1.00 0.92 0.84 0.81 1.00 1.00 1.00 0.99 0.99

σij = 0.8|i−j | d2 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 0.98 0.95 0.93 1.00 1.00 1.00 1.00 1.00
d3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.96 1.00 1.00 1.00 1.00 1.00

Figure 1. The scatterplot of Y versus two gene expression levels identified by the DC-SIS.
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Y versus these two gene expression levels with cubic spline
fit curves in Figure 1 indicate clearly the existence of nonlin-
ear patterns. Yet, our finding is different from Hall and Miller
(2009) in that they ranked Msa.2877.0 and Msa.1166.0 at the
top, with their proposed generalized correlation ranking. A nat-
ural question arises: which screening procedure performs better
in terms of ranking? To compare the performance of these two
procedures, we fit an additive model as follows:

Y = �k1(Xk1) + �k2(Xk2) + εk, for k = 1, 2.

The DC-SIS, corresponding to k = 1, regards Msa.2134.0 and
Msa.2877.0 as the two predictors, while the generalized correla-
tion ranking proposed by Hall and Miller (2009), corresponding
to k = 2, regards Msa.2877.0 and Msa.1166.0 as predictors in
the above model. We fit the unknown link functions �ki using the
R “mgcv” package. The DC-SIS method clearly achieves better
performance with the adjusted R2 of 96.8% and the deviance
explained of 98.3%, in contrast to the adjusted R2 of 84.5% and
the deviance explained of 86.6% for the generalized correlation
ranking method. We remark here that deviance explained means
the proportion of the null deviance explained by the proposed
model, with a larger value indicating better performance. Be-
cause both the adjusted R2 values and the explained deviance are
very large, it seems unnecessary to extract any additional genes.

4. DISCUSSION

In this article, we propose an SIS procedure using DC, that
is, DC-SIS. We establish the sure screening property for this
procedure when the number of predictors diverges with an ex-
ponential rate of the sample size. We examine the finite sample
performance of the proposed procedure via Monte Carlo stud-
ies and illustrate the proposed methodology through a real-data
example. We follow Fan and Lv (2008) to set the cutoff d in
this article and examine the effect of different values of d. As
pointed out by a referee, the choice of d is very important at the
screening stage. Zhao and Li (2012) proposed an approach to
selecting d for Cox models based on controlling false positive
rate. Their approach is merely for model-based feature screen-
ing methods. Zhu et al. (2011) proposed an alternate method
to determine d for the SIRS. One may adopt their procedure
for the DC-SIS. We opt not to pursue this further. Certainly,
the selection of d is similar to the selection of the tuning pa-
rameter in regularization methods, and plays an important role
in practical implementation. This is a good topic for future
research.

Similar to the SIS, the DC-SIS may fail to identify some
important predictors that are marginally independent of the re-
sponse. Thus, it is of interest to develop an iterative procedure
to fix such an issue. In the earlier version of this article, we
proposed an iterative version of DC-SIS. Our empirical studies
including Monte Carlo simulation and real-data analysis imply
that the proposed iterative DC-SIS may be used to fix the prob-
lem in a similar spirit of iterative SIS (ISIS; Fan and Lv 2008). A
theoretical analysis of the iterative DC-SIS needs further study.
New methods to deal with the identification of important pre-
dictors that are marginally independent of the response is an
important topic for future research.

APPENDIX A: SOME LEMMAS

Lemmas 1 and 2 will be used repeatedly in the proof of Theorem
1. These two lemmas provide us two exponential inequalities, and are
extracted from lemma 5.6.1.A and theorem 5.6.1.A of Serfling (1980,
pp. 200–201).

Lemma 1. Let µ = E(Y ). If Pr (a ≤ Y ≤ b) = 1, then

E[exp{s(Y − µ)}] ≤ exp{s2(b − a)2/8}, for any s > 0.

Lemma 2. Let h(Y1, . . . , Ym) be a kernel of the U statistics Un, and
θ = E {h(Y1, . . . , Ym)}. If a ≤ h(Y1, . . . , Ym) ≤ b, then, for any t > 0
and n ≥ m,

Pr (Un − θ ≥ t) ≤ exp{−2[n/m]t2/(b − a)2},
where [n/m] denotes the integer part of n/m.

Due to the symmetry of U statistics, Lemma 2 entails that

Pr (|Un − θ | ≥ t) ≤ 2 exp{−2[n/m]t2/(b − a)2}.
Let us introduce some notations before giving the proof of Theorem

1. Let {X̃k, ỹ} be an independent copy of {Xk, y}, and define Sk1 =
E‖Xk − X̃k‖1‖y − ỹ‖q , Sk2 = E‖Xk − X̃k‖1E‖y − ỹ‖q , and Sk3 =
E{E(‖Xk − X̃k‖1|Xk)E(‖y − ỹ‖q |y)}, and their sample counterparts

Ŝk1 = 1

n2

n∑
i,j=1

‖Xik − Xjk‖1‖yi − yj‖q ,

Ŝk2 = 1

n2

n∑
i,j=1

‖Xik − Xjk‖1
1

n2

n∑
i,j=1

‖yi − yj‖q ,

Ŝk3 = 1

n3

n∑
i,j,l=1

‖Xik − Xlk‖1‖yj − yl‖q .

By definitions of distance covariance and sample distance covariance,
it follows that

dcov2(Xk, y) = Sk1 + Sk2 − 2Sk3 and

d̂cov
2
(Xk, y) = Ŝk1 + Ŝk2 − 2Ŝk3.

APPENDIX B: PROOF OF THEOREM 1

We aim to show the uniform consistency of the denominator and the
numerator of ω̂k under regularity conditions respectively. Because the
denominator of ω̂k has a similar form as the numerator, we deal with its
numerator only below. Throughout the proof, the notations C and c are
generic constants, which may take different values at each appearance.

We first deal with Ŝk1. Define Ŝ∗
k1 = {n(n − 1)}−1

∑
i �=j ‖Xik −

Xjk‖1‖yi − yj‖q , which is a usual U statistics. We shall establish the
uniform consistency of Ŝ∗

k1 by using the theory of U statistics (Serfling
1980, sec. 5). By using the Cauchy–Schwartz inequality,

Sk1 = E
(‖Xik − Xjk‖1‖yi − yj‖q

)
≤ {

E
(‖Xik − Xjk‖2

1

)
E

(‖yi − yj‖2
q

)}1/2

≤ 4
{
E

(
X2

k

)
E‖y‖2

q

}1/2
.

This, together with Condition (C1), implies that Sk1 is uniformly
bounded in p, that is, sup

p

max
1≤k≤p

Sk1 < ∞. For any given ε > 0, take

n large enough such that Sk1/n < ε. Then, it can be easily shown that

Pr
(∣∣Ŝk1 − Sk1

∣∣ ≥ 2ε
)

= Pr
{∣∣Ŝ∗

k1(n − 1)/n − Sk1(n − 1)/n − Sk1/n
∣∣ ≥ 2ε

}
≤ Pr

{∣∣Ŝ∗
k1−Sk1

∣∣(n − 1)/n ≥ 2ε − Sk1/n
}

≤ Pr
(∣∣Ŝ∗

k1−Sk1

∣∣ ≥ ε
)
. (B.1)
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To establish the uniform consistency of Ŝk1, it thus suffices to show
the uniform consistency of Ŝ∗

k1. Let h1(Xik, yi ; Xjk, yj ) = ‖Xik −
Xjk‖1‖yi − yj‖q be the kernel of the U statistics Ŝ∗

k1. We decompose the
kernel function h1 into two parts: h1 = h11(h1 > M) + h11(h1 ≤ M),
where M will be specified later. The U statistics can now be written as
follows:

Ŝ∗
k1 = {n(n − 1)}−1

∑
i �=j

h1(Xik, yi ; Xjk, yj )

× 1
{
h1(Xik, yi ; Xjk, yj ) ≤ M

}
+ {n(n − 1)}−1

∑
i �=j

h1(Xik, yi ; Xjk, yj )

× 1
{
h1(Xik, yi ; Xjk, yj ) > M

}
= Ŝ∗

k1,1 + Ŝ∗
k1,2.

Accordingly, we decompose Sk1 into two parts:

Sk1 = E
[
h1(Xik, yi ; Xjk, yj )1

{
h1(Xik, yi ; Xjk, yj ) ≤ M

}]
+ E

[
h1(Xik, yi ; Xjk, yj )1

{
h1(Xik, yi ; Xjk, yj ) > M

}]
= Sk1,1 + Sk1,2.

Clearly, Ŝ∗
k1,1 and Ŝ∗

k1,2 are unbiased estimators of Sk1,1 and Sk1,2, re-
spectively.

We deal with the consistency of Ŝ∗
k1,1 first. With the Markov’s in-

equality, for any t > 0, we can obtain that

Pr
(
Ŝ∗

k1,1 − Sk1,1 ≥ ε
) ≤ exp (−tε) exp(−tSk1,1)E

{
exp(t Ŝ∗

k1,1)
}
.

Serfling (1980, sec. 5.1.6) showed that any U statistics can be rep-
resented as an average of averages of iid random variables. That is,
Ŝ∗

k1,1 = (n!)−1
∑

n! �1(X1k, y1; . . . ; Xnk, yn), where
∑

n! denotes the
summation over all possible permutations of (1, . . . , n), and each
�1(X1k, y1; . . . ; Xnk, yn) is an average of m = [n/2] iid random vari-
ables (i.e., �1 = m−1

∑
r h

(r)
1 1{h(r)

1 ≤ M}). Since the exponential func-
tion is convex, it follows from Jensen’s inequality that, for 0 < t ≤ 2s0,

E
{

exp(t Ŝ∗
k1,1)

} = E
[

exp
{
t(n!)−1

∑
n!

�1(X1k, y1; . . . ; Xnk, yn)
}]

≤ (n!)−1
∑
n!

E[exp{t�1(X1k, y1; . . . ; Xnk, yn)}]

= Em
{

exp
(
m−1th

(r)
1 1{h(r)

1 ≤ M})},
which, together with Lemma 1, entails immediately that

Pr
(
Ŝ∗

k1,1 − Sk1,1 ≥ ε
)

≤ exp(−tε)Em
{

exp
(
m−1t

[
h

(r)
1 1{h(r)

1 ≤ M} − Sk1,1

])}
≤ exp{−tε + M2t2/(8m)}.

By choosing t = 4εm/M2, we have Pr(Ŝ∗
k1,1 − Sk1,1 ≥ ε) ≤

exp(−2ε2m/M2). Therefore, by the symmetry of U statistics, we can
obtain easily that

Pr
(∣∣Ŝ∗

k1,1 − Sk1,1

∣∣ ≥ ε
) ≤ 2 exp(−2ε2m/M2). (B.2)

Next we show the consistency of Ŝ∗
k1,2. With Cauchy–Schwartz and

Markov’s inequalities,

S2
k1,2 ≤ E

{
h2

1(Xik, yi ; Xjk, yj )
}
Pr{h1(Xik, yi ; Xjk, yj ) > M}

≤ E
{
h2

1(Xik, yi ; Xjk, yj )
}
E[exp{s ′h1(Xik, yi ; Xjk, yj )}]/

exp
(
s ′M

)
,

for any s ′ > 0. Using the fact (a2 + b2)/2 ≥ (a + b)2/4 ≥ |ab|, we
have

h1(Xik, yi ; Xjk, yj ) = {
(Xik − Xjk)2(yi − yj )T(yi − yj )

}1/2

≤ 2
{(

X2
ik + X2

jk

) (‖yi‖2
q + ‖yj‖2

q

)}1/2

≤ { (
X2

ik + X2
jk + ‖yi‖2

q + ‖yj‖2
q

)2 }1/2

= X2
ik + X2

jk + ‖yi‖2
q + ‖yj‖2

q ,

which yields that

E[exp{s ′h1(Xik, yi ; Xjk, yj )}]
≤ E

[
exp

{
s ′(X2

ik + X2
jk + ‖yi‖2

q + ‖yj‖2
q

)}]
≤ E

{
exp

(
2s ′X2

ik

)}
E

{
exp

(
2s ′‖yi‖2

q

)}
.

The last inequality follows from the Cauchy–Schwartz inequality. If
we choose M = cnγ for 0 < γ < 1/2 − κ , then Sk1,2 ≤ ε/2 when n is
sufficiently large. Consequently,

Pr
(∣∣Ŝ∗

k1,2 − Sk1,2

∣∣ > ε
) ≤ Pr

(∣∣Ŝ∗
k1,2

∣∣ > ε/2
)
. (B.3)

It remains to bound the probability Pr(|Ŝ∗
k1,2| > ε/2). We observe that

the events satisfy{∣∣Ŝ∗
k1,2

∣∣>ε/2
}⊆{

X2
ik + ‖yi‖2

q > M/2, for some 1 ≤ i ≤ p
}
.

(B.4)

To see this, we assume that X2
ik + ‖yi‖2

q ≤ M/2, for all 1 ≤ i ≤ p.
This assumption will lead to a contradiction. To be precise, under
this assumption, h1(Xik, yi ; Xjk, yj ) ≤ X2

ik + X2
jk + ‖yi‖2

q + ‖yj‖2
q ≤

M . Consequently, |Ŝ∗
k1,2| = 0, which is a contrary to the event |Ŝ∗

k1,2| >

ε/2. This verifies that the relation (B.4) is true.
By invoking Condition (C1), there must exist a constant C such that

Pr
(‖Xk‖2

1 + ‖y‖2
q ≥ M/2

)
≤ Pr(‖Xk‖1 ≥

√
M/2) + Pr(‖y‖q ≥

√
M/2) ≤ 2C exp(−sM/4).

The last inequality follows from Markov’s inequality for s > 0. Con-
sequently,

max
1≤k≤p

Pr
(∣∣Ŝ∗

k1,2

∣∣ > ε/2
) ≤ n max

1≤k≤p
Pr

(‖Xk‖2
1 + ‖y‖2

q ≥ M/2
)

≤ 2nC exp(−sM/4). (B.5)

Recall that M = cnγ . Combining the results (B.2), (B.3), and (B.5),
we have

Pr
(∣∣Ŝk1−Sk1

∣∣ ≥ 4ε
)≤2 exp(−ε2n1−2γ ) + 2nC exp(−snγ/4).

(B.6)

In the sequel, we turn to Ŝk2. We write Ŝk2 = Ŝk2,1Ŝk2,2, where Ŝk2,1 =
n−2

∑
i �=j ‖Xik − Xjk‖1, and Ŝk2,2 = n−2

∑
i �=j ‖yi − yj‖q . Similarly,

we write Sk2 = Sk2,1Sk2,2, where Sk2,1 = E{‖Xik − Xjk‖1} and Sk2,2 =
E{‖yi − yj‖q}. Following arguments for proving (B.6), we can show
that

Pr
(∣∣Ŝk2,1−Sk2,1

∣∣≥4ε
)≤2 exp(−ε2n1−2γ )+2nC exp(−sn2γ/4), and

Pr
(∣∣Ŝk2,2−Sk2,2

∣∣≥4ε
)≤2 exp(−ε2n1−2γ )+2nC exp(−sn2γ/4).

(B.7)

Condition (C1) ensures that Sk2,1 ≤ {E(‖Xik − Xjk‖2
1)}1/2 ≤

{4E(X2
k )}1/2 and Sk2,2 ≤ {E(‖yi − yj‖2

q )}1/2 ≤ {4E(‖y‖2
q )}1/2 are

uniformly bounded. That is,

max{ max
1≤k≤p

Sk2,1, Sk2,2} ≤ C,

for some constant C. Using (B.7) repetitively, we can easily prove that

Pr{|(Ŝk2,1 − Sk2,1)Sk2,2| ≥ ε} ≤ Pr(|Ŝk2,1 − Sk2,1| ≥ ε/C)

≤ 2 exp{−ε2n1−2γ /(16C2)}
+ 2nC exp(−sn2γ /4),

Pr(|Sk2,1(Ŝk2,2 − Sk2,2)| ≥ ε) ≤ Pr(|Ŝk2,2 − Sk2,2| ≥ ε/C)

≤ 2 exp{−ε2n1−2γ /(16C2)}
+ 2nC exp(−sn2γ /4), (B.8)

and

Pr
{∣∣(Ŝk2,1 − Sk2,1

)(
Ŝk2,2 − Sk2,2

)∣∣ ≥ ε
}

≤ Pr
(∣∣Ŝk2,1 − Sk2,1

∣∣ ≥ √
ε
) + Pr

(∣∣Ŝk2,2 − Sk2,2

∣∣ ≥ √
ε
)

≤ 4 exp(−εn1−2γ /16) + 4nC exp(−sn2γ /4). (B.9)
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It follows from Bonferroni’s inequality and inequalities (B.8) and (B.9)
that

Pr
(∣∣Ŝk2 − Sk2

∣∣ ≥ 3ε
) = Pr

(∣∣Ŝk2,1Ŝk2,2 − Sk2,1Sk2,2

∣∣ ≥ 3ε
)

≤ Pr
{∣∣(Ŝk2,1 − Sk2,1)Sk2,2

∣∣ ≥ ε
}

+ Pr
{∣∣Sk2,1

(
Ŝk2,2 − Sk2,2

)∣∣ ≥ ε
}

+ Pr
{∣∣(Ŝk2,1 − Sk2,1

)(
Ŝk2,2 − Sk2,2

)∣∣ ≥ ε
}

≤ 8 exp{−ε2n1−2γ /(16C2)} + 8nC exp(−sn2γ /4), (B.10)

where the last inequality holds when ε is sufficiently small and C is
sufficiently large.

It remains to the uniform consistency of Ŝk3. We first study the
following U statistics:

Ŝ∗
k3 = 1

n(n − 1)(n − 2)

×
∑

i<j<l

{‖Xik − Xjk‖1‖yj − yl‖q + ‖Xik − Xlk‖1‖yj − yl‖q

+ ‖Xik − Xjk‖1‖yi − yl‖q

+ ‖Xlk − Xjk‖1‖yi − yl‖q

+ ‖Xlk − Xjk‖1‖yi − yj‖q

+ ‖Xlk − Xik‖1‖yi − yj‖q}
=:

6

n(n − 1)(n − 2)

∑
i<j<l

h3(Xik, yi ; Xjk, yj ; Xlk, yl). (B.11)

Here, h3(Xik, yi ; Xjk, yj ; Xlk, yl) is the kernel of U statistics Ŝ∗
k3. Fol-

lowing the arguments to deal with Ŝ∗
k1, we decompose h3 into two parts:

h3 = h31(h3 > M) + h31(h3 ≤ M). Accordingly,

Ŝ∗
k3 = 6

n(n − 1)(n − 2)

∑
i<j<l

h31(h3 ≤ M)

+ 6

n(n − 1)(n − 2)

∑
i<j<l

h31(h3 > M)

= Ŝ∗
k3,1 + Ŝ∗

k3,2,

Sk3 = E {h31(h3 ≤ M)} + E {h31(h3 > M)} = Sk3,1 + Sk3,2.

Following similar arguments for proving (B.2), we can show that

Pr
(∣∣Ŝ∗

k3,1 − Sk3,1

∣∣ ≥ ε
) ≤ 2 exp

(−2ε2m′/M2
)
, (B.12)

where m′ = [n/3] because Ŝ∗
k3,1 is a third-order U statistics.

Then, we deal with Ŝ∗
k3,2. We observe that h3(Xik, yi ; Xjk, yj ;

Xlk, yl) ≤ 4(X2
ik + X2

jk + X2
lk + ‖yi‖2

q + ‖yj‖2
q + ‖yl‖2

q )/6, which
will be smaller than M if X2

ik + ‖yi‖2
q ≤ M/2, for all 1 ≤ i ≤ p. Thus,

for any ε > 0, the events satisfy{∣∣Ŝ∗
k3,2

∣∣ > ε/2
} ⊆ {

X2
ik + ‖yi‖2

q > M/2, for some 1 ≤ i ≤ p
}
.

By using the similar arguments to prove (B.5), it follows that

Pr
(∣∣Ŝ∗

k3,2 − Sk3,2

∣∣ > ε
) ≤ Pr

(∣∣Ŝ∗
k3,2

∣∣ > ε/2
)

≤ 2nC exp(−sM/4). (B.13)

Then, we combine the results (B.12) and (B.13) with M = cnγ for
some 0 < γ < 1/2 − κ to obtain that

Pr
(∣∣Ŝ∗

k3 − Sk3

∣∣ ≥ 2ε
) ≤ 2 exp(−2ε2n1−2γ /3)

+ 2nC exp(−snγ /4). (B.14)

By the definition of Ŝk3,

Ŝk3 = (n − 1)(n − 2)

n2

{
Ŝ∗

k3 + 1

(n − 2)
Ŝ∗

k1

}
.

Thus, using similar techniques to deal with Ŝk1, we can obtain that

Pr
(∣∣Ŝk3 − Sk3| ≥ 4ε

) = Pr

{∣∣∣∣ (n − 1)(n − 2)

n2

(
Ŝ∗

k3 − Sk3

)
− 3n − 2

n2
Sk3 + n − 1

n2

(
Ŝ∗

k1 − Sk1

)
+ n − 1

n2
Sk1

∣∣∣∣ ≥ 4ε

}
.

Using similar arguments for dealing with Sk1, we can show that Sk3

is uniformly bounded in p. Taking n large enough such that {(3n −
2)/n2}Sk3 ≤ ε and {(n − 1)/n2}Sk1 ≤ ε, then

Pr
(∣∣Ŝk3 − Sk3

∣∣ ≥ 4ε
) ≤ Pr

(∣∣Ŝ∗
k3 − Sk3

∣∣ ≥ ε
)

+ Pr
{∣∣Ŝ∗

k1 − Sk1

∣∣ ≥ ε
}

≤ 4 exp(−ε2n1−2γ /6)

+ 4nC exp (−snγ/4) . (A.15)

The last inequality follows from (B.6) and (B.14). This, together with
(B.6), (B.10), and the Bonferroni’s inequality, implies

Pr
{∣∣(Ŝk1 + Ŝk2 − 2Ŝk3) − (Sk1 + Sk2 − 2Sk3)

∣∣ ≥ ε
}

≤ Pr
(∣∣Ŝk1 − Sk1

∣∣ ≥ ε/4
)

+ Pr
(∣∣Ŝk2 − Sk2

∣∣ ≥ ε/4
) + Pr

(∣∣Ŝk3 − Sk3

∣∣ ≥ ε/4
)

= O
{
exp

(−c1ε
2n1−2γ

) + n exp (−c2n
γ )

}
, (A.16)

for some positive constants c1 and c2. The convergence rate of the nu-
merator of ω̂k is now achieved. Following similar arguments, we can
obtain the convergence rate of the denominator. In effect, the conver-
gence rate of ω̂k has the same form of (B.16). We omit the details here.
Let ε = cn−κ , where κ satisfies 0 < κ + γ < 1/2. We thus have

Pr
{

max
1≤k≤p

|ω̂k − ωk| ≥ cn−κ
} ≤ p max

1≤k≤p
Pr

{|ω̂k − ωk| ≥ cn−κ
}

≤ O
(
p
[

exp
{−c1n

1−2(κ+γ )
}

+ n exp (−c2n
γ )

])
.

The first part of Theorem 1 is proven.
Now, we deal with the second part of Theorem 1. If D � D̂�, then

there must exist some k ∈ D such that ω̂k < cn−κ . It follows from
Condition (C2) that |ω̂k − ωk| > cn−κ for some k ∈ D, indicating that
the events satisfy {D � D̂�} ⊆ {|ω̂k − ωk| > cn−κ , for some k ∈ D},
and hence En = {max

k∈D
|ω̂k − ωk| ≤ cn−κ} ⊆ {D ⊆ D̂�}. Consequently,

Pr(D ⊆ D̂�) ≥ Pr(En) = 1 − Pr(E c
n)

= 1 − Pr
(

min
k∈D

|ω̂k − ωk| ≥ cn−κ
)

= 1 − snPr
{|ω̂k − ωk| ≥ cn−κ

}
≥ 1 − O

(
sn

[
exp

{−c1n
1−2(κ+γ )

}
+ n exp (−c2n

γ )
])

,

where sn is the cardinality of D. This completes the proof of the second
part.

[Received April 2011. Revised May 2012.]
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