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In computer-aided diagnosis~CAD!, a frequently used approach for distinguishing normal and
abnormal cases is first to extract potentially useful features for the classification task. Effective
features are then selected from this entire pool of available features. Finally, a classifier is designed
using the selected features. In this study, we investigated the effect of finite sample size on classi-
fication accuracy when classifier design involves stepwise feature selection in linear discriminant
analysis, which is the most commonly used feature selection algorithm for linear classifiers. The
feature selection and the classifier coefficient estimation steps were considered to be cascading
stages in the classifier design process. We compared the performance of the classifier when feature
selection was performed on the design samples alone and on the entire set of available samples,
which consisted of design and test samples. The areaAz under the receiver operating characteristic
curve was used as our performance measure. After linear classifier coefficient estimation using the
design samples, we studied the hold-out and resubstitution performance estimates. The two classes
were assumed to have multidimensional Gaussian distributions, with a large number of features
available for feature selection. We investigated the dependence of feature selection performance on
the covariance matrices and means for the two classes, and examined the effects of sample size,
number of available features, and parameters of stepwise feature selection on classifier bias. Our
results indicated that the resubstitution estimate was always optimistically biased, except in cases
where the parameters of stepwise feature selection were chosen such that too few features were
selected by the stepwise procedure. When feature selection was performed using only the design
samples, the hold-out estimate was always pessimistically biased. When feature selection was
performed using the entire finite sample space, the hold-out estimates could be pessimistically or
optimistically biased, depending on the number of features available for selection, the number of
available samples, and their statistical distribution. For our simulation conditions, these estimates
were always pessimistically~conservatively!biased if the ratio of the total number of available
samples per class to the number of available features was greater than five. ©2000 American
Association of Physicists in Medicine.@S0094-2405~00!01607-2#
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I. INTRODUCTION

Computer-aided interpretation of medical images has b
the subject of numerous studies in recent years. The pur
of computer-aided diagnosis~CAD! in medical imaging is to
provide a second opinion to the radiologist concerning
presence or the likelihood of malignancy of abnormalities
a given image or case. The general visual criteria that h
describe the abnormality or its classification can usually
provided by the radiologist. However, in many cases, it
difficult to translate these criteria into computer algorithm
that exactly match the verbal description of what the radio
gist visually perceives. Therefore, a common first step
CAD is to extract a number of features, or a feature spa
that is believed to have a potential for the given task. T
features may or may not match to what a radiologist searc
in the image for the same task. In the next step, a subse
features are selected from the entire feature space base
their individual or joint performance, and the selected se
features are used in the remaining steps of the CAD sys
1509 Med. Phys. 27 „7…, July 2000 0094-2405Õ2000Õ27„7…
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This approach also has the advantage that the computer
discover some features that are difficult to perceive or v
bally describe by the radiologist, so that the computer m
extract information that is complementary to the radiologis
perceived image features.

A common problem in CAD is the lack of a large numb
of image samples to design a classifier and to test its per
mance. Although the effect of finite sample size on class
cation accuracy has previously been studied, many elem
of this research topic warrant further study. In order to tr
specific components of this problem, previous studies h
mostly ignored the feature selection component of this pr
lem, and assumed that the features to be used in the clas
have been chosen and are fixed.1–6 However, as described in
the previous paragraph, feature selection is a necessary
step in many CAD algorithms. This paper addresses the
fect of finite sample size on classification accuracy when
classifier design involves feature selection.

When only a finite number of samples are available
1509Õ1509Õ14Õ$17.00 © 2000 Am. Assoc. Phys. Med.
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1510 Sahiner et al. : Feature selection and classifier performance 1510
classifier design and testing, two commonly used per
mance estimates are those provided by the resubstitution
the hold-out methods. In the hold-out method, the samp
are partitioned into independent training and test samp
the classifier is designed using the training samples alo
and the accuracy of the designed classifier is measured b
performance for the test samples. In the resubstitu
method, the accuracy is measured by applying the class
to the training samples that have been used to desig
Other methods such as leave-one-out and bootstrap have
been shown to be very useful procedures for performa
estimation with a finite sample size.7 As the number of train-
ing samples increases, all of these estimates approach
true classification accuracy, which is the accuracy of a c
sifier designed with the full knowledge of the populatio
distributions. When the training sample size is finite, it
known that, on average, the resubstitution estimate of cla
fier accuracy is optimistically biased relative to that of
classifier trained with an infinite sample. In other words
has a higher expected value than the performance obta
with an infinite design sample set, which is the true class
cation accuracy. Similarly, on average, the hold-out estim
is pessimistically biased, i.e., it has a lower expected va
than the true classification accuracy. When classifier de
is limited by the availability of design samples, it is impo
tant to obtain a realistic estimate of the classifier perf
mance so that classification will not be misled by an optim
tic estimate such as that provided by resubstitution.

In CAD literature, different methods have been used
estimate the classifier accuracy when the classifier de
involves feature selection. In a few studies, only the res
stitution estimate was provided.8 In some studies, the re
searchers partitioned the samples into training and
groups at the beginning of the study, performed both fea
selection and classifier parameter estimation using the tr
ing set, and provided the hold-out performance estimate9,10

Most studies used a mixture of the two methods. The en
set of available samples was used as the training set a
feature selection step of classifier design. Once the feat
have been chosen, the hold-out or leave-one-out meth
were used to measure the accuracy of the classifier.11–16 To
our knowledge, it has not been reported whether this la
method provides an optimistic or pessimistic estimate of
classifier performance.

A powerful method for estimating the infinite-sample pe
formance of a classifier using a finite number of availa
samples was first suggested by Fukunaga and Hayes.17 In the
Fukunaga–Hayes method, subsets ofN1 ,N2 ,...,Nj design
samples are drawn from the available sample set, the cla
fier accuracy is evaluated at these different sample sizes,
the infinite-sample performance is estimated by linear
trapolation from thej points to N→` or 1/N→0. This
method has recently been applied to performance estima
in CAD, where the areaAz under the receiver operating cha
acteristic~ROC!curve is commonly used as the performan
measure.1–3 For various classifiers and Gaussian sample
tributions, theAz value was plotted against 1/Ni , and it was
observed that the dependence of theAz value can be closely
Medical Physics, Vol. 27, No. 7, July 2000
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approximated by a linear relationship in a sample size ra
where higher-order terms in 1/Ni can be neglected.1–3 This
facilitates estimation of the infinite-sample performan
from the intercept of a linear regression.

This paper describes a simulation study that investiga
the effect of finite sample size on classifier accuracy wh
classifier design involves feature selection using stepw
linear discriminant analysis. The classification problem w
defined as deciding whether a sample belongs to either
of two classes, and the two classes were assumed to
multivariate Gaussian distributions with equal covarian
matrices. We chose to focus our attention on stepwise fea
selection in linear discriminant analysis since this is a co
monly used feature selection and classification method.
effects of different covariance matrices and means on fea
selection performance were studied. We examined the eff
of sample size, number of available features, and parame
of stepwise feature selection on classifier bias. The biase
the classifier performance when feature selection was
formed on the entire sample space and on the design sam
alone were compared. Finally, we investigated whether
methods of infinite-sample performance estimation dev
oped previously1–3,17can be applied to our problem.

II. METHODS

In our approach, the problem of classifier design is a
lyzed in two stages. The first stage is stepwise feature se
tion, and the second stage is the estimation of the coeffici
in the linear discriminant formulation using the selected fe
ture subset as predictor variables.

A. Stepwise feature selection

The two-class classification defined in the last paragr
of the Introduction can be formulated as a first-order line
multiple regression problem.18 Since most of the literature on
stepwise feature selection is based on the linear regres
formulation, we will use this formulation to describe ste
wise feature selection in this subsection. A different stati
cal formulation of the problem, which coincides with th
linear regression formulation if the covariance matrices
the classes are equal,18 will be described in Sec. II A, and
will be used in the remainder of the paper.

Let N denote the number of samples available to des
the classifier, and letk denote the number of features. In th
linear multiple regression formulation, a desired outputo( i )
is assigned to eachk-dimensional feature vectorXi such that

o~ i !5H o1 if i Pclass 1

o2 if i Pclass 2
. ~1!

To define the linear multiple regression problem, the desi
outputso( i ) are used as the dependent variable and the
ture vectorsXi are used as the independent variables. T
discriminant score for a feature vectorXi is the predicted
value ofo( i ), computed by the regression equation

h~k!~Xi !5bTXi1b0 , ~2!
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wherebT5@b1 ,b2 ,...,bk# and b0 are the regression coeffi
cients. Stepwise feature selection iteratively changes
number of featuresk used in the classification by enterin
features into or removing features from the group of selec
features based on a feature selection criterion us
F-statistics.19,20 We have used stepwise feature selection
classifier design in many of our CAD applications.11,21–23In
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this study, Wilks’ lambda, which is defined as the ratio
within-group sum of squares to the total sum of squares
the discriminant scores, was used as the feature selec
criterion. Letm1

(k) andm2
(k) denote the means of the discrim

nant scores for classes 1 and 2, respectively, and letm(k)

denote the mean of the discriminant scores computed o
both classes. Wilks’ lambdalk is defined as19
lk5
( i Pclass 1~h~k!~Xi !2m1

~k!!21( i Pclass 2~h~k!~Xi !2m2
~k!!2

( i 51
N ~h~k!~Xi !2m~k!!2 . ~3!
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A smaller value for Wilks’ lambda means that the spre
within each class is small compared with the spread of
entire sample, which means the separation of the two cla
is relatively large and that better classification is possib
Entering a new feature into regression will always decre
Wilks’ lambda, unless the feature is completely useless
classifying the available samples. The problem is to dec
whether the decrease in Wilks’ lambda justifies entering
feature into regression. In stepwise feature selection anF-to-
enter value—for making the decision whether a featu
should be entered whenk features are already used—is d
fined as24

F5~N2k22!S lk

lk11
21D , ~4!

wherelk is Wilks’ lambda before entering the feature, a
lk11 is Wilks’ lambda after entering the feature. AnF-to-
removevalue is similarly defined to decide whether a featu
already in the regression should be removed. At the fea
entry step of the stepwise algorithm, the feature with
largestF-to-entervalue is entered into the selected featu
pool if this maximum value is larger than a thresholdF in . At
the feature removal step, the feature with the smallestF-to-
removevalue is removed from the selected feature poo
this minimum value is smaller than a thresholdFout. The
algorithm terminates when no more features can satisfy
criteria for either entry or removal. The number of selec
features increases, in general, whenF in andFout are reduced.

In order to avoid numerical instabilities in the solution
linear systems of equations, a tolerance term is also
ployed in the stepwise procedure to exclude highly cor
lated features. If the correlation between a new feature
the already selected features is larger than a tolerance th
old, then the feature will not be entered into the selec
feature pool even if it satisfies the feature entry criter
described in the previous paragraph.

Since the optimal values ofF in andFout for a given clas-
sification task are not knowna priori, these thresholds hav
to be varied over a range in order to find the ‘‘best’’ comb
nations of features in a practical application. In this simu
tion study, we limit our selection ofFout to Fout5F in21, so
that we do not search through all combinations ofF values.
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This constraint should not limit our ability to demonstrate t
effect of finite sample size on feature selection and class
performance, because we were still able to vary the num
of selected features over a wide range, as will be shown
Figs. 6 and 12 below.

B. Estimation of linear discriminant coefficients

As a by-product of the stepwise feature selection pro
dure used in our study, the coefficients of a linear discrim
nant classifier that classifies the design samples using
selected features as predictor variables are also compu
However, in this study, the design samples of the stepw
feature selection may be different from those used for co
ficient estimation in the linear classifier. Therefore, w
implemented the stepwise feature selection and discrimin
coefficient estimation components of our classificati
scheme separately.

Let S1 and S2 denote thek-by-k covariance matrices o
samples belonging to class 1 and class 2, and letm1

5(m1(1),m1(2),...,m1(k)), m25(m2(1),m2(2),...,m2(k))
denote their mean vectors. For an input vectorX, the linear
discriminant classifier output is defined as

h~X!5~m22m1!TS21X1 1
2~m1

TS21m12m2
TS21m2!, ~5!

where S5(S11S2)/2. Because of the assumption in th
study that the two covariance matrices are equal,S reduces
to S5S15S2 . Therefore, we will be concerned with onl
the form of S in the following discussions. The linear dis
criminant classifier is the optimal classifier when the tw
classes have a multivariate Gaussian distribution with eq
covariance matrices.

For the class separation measures considered in this p
~refer to Sec. II C!, the constant term (m1

TS21m1

2m2
TS21m2)/2 in Eq. ~1!is irrelevant. Therefore, the class

fier design can be viewed as the estimation ofk parameters
of the vectorb5(m22m1)TS21 using the design samples.

When a finite number of design samples are available,
means and covariances are estimated as the sample m
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1512 Sahiner et al. : Feature selection and classifier performance 1512
and the sample covariances from the design samples.
substitution of the true means and covariances in Eq.~1! by
their estimates causes a bias in the performance measu
the classifier. In particular, if the designed classifier is u
for the classification of design samples, then the performa
is optimistically biased. On the other hand, if the classifie
used for classifying test samples that are independent f
the design samples, then the performance is pessimistic
biased.

C. Measures of class separation

The traditional assessment methodology in medical im
ing is receiver operating characteristic~ROC! analysis,
which was first developed in the context of signal detect
theory.25–27 In this study, the output score of the classifi
was used as the decision variable in ROC analysis, and
areaAz under the ROC curve was used as the principal m
sure of class separation. Excellent reviews of ROC meth
applied to medical imaging can be found in th
literature.28–30

1. Infinite sample size

When an infinite sample size is available, the class me
and covariance matrices can be estimated without bias
this case, we use the squared Mahalanobis distanceD~`!, or
the areaAz(`) under the ROC curve as the measures of cl
separation, as explained below. The infinity sign in parent
ses denotes that the distance is computed using the
means and covariance matrices, or, equivalently, using
infinite number of random samples from the population.

Assume that two classes with multivariate Gaussian
tributions and equal covariance matrices have been class
using Eq.~1!. Since Eq.~1! is a linear function of the feature
vectorX, the distribution of the classifier outputs for class
and class 2 will be Gaussian. Letm1 and m2 denote the
means of the classifier output for the case of the nor
class, and for the case of the abnormal class, respectiv
and let s1

2 and s2
2 denote the variances. With the squar

Mahalanobis distanceD~`! defined as

D~`!5~m22m1!TS21~m22m1!, ~6!

it can be shown that

m22m15s1
25s2

25D~`!. ~7!

The quantityD~`! is referred to as the squared Mahalan
bis distance between the two classes. It is the square o
Euclidean distance between the two classes, normalize
the common covariance matrix.

In particular, if S is a k-by-k diagonal matrix withS i ,i

5s2( i ), then

D~`!5(
i 51

k

d~ i !, ~8!

where

d~ i !5@m2~ i !2m1~ i !#2/s2~ i ! ~9!
Medical Physics, Vol. 27, No. 7, July 2000
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is the squared signal-to-noise ratio of the distributions of
two classes for theith feature.

Using Eq.~3!, and the normality of the classifier output
it can be shown that31

Az~`!5
1

A2p
E

2`

AD/2
e2t2/2dt. ~10!

2. Finite sample size

When a finite sample size is available, the means
covariances of the two class distributions are estimated as
sample means and the sample covariances using the d
samples. The output score of the linear discriminant class
for a test sample is computed using Eq.~1!. The accuracy of
the classifier in discriminating the samples from the tw
classes is measured by ROC methodology. The discrimin
score is used as the decision variable in theLABROC

program,32 which provides the ROC curve based on ma
mum likelihood estimation.33

D. Simulation conditions

In our simulation study, we assumed that the two clas
follow multivariate Gaussian distributions with equal cova
ance matrices and different means. This assumption is
idealization of the real class distributions that one may
serve in a practical classification problem. It restricts t
number of parameters in our simulations to a managea
range, while permitting us to approximate a range of sit
tions that may be encountered in CAD.

We generated a set ofNs samples from each class distr
bution using a random number generator. The sample sp
was randomly partitioned intoNt training samples andNs

2Nt test samples per class. For a given sample space
used several different values forNt in order to study the
effect of the design sample size on classification accura
For a givenNt , the sample space was independently pa
tioned 20 times intoNt training samples andNs2Nt test
samples per class, and the classification accuracyAz obtained
from these 20 partitions was averaged in order to reduce
variance of the classification accuracy estimate. The pro
dure described above was referred to as one experiment
each class distribution described in Cases 1, 2, and 3 be
50 statistically independent experiments were perform
and the results were averaged.

Two methods for feature selection were considered. In
first method, the entire sample space withNs samples per
class was used for feature selection. In other words, the
tire sample space was treated as a training set at the fe
selection step of classifier design. After feature selection,
training-test partitioning was used to evaluate the resubs
tion and hold-out performances of the coefficient estimat
step of classifier design. In the second method, both fea
selection and coefficient estimation were performed us
only the training set withNt samples per class.

Case 1: Identity covariance matrix

In the first simulation condition, a hypothetical featu
space was constructed such that the covariance matrice
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1513 Sahiner et al. : Feature selection and classifier performance 1513
the two classesS15S25S was the identity matrix, and the
mean differenceDm between the two classes for featurei
was

Dm~ i !5m2~ i !2m1~ i !5ab i , i 51,...,M and b,1,
~11!

whereM refers to the number of available features for fe
ture selection. Note thatk, previously defined in Sec. II B
refers to the number of features selected for classifier par
eter estimation; therefore, in general,M>k. For a given data
set, the number of available featuresM is fixed, whereas the
number of selected featuresk depends on theF in and Fout

parameters of the stepwise selection algorithm. Sinceb is
chosen to be less than 1, the ability for separation of the
classes by feature no.i decreased asi increased, as evidence
by d( i )5(ab i)2 @see Eq.~5!#. The squared Mahalanobis di
tanceD~`! was computed as

D~`!5
a2b2

12b2 ~12b2M !

sinces( i )51 for all i’s.
In our simulation, we choseb50.9, and chosea such that

D~`!53.0, orAz(`)50.89. The value ofAz(`) versusk is
plotted in Fig. 1, when features 1 throughk were included in
the linear discriminant. It is seen that fork.25, the contri-
bution of an additional feature to the classification accur
was very close to zero. With this simulation condition, w
studied the classification accuracy for three different nu
bers of available features, namely,M550, M5100, andM
5200.

Case 2: Comparison of correlated and diagonal
covariance matrices

Case 2(a). In this simulation condition, the number o
available features was fixed atM5100. In contrast to the
simulation condition shown in Case 1 in this section, some
the features were assumed to have non-zero correlation.
covariance matrixS for the 100 features was assumed
have a block-diagonal structure

S5F A 0 0 ¯ 0

0 A 0 ¯ 0

0 0 A � ]

] ] � � 0

0 0 ¯ 0 A

G , ~12!

where the 10-by-10 matrixA was defined as

A5F 1 0.8 0.8 ¯ 0.8

0.8 1 0.6 ¯ 0.6

0.8 0.6 1 � ]

] ] � � 0.6

0.8 0.6 ¯ 0.6 1

G , ~13!

andDm( i )50.1732 for alli. Using Eq.~2!, the squared Ma-
halanobis distance is computed asD~`!53.0 and Az(`)
50.89.
Medical Physics, Vol. 27, No. 7, July 2000
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Case 2(b). The features given in Case 2~a!can be trans-
formed into a set of uncorrelated features using a lin
transformation, which is called the orthogonalization tran
formation. The linear orthogonalization transformation is d
fined by the eigenvector matrix ofS, so that the covariance
matrix after orthogonalization is diagonal. After the transfo
mation, the new covariance matrix is the identity matrix, a
the new mean difference vector is

Dm~ i !5H 0.5477 if i is a multiple of 10

0 otherwise
. ~14!

Since a linear transformation will not affect the separab
ity of the two classes, the squared Mahalanobis distanc
the same as in Case 2~a!, i.e.,D~`!53.0 andAz(`)50.89.

In practice, given a finite set of samples with correlat
features, the transformation matrix to diagonalize the feat
space is not known, and has to be estimated from the g
samples. In our simulation study, this transformation ma
was estimated from the samples used for feature selecti

Case 3: Simulation of a possible condition in CAD

In order to simulate covariance matrices and mean vec
that one may encounter in CAD, we used texture featu
extracted from patient mammograms in our earlier stu
which aimed at classifying regions of interest~ROIs! con-
taining masses on mammograms as malignant or benign.
different spatial gray level dependence~SGLD! features
were extracted from each ROI at five different distances
two directions. The number of available features was the
fore M5100. The image processing methods that were
plied to the ROI before feature extraction, and the definit
of SGLD features can be found in the literature.11,34 The

FIG. 1. The areaAz under the ROC curve versus the number of featuresk,
used in linear discriminant analysis for Case 1~identity covariance matrix!.
In this figure, it is assumed that an infinite number of features are avail
for classifier training, and that featuresi 51,2,...,kare used for classification
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1514 Sahiner et al. : Feature selection and classifier performance 1514
means and covariance matrices for each class were estim
from a database of 249 mammograms. In this study, we
sumed that these estimated means and covariance ma
were the true means and covariance matrices from multiv
ate Gaussian distribution of the population. These distri
tions were then used to generate random samples for
simulation study.

Case 3(a). In this simulation condition, the two classe
were assumed to have a multivariate Gaussian distribu
with S5(S11S2)/2, whereS1 andS2 were estimated from
the feature samples for the malignant and benign clas
Since the feature values have different scales, their varia
can vary by as much as a factor of 106. Therefore, it is

FIG. 2. The correlation matrix for the 100-dimensional texture feature sp
extracted from 249 mammograms. The covariance matrix correspondin
these features was used for simulations for Case 3~a!.

FIG. 3. Case 1~identity covariance matrix!, Az(`)50.89. Feature selection
from the entire sample space of 100 samples/class: The areaAz under the
ROC curve versus the inverse of the number of design samplesNt per class.
Feature selection was performed using an input feature space ofM550
available features.
Medical Physics, Vol. 27, No. 7, July 2000
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difficult to provide an idea about how the covariance mat
looks without listing all the entries of the 100-by-100 matr
S. The correlation matrix, which is normalized so that
diagonal entries are unity, is better suited for this purpo
The absolute value of the correlation matrix is shown as
image in Fig. 2. In this image, small elements of the cor
lation matrix are displayed as darker pixels, and the diago
elements, which are unity, are displayed as brighter pix
From Fig. 2, it is observed that some of the features
highly correlated or anticorrelated. The squared Mahalano
distance was computed asD~`!52.4, which corresponded to
Az(`)50.86.

Case 3(b). To determine the performance of a featu
space with equivalent discrimination potential to that in Ca
3~a! but with independent features, we performed an
thogonalization transformation on the SGLD features of
generated random samples used for each partitioning, as
plained previously in Case 2~b!.

III. RESULTS

A. Case 1: Identity covariance matrix

1. Feature selection from entire sample space

The areaAz under the ROC curve for the resubstitutio
and the hold-out methods is plotted as a function of 1/Nt in
Fig. 3 for Ns5100 ~number of samples per class! and M
550 ~number of available features!. In this figure, theF in

value in stepwise feature selection is varied between 1 an
and Fout5F in21. Figures 4 and 5 depict the relationsh
betweenAz and 1/Nt for M5100 andM5200, respectively,
andNs5100 for both cases. The average number of selec
features for different values ofF in is plotted in Fig. 6. The
fraction of experiments~out of a total of 50 experiments! in
which featurei was selected in stepwise feature selection
plotted in Fig. 7. For the results shown in Figs. 3–7, 1
samples per class (Ns) were used in the simulation study
and the number of available features was changed fromM

e
to

FIG. 4. Case 1~identity covariance matrix!, Az(`)50.89. Feature selection
from the entire sample space of 100 samples/class: The areaAz under the
ROC curve versus the inverse of the number of design samplesNt per class.
Feature selection was performed using an input feature space ofM5100
available features.
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550 to M5200. In Fig. 8, we show the simulation resul
for a larger number of samples,Ns5250, andM550.

2. Feature selection from training samples alone

The areaAz under the ROC curve versus 1/Nt is plotted in
Figs. 9–11 forM550, 100, and 200, respectively. In the
experiments, the number of samples per class wasNs

5100. The average number of selected features change
one moves along the abscissa of these curves. Figure
shows the average number of selected features forNt580
per class.

FIG. 5. Case 1~identity covariance matrix!, Az(`)50.89. Feature selection
from the entire sample space of 100 samples/class: The areaAz under the
ROC curve versus the inverse of the number of design samplesNt per class.
Feature selection was performed using an input feature space ofM5200
available features.

FIG. 6. Case 1~identity covariance matrix!, Az(`)50.89. Feature selection
from the entire sample space of 100 samples/class: The number of fea
selected in stepwise feature selection versusF in(Fout5F in21).
Medical Physics, Vol. 27, No. 7, July 2000
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B. Case 2: Comparison of correlated and diagonal
covariance matrices

1. Feature selection from entire sample space

The areaAz under the ROC curve for the resubstitutio
and hold-out methods is plotted versus 1/Nt in Figs. 13~a!
and 13~b!for Cases 2~a!and 2~b!, respectively, as describe
in Sec. II D for Ns5100 andM5100. Since the individual
features in Case 2~a!provide less discriminatory power tha
those in Case 1, theF in value was varied between 0.5 and 1
in Fig. 13~a!. Fout was defined asFout5max@(Fin21),0#.

res

FIG. 7. Case 1~identity covariance matrix!, Az(`)50.89. Feature selection
from the entire sample space of 100 samples/class: The frequency of fe
number i, defined as the fraction of experiments in which featurei was
selected.F in53.0, Fout52.0.

FIG. 8. Case 1~identity covariance matrix!, Az(`)50.89. Feature selection
from the entire sample space of 250 samples/class: The areaAz under the
ROC curve versus the inverse of the number of design samplesNt per class.
Feature selection was performed using an input feature space ofM550
available features.
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Figures 14~a!and 14~b!are the counterparts of Figs. 13~a!
and 13~b!, respectively, simulated with the number
samples per classNs5500.

C. Case 3: Simulation of a possible condition in CAD

1. Feature selection from entire sample space
The areaAz under the ROC curve for the resubstitutio

and hold-out methods is plotted versus 1/Nt in Figs. 15~a!
and 15~b!for Cases 3~a!, and 3~b!, respectively (Ns5100
andM5100). TheF in value was varied between 0.5 and 3
and Fout was defined asFout5max@(Fin21),0#. Figures
16~a!and 16~b!are the counterparts of Figs. 15~a! and 15~b!,
simulated with the number of samples per classNs5500.

FIG. 9. Case 1~identity covariance matrix!, Az(`)50.89. Feature selection
from the design samples. Total sample sizeNs5100 samples per class. Th
areaAz under the ROC curve versus the inverse of the number of de
samplesNt per class. Feature selection was performed using an input fea
space ofM550 available features.

FIG. 10. Case 1~identity covariance matrix!, Az(`)50.89. Feature selection
from the design samples. Total sample sizeNs5100 samples per class. Th
areaAz under the ROC curve versus the inverse of the number of de
samplesNt per class. Feature selection was performed using an input fea
space ofM5100 available features.
Medical Physics, Vol. 27, No. 7, July 2000
f

,

2. Feature selection from training samples alone

The areaAz under the ROC curve versus 1/Nt for Case
3~a! is plotted forNs5100 andNs5500 in Figs. 17 and 18
respectively.

IV. DISCUSSION

Figures 3–5 demonstrate that, in general, when the n
ber of available samples is fixed, the bias in the mean res
stitution performance of the classifiers increases when
number of available features increases, or when the num
of selected features increases. The results also reveal th

n
re

n
re

FIG. 11. Case 1~identity covariance matrix!, Az(`)50.89. Feature selection
from the design samples. Total sample sizeNs5100 samples per class. Th
areaAz under the ROC curve versus the inverse of the number of de
samplesNt per class. Feature selection was performed using an input fea
space ofM5200 available features.

FIG. 12. Case 1~identity covariance matrix!, Az(`)50.89. Feature selection
from Nt580 design samples per class. Total sample sizeNs5100 samples
per class. The number of features selected in stepwise feature sele
versusF in(Fout5F in21).
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tential problems with the hold-out performance when feat
selection is performed using the entire sample space.
best possible hold-out performance with infinite sample s
for Case 1 isAz(`)50.89. However, in Figs. 3–5, we ob
serve that the ‘‘hold-out’’ estimates for largeNt values are
higher than 0.89. Some of these estimates were as hig
0.97, as observed from Fig. 5. These hold-outAz values were
higher thanAz(`) because the hold-out samples were n
excluded from classifier design in the feature selection sta
but were excluded only in the second stage of classifier
sign, where the coefficients of the linear classifier were co
puted. When feature selection is performed using a sm
sample size, some features that are useless for the ge
population may appear to be useful for the classification
the small number of samples at hand. This was previou
demonstrated in the literature35 by comparing the probability
of misclassification based on a finite sample to that base
the entire population when a certain number of features w
used for classification. In our study, given a small data

FIG. 13. ~a! Case 2~a! ~correlated samples, no diagonalization!, Az(`)
50.89. Feature selection from the entire sample space of 100 samples/
The areaAz under the ROC curve versus the inverse of the number of de
samplesNt per class. Feature selection was performed using an input fea
space ofM5100 available features.~b! Case 2~b! ~correlated samples, an
diagonalization!, Az(`)50.89. Feature selection from the entire samp
space of 100 samples/class: The areaAz under the ROC curve versus th
inverse of the number of design samplesNt per class. Feature selection wa
performed using an input feature space ofM5100 available features.
Medical Physics, Vol. 27, No. 7, July 2000
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the variance in the Wilks’ lambda estimates causes so
feature combinations to appear more powerful than they
tually are. Recall that for Case 1, the discriminatory power
a given feature decreases with the feature number. Figu
demonstrates that the features numbered larger than
which have practically no classification capability, ha
more than 10% chance of being selected whenF in53.0 and
Fout52.0. If training-test partitioning is performed after fe
ture selection, and a relatively large portion of the availa
samples are used for training so that the estimation of lin
discriminant coefficients is relatively accurate, the hold-o
estimates can be optimistically biased. Figures 3–5 sug
that a larger dimensionality of the available feature sp
~M! may imply a larger bias. This is expected intuitive
because, by using a larger number of features, one incre
the chance of finding a feature that is useless but appea
be useful due to a finite sample size.

The observation made in the previous paragraph abou
possible optimistic bias of the hold-out estimate when f

ss:
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FIG. 14. ~a! Case 2~a! ~correlated samples, no diagonalization!, Az(`)
50.89. Feature selection from the entire sample space of 500 samples/
The areaAz under the ROC curve versus the inverse of the number of de
samplesNt per class. Feature selection was performed using an input fea
space ofM5100 available features.~b! Case 2~b! ~correlated samples, and
diagonalization!, Az(`)50.89. Feature selection from the entire samp
space of 500 samples/class: The areaAz under the ROC curve versus th
inverse of the number of design samplesNt per class. Feature selection wa
performed using an input feature space ofM5100 available features.
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ture selection is performed using the entire sample spac
not a general rule. Figures 13~a! and 15~a!show that one
does not always run the risk of obtaining an optimistic b
in the hold-out estimate when the feature selection is p
formed using the entire sample space, even when the siz
the entire sample space is small (Ns5100) and the dimen-
sionality of the feature space is large (M5100). For Case 2
the best possible test performance with infinite sample siz
Az(`)50.89, however, the best hold-out estimate in F
13~a!is Az50.82. Similarly, for Case 3, the best possible t
performance with infinite sample size isAz(`)50.86, but
the best hold-out estimate in Fig. 15~a! is Az50.84. The
features in both Cases 2~a! and 3~a!were correlated. Case
2~b! and 3~b!were obtained from Cases 2~a! and 3~a!by
applying a linear orthogonalization transformation to the f
tures so that they become uncorrelated. Note that the lin
transformation matrix is estimated from the samples used
feature selection, so it can be considered to be part of
feature selection process. Figures 13~b! and 15~b!show that

FIG. 15. ~a! Case 3~a! ~an example from CAD, no diagonalization!, Az(`)
50.86. Feature selection from the entire sample space of 100 samples/
The areaAz under the ROC curve versus the inverse of the number of de
samplesNt per class. Feature selection was performed using an input fea
space ofM5100 available features.~b! Case 3~b! ~an example from CAD,
and diagonalization!, Az(`)50.86. Feature selection from the entire samp
space of 100 samples/class: The areaAz under the ROC curve versus th
inverse of the number of design samplesNt per class. Feature selection wa
performed using an input feature space ofM5100 available features.
Medical Physics, Vol. 27, No. 7, July 2000
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after this transformation is applied, the hold-out estima
can be optimistically biased for small sample size (Ns

5100). However, in the range of small training sample s
(Nt) below about 50, the orthogonalization reduces the
ases and thus improves the performance estimation.
shows that performing a linear combination of features
fore stepwise feature selection can have a strong influenc
its performance. This result is somewhat surprising, beca
the stepwise procedure is supposed to select a set of fea
whose linear combination can effectively separate
classes. One possible reason is that the orthogonaliza
transformation is applied to the entire feature space ofM
features, whereas the stepwise procedure only produces
binations of a subset of these features.

Figures 9–11, 17, and 18 demonstrate that, when fea
selection is performed using the training set alone, the ho
out performance estimate is pessimistically biased. The
increases, as expected, when the number of available fea
is increased fromM550 in Fig. 9 toM5200 in Fig. 11.
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FIG. 16. ~a! Case 3~a! ~an example from CAD, no diagonalization!, Az(`)
50.86. Feature selection from the entire sample space of 500 samples/
The areaAz under the ROC curve versus the inverse of the number of de
samplesNt per class. Feature selection was performed using an input fea
space ofM5100 available features.~b! Case 3~b! ~an example from CAD,
and diagonalization!, Az(`)50.86. Feature selection from the entire samp
space of 500 samples/class: The areaAz under the ROC curve versus th
inverse of the number of design samplesNt per class. Feature selection wa
performed using an input feature space ofM5100 available features.
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When a larger number of features are available, it is m
likely that there will be features that appear to be more us
for the classification of training samples than they actua
are for the general population. This bias reduces as the n
ber of training samples,Nt , increases.

The biases of the hold-out performance estimates
cussed above are summarized in Table I when the numb
available featuresM5100. WhenNs5100, Cases 1, 2~b!
and 3~b!can exhibit optimistic hold-out estimates if the fe
ture selection is performed using the entire sample sp
When the number of available samples is increased toNs

5500, we do not observe this undesired behavior, and all
hold-out performance estimates are conservative. When
feature selection is performed using the training set alo
the average hold-out performance estimate is always pe
mistically biased.

Figure 6 plots the number of selected features for Cas
versus theF in value when feature selection is performed u
ing the entire sample space of 100 samples per class.
observed that, for a givenF in value, the number of selecte
features increases when the number of available featureM
is increased. Figure 12 shows a similar trend between

FIG. 17. Case 3~a! ~an example from CAD, no diagonalization!, Az(`)
50.86. Feature selection from the design samples. Total sample sizNs

5100 samples per class. The areaAz under the ROC curve versus th
inverse of the number of design samplesNt per class. Feature selection wa
performed using an input feature space ofM5100 available features.
Medical Physics, Vol. 27, No. 7, July 2000
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number of selected features, theF in value, and the number o
available features when feature selection is performed u
the training set alone.

When theF in andFout values were low, the resubstitutio
performance estimates were optimistically biased for all
cases studied. LowF in andFout values imply that many fea
tures are selected using the stepwise procedure. From p
ous studies, it is known that a larger number of features
classification implies larger resubstitution bias.1,3 On the
other hand, whenF in and Fout values were too high, the
number of selected features could be so low that even
resubstitution estimate would be pessimistically biased,
can be observed from Fig. 14~a!(F in51.5) and Fig. 15~a!
(F in53.0). In all of our simulations, for a given number o
training samplesNt , the resubstitution estimate increas
monotonically as the number of selected features were
creased by decreasingF in andFout.

In contrast to the resubstitution estimate, the hold-out
timate for a given number of training samples did not chan
monotonically asF in andFout were decreased. This trend
apparent in Fig. 4, where the hold-out estimate atNt

580(1/Nt50.0125) is the largest forF in52.0, but atNt

FIG. 18. Case 3~a! ~an example from CAD, no diagonalization!, Az(`)
50.86. Feature selection from the design samples. Total sample sizNs

5500 samples per class. The areaAz under the ROC curve versus th
inverse of the number of design samplesNt per class. Feature selection wa
performed using an input feature space ofM5100 available features.
class
ll
d for
TABLE I. Summary of the hold-out performance bias with respect to infinite sample performance for the
distributions used in this study. Number of available samplesM5100. P: Always pessimistically biased for a
F in andFout thresholds used in stepwise feature selection in this study; O: Could be optimistically biase
someF in andFout thresholds used in stepwise feature selection.

Samples
per class Case 1 Case 2~a! Case 2~b! Case 3~a! Case 3~b!

Feature selection
from the entire
sample space

Ns5100 O P O P O

Ns5500 P P P P P
Feature selection

from the design
samples alone

Ns5100 P P P P P
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530(1/Nt50.033) it is next-to-smallest for the sameF in

value. Another way of examining the same phenomenon i
consider different 1/Nt values on the abscissa of Fig. 4, a
to observe that at different 1/Nt values, a differentF in thresh-
old provided the best hold-out performance. In Fig. 4,
feature selection was performed using the entire sam
space. A similar phenomenon can be observed in Fig.
where the feature selection is performed using the train
samples alone. This means that for a given number of de
samples, there is an optimal value forF in andFout ~or num-
ber of selected features! that provides the highest hold-ou
estimate. This is the well-known peaking phenomenon
scribed in the literature.36 For a given number of training
samples, increasing the number of features in the classi
tion has two opposing effects on the hold-out performan
On the one hand, the new features may provide some
information about the two classes, which tends to incre
the hold-out performance. On the other hand, the increa
number of features increases the complexity of the classi
which tends to decrease the hold-out performance. Dep
ing on the balance between how much new information
new features provide and how much the complexity
creases, the hold-out performance may increase or decr
when the number of features is increased.

For different cases studied here, the range ofF in andFout

values shown in the performance-versus-1/Nt plots was dif-
ferent. As mentioned in the Methods Section,F in and Fout

values for a given classification task are not knowna priori,
and these thresholds have to be varied over a range in o
to find the best combinations of features. As mentioned
the previous paragraph, for a given number of des
samples, there is an optimum value forF in and Fout that
provides the highest hold-out estimate. In this study,
aimed at finding this peak for the highestNt in a given graph
whenever possible. After this peak was found, theF in and
Fout values shown in the figures were chosen to demonst
the performance of the classifier at each side of the peak
examining the figures, it can be observed that the peak h
out performance was found in every case except in Fig. 5
Fig. 5, the best hold-out performance occurs forF in52.0, for
which the resubstitution performance is 1.0 for allNt values,
and the hold-out performance is 0.97. Since thisF in value
already shows that the hold-out performance can be too
timistic, we did not search further for the peak of the ho
out performance in Fig. 5.

An interesting observation is made by examining the
substitution performances in Figs. 9, 17, and 18, in which
feature selection is performed using the design sam
alone. ForF in56.0 in Fig. 9, andF in53.0 in Figs. 17 and 18
the resubstitution estimate increases as the number of t
ing samplesNt increases. This may seem to contradict so
previous studies in which the resubstitution estimate alw
decreased with increasingNt .2 However, Figs. 9, 17, and 1
are different from previous studies in that the number
selected features changes asNt changes in these figures. Th
number of features selected by the stepwise procedure
pends on the number of samples used for selection, whic
Medical Physics, Vol. 27, No. 7, July 2000
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equal to 2Nt in these figures. With an argument similar
that for the hold-out performance, there are two oppos
factors that affect the resubstitution performance whenNt is
increased. The first factor, which seems to be dominan
the fact that, with largeNt , overtraining is decreased so th
the resubstitution performance is reduced. The second fa
which is visible forF in56.0 in Fig. 9, andF in53.0 in Figs.
17 and 18, is the fact that with largeNt , the stepwise pro-
cedure selects more features, which may increase the re
stitution performance.

In this study, for Cases 1, 2, and 3, we investigated
classifier performance when feature selection was perform
using the entire sample space, and the number of sample
class (Ns) was five times that of available features for fe
ture selection~M!. The results of these simulations are show
in Figs. 8, 14, and 16 for Cases 1, 2 and 3, respectively.
first observation concerning these figures is that none of
hold-out estimates in these figures are higher than their
spectiveAz(`) values. This suggests that it may be possi
to avoid obtaining optimistic hold-out estimates by increa
ing the number of available samples or by decreasing
number of features used for feature selection. A second
servation is that, compared to other results in this study,
relationship between theAz values and 1/Nt is closer to a
linear relation in these figures. In order to test whether
Az(`) value can be obtained by extrapolation as was s
gested in the literature,2,17 we performed regression analys
for the hold-outAz estimates~versus 1/Nt) for each F in

value, and computed they-axis intercept of the resulting re
gression equation. For regression analysis, we used cu
obtained withNs5500 andM5100 for all cases~shown in
Figs. 14 and 16 for Cases 2 and 3, and not shown for C
1!. The resulting extrapolated values are shown in Fig.

FIG. 19. The estimated values of classifier accuracy in the limit of infin
training samples, obtained by fitting a linear regression to the hold-ouAz

values, and finding they-axis intercept.Az(`)50.89 for Cases 1, and 2
Az(`)50.86 for Case 3. For all cases, total sample sizeNs5500 samples
per class, and number of available featuresM5100.
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For Case 1, we observe that the extrapolated value is wi
60.015 of theAz(`) value of 0.89. For Cases 2 and 3, th
extrapolated values are within60.02 of theAz(`) values for
small F in ; the error increases, however, whenF in is in-
creased. This graph suggests that when the classifier de
involves feature selection, it may be possible to estimate
Az(`) value using the Fukunaga–Hayes method when
sample size is reasonably large. However, the error in
estimatedAz(`) value can be large if theF in andFout thresh-
olds are not chosen properly.

This study examined only the bias of the mean perf
mance estimates, which were obtained by averaging the
timates from fifty experiments as described in Sec. II D. A
other important issue in classifier design and assessme
the uncertainty in the performance measure, i.e., the varia
expected over replications of the experiment when a n
sample of training patients and/or a new sample of test
tients are drawn from the same population. The variance
vides an estimate of the generalizability of the classifier p
formance to other design and test samples. We previo
studied the components of the variance of performance
mates when the classifier is trained and tested with fi
samples, but the design excludes the feature selec
process.4,5 The extension of our previous studies to inclu
feature selection is an important further research topic.

V. CONCLUSION

In this study, we investigated the finite-sample effects
the mean performance of a linear classifier that includ
stepwise feature selection as a design step. We compare
resubstitution and hold-out estimates to the true classifica
accuracy, which is the performance of a classifier desig
with the full knowledge of the population distributions. W
compared the effect of partitioning the data set into train
and test groups before performing feature selection with
after performing feature selection. When data partition
was performed before feature selection, the hold-out estim
was always pessimistically biased. When partitioning w
performed after feature selection, i.e., the entire sample s
was used for feature selection, the hold-out estimates c
be pessimistically or optimistically biased, depending on
number of features available for selection, number of av
able samples, and their statistical distribution. All hold-o
estimates exhibited a pessimistic bias when the paramete
the simulation were obtained from correlated texture featu
extracted from mammograms in our previous study. The
derstanding of the performance of the classifier desig
with different schemes will allow us to utilize a limite
sample set efficiently and to avoid an overly optimistic a
sessment of the classifier.
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