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In computer-aided diagnosi€CAD), a frequently used approach for distinguishing normal and
abnormal cases is first to extract potentially useful features for the classification task. Effective
features are then selected from this entire pool of available features. Finally, a classifier is designed
using the selected features. In this study, we investigated the effect of finite sample size on classi-
fication accuracy when classifier design involves stepwise feature selection in linear discriminant
analysis, which is the most commonly used feature selection algorithm for linear classifiers. The
feature selection and the classifier coefficient estimation steps were considered to be cascading
stages in the classifier design process. We compared the performance of the classifier when feature
selection was performed on the design samples alone and on the entire set of available samples,
which consisted of design and test samples. The Ajamder the receiver operating characteristic
curve was used as our performance measure. After linear classifier coefficient estimation using the
design samples, we studied the hold-out and resubstitution performance estimates. The two classes
were assumed to have multidimensional Gaussian distributions, with a large number of features
available for feature selection. We investigated the dependence of feature selection performance on
the covariance matrices and means for the two classes, and examined the effects of sample size,
number of available features, and parameters of stepwise feature selection on classifier bias. Our
results indicated that the resubstitution estimate was always optimistically biased, except in cases
where the parameters of stepwise feature selection were chosen such that too few features were
selected by the stepwise procedure. When feature selection was performed using only the design
samples, the hold-out estimate was always pessimistically biased. When feature selection was
performed using the entire finite sample space, the hold-out estimates could be pessimistically or
optimistically biased, depending on the number of features available for selection, the number of
available samples, and their statistical distribution. For our simulation conditions, these estimates
were always pessimisticallfconservatively)biased if the ratio of the total number of available
samples per class to the number of available features was greater than fi2g000@American
Association of Physicists in Medicing50094-2405(00)01607-2]
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[. INTRODUCTION This approach also has the advantage that the computer may

discover some features that are difficult to perceive or ver-

Comput_er-alded mterpretatlo_n Of_ medical images has beeBally describe by the radiologist, so that the computer may
the subject of numerous studies in recent years. The purpose

. . . 2 ST extract information that is complementary to the radiologist’s
of computer-aided diagnos{€AD) in medical imaging is to . . P y 9
. 2. . . ; erceived image features.
provide a second opinion to the radiologist concerning the®

presence or the likelihood of malignancy of abnormalities in ¢ A common plroblerg m_CAD 'T the_f_lack O:;&tl Ie}[rg? _r:umbt:r
a given image or case. The general visual criteria that heIB 'mage samples fo design a classilier and to test its pertor-

describe the abnormality or its classification can usually béh"ance. Although the effect of finite sample size on classifi-

provided by the radiologist. However, in many cases, it jscation accuracy has previously been studied, many elements

difficult to translate these criteria into computer algorithms©f this research topic warrant further study. In order to treat

that exactly match the verbal description of what the radiolo-SPecific components of this problem, previous studies have
gist visually perceives. Therefore, a common first step inmostly ignored the feature selection component of this prob-
CAD is to extract a number of features, or a feature spacé,ema and assumed that the features to be used in the classifier

that is believed to have a potential for the given task. Th1ave been chosen and are fixéiHowever, as described in
features may or may not match to what a radiologist searchd§€ previous paragraph, feature selection is a necessary first
in the image for the same task. In the next step, a subset @tep in many CAD algorithms. This paper addresses the ef-
features are selected from the entire feature space based tsgt of finite sample size on classification accuracy when the
their individual or joint performance, and the selected set oflassifier design involves feature selection.

features are used in the remaining steps of the CAD system. When only a finite number of samples are available for
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classifier design and testing, two commonly used perforapproximated by a linear relationship in a sample size range
mance estimates are those provided by the resubstitution amchere higher-order terms in N/ can be neglectet:® This
the hold-out methods. In the hold-out method, the samplefacilitates estimation of the infinite-sample performance
are partitioned into independent training and test samplegtom the intercept of a linear regression.
the classifier is designed using the training samples alone, This paper describes a simulation study that investigates
and the accuracy of the designed classifier is measured by itse effect of finite sample size on classifier accuracy when
performance for the test samples. In the resubstitutiorlassifier design involves feature selection using stepwise
method, the accuracy is measured by applying the classifidinear discriminant analysis. The classification problem was
to the training samples that have been used to design idefined as deciding whether a sample belongs to either one
Other methods such as leave-one-out and bootstrap have algbtwo classes, and the two classes were assumed to have
been shown to be very useful procedures for performancgultivariate Gaussian distributions with equal covariance
estimation with a finite sample siZes the number of train- matrices. We chose to focus our attention on stepwise feature
ing samples increases, all of these estimates approach tielection in linear discriminant analysis since this is a com-
true classification accuracy, which is the accuracy of a clasmonly used feature selection and classification method. The
sifier designed with the full knowledge of the population effects of different covariance matrices and means on feature
distributions. When the training sample size is finite, it isselection performance were studied. We examined the effects
known that, on average, the resubstitution estimate of classef sample size, number of available features, and parameters
fier accuracy is optimistically biased relative to that of aof stepwise feature selection on classifier bias. The biases of
classifier trained with an infinite sample. In other words, itthe classifier performance when feature selection was per-
has a higher expected value than the performance obtainddrmed on the entire sample space and on the design samples
with an infinite design sample set, which is the true classifi-alone were compared. Finally, we investigated whether the
cation accuracy. Similarly, on average, the hold-out estimat&ethods of infinite-sample performance estimation devel-
is pessimistically biased, i.e., it has a lower expected valueped previously 3!’ can be applied to our problem.
than the true classification accuracy. When classifier design
is limited by the availability of design samples, it is impor-
tant to obtain a realistic estimate of the classifier perfor; METHODS
mance so that classification will not be misled by an optimis-
tic estimate such as that provided by resubstitution. In our approach, the problem of classifier design is ana-
In CAD literature, different methods have been used tdyzed in two stages. The first stage is stepwise feature selec-
estimate the classifier accuracy when the classifier desigion, and the second stage is the estimation of the coefficients
involves feature selection. In a few studies, only the resubin the linear discriminant formulation using the selected fea-
stitution estimate was providédin some studies, the re- ture subset as predictor variables.
searchers partitio_ned the samples into training and test Stepwise feature selection
groups at the beginning of the study, performed both feature - ) )
selection and classifier parameter estimation using the train- The two-class classification defined in the last paragraph
ing set, and provided the hold-out performance estirfisfte. of the Introduction can be formulated as a first-order linear
Most studies used a mixture of the two methods. The entiréultiple regression probleff.Since most of the literature on
set of available samples was used as the training set at tiféepwise feature selection is based on the linear regression
feature selection step of classifier design. Once the featurd@rmulation, we will use this formulation to describe step-
have been chosen, the hold-out or leave-one-out method¥ise feature selection in this subsection. A different statisti-
were used to measure the accuracy of the classHié? To cal formulation of the problem, which coincides with the
our knowledge, it has not been reported whether this latteinear regression formul_ation if the_cova_riance matrices of
method provides an optimistic or pessimistic estimate of thdéhe classes are equdlwill be described in Sec. IIA, and
classifier performance. will be used in the remainder of the paper.

A powerful method for estimating the infinite-sample per- L€t N denote the number of samples available to design
formance of a classifier using a finite number of availableth€ classifier, and let denote the number of features. In the

samples was first suggested by Fukunaga and Hdyaghe  linear multiple regression formulation, a desired outp(if
Fukunaga—Hayes method, subsetsNgf,N,,...,N. design IS assigned to eadkdimensional feature vectos; such that

samples are drawn from the available sample set, the classi- 0, if ieclass 1
fier accuracy is evaluated at these different sample sizes, and o(i)=
the infinite-sample performance is estimated by linear ex-

trapolation from thej points to N—o or 1/N—0. This : . . : .
: . .. To define the linear multiple regression problem, the desired
method has recently been applied to performance estimation

in CAD, where the area, under the receiver operating char- outputso(i) are used as the dependent variable and the fea-

) . ture vectorsX; are used as the independent variables. The
acteristic(ROC) curve is commonly used as the performance ;. ~ .~ . .
23 . o . ._discriminant score for a feature vect¥ is the predicted
measuré 3 For various classifiers and Gaussian sample dis-

tributions, theA, value was plotted against 1/Nand it was value ofo(i), computed by the regression equation
observed that the dependence of &evalue can be closely hW(X))=b"X;+ by, )

@

0, if ieclass 2
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whereb"™=[b;,b,,...,b] andb, are the regression coeffi- this study, Wilks’ lambda, which is defined as the ratio of
cients. Stepwise feature selection iteratively changes theithin-group sum of squares to the total sum of squares of
number of featurek used in the classification by entering the discriminant scores, was used as the feature selection
features into or removing features from the group of selectedriterion. Letm{ andm{® denote the means of the discrimi-
features based on a feature selection criterion usingant scores for classes 1 and 2, respectively, ananft
F-statistics'®?°We have used stepwise feature selection fordenote the mean of the discriminant scores computed over
classifier design in many of our CAD applicatiolt$'=2%In  both classes. Wilks’ lambdx, is defined a&

_ 2i e class ﬁh(k)(xi) - m(lk))2+ Ei e class ih(k)(xi) - m(zk))z (3)
“ =1L, (hF(X) —m®)?2 '

A smaller value for Wilks’ lambda means that the spreadThis constraint should not limit our ability to demonstrate the
within each class is small compared with the spread of theffect of finite sample size on feature selection and classifier
entire sample, which means the separation of the two class@e&rformance, because we were still able to vary the number
is relatively large and that better classification is possibleof selected features over a wide range, as will be shown in
Entering a new feature into regression will always decreas€igs. 6 and 12 below.

Wilks’ lambda, unless the feature is completely useless for

classifying the available samples. The problem is to decide

whether the decrease in Wilks’ lambda justifies entering the

feature into regression. In stepwise feature selectioR-&ot

enter value—for making the decision whether a featureB. Estimation of linear discriminant coefficients

should be entered whenfeatures are already used—is de- o 4 by-product of the stepwise feature selection proce-

fined as* dure used in our stud ici [ iscrimi-
y, the coefficients of a linear discrimi
N nant classifier that classifies the design samples using the
F=(N—k—2)( K 1, (4)  selected features as predictor variables are also computed.
Nt However, in this study, the design samples of the stepwise

feature selection may be different from those used for coef-
ficient estimation in the linear classifier. Therefore, we

M¢+1 IS Wilks’ lambda after entering the feature. Anto- . : . Lo
L i . implemented the stepwise feature selection and discriminant
removevalue is similarly defined to decide whether a feature - T e
coefficient estimation components of our classification

already in the regression should be removed. At the featuré
scheme separately.

entry step of the stepwlse aIgonthm, the feature with the Let 3, and3,, denote thek-by-k covariance matrices of
largestF-to-entervalue is entered into the selected feature i
o ) . samples belonging to class 1 and class 2, and uet
pool if this maximum value is larger than a threshbld. At — (p1(1)24(2) (K)) — (a(1)110(2) (K))
the feature removal step, the feature with the smaffetst- KL RIRE), - 1)), 2= M L) a2 ) - ko2
) denote their mean vectors. For an input vecoithe linear
removevalue is removed from the selected feature pool if .~ .. o ) i

. o . discriminant classifier output is defined as
this minimum value is smaller than a threshdig,. The
algorithm terminates when no more features can satisfy the .1y 1 T Tw 1
criteria for either entry or removal. The number of selected h(X)= (2= m1) X7 X+ 3(p1 2" "y — 3" o), ()
features increases, in general, whgnandF; are reduced.

In order to avoid numerical instabilities in the solution of where 2 =(2,+2,)/2. Because of the assumption in this
linear systems of equations, a tolerance term is also enstudy that the two covariance matrices are eqhialeduces
ployed in the stepwise procedure to exclude highly correto 3=3%,=3,. Therefore, we will be concerned with only
lated features. If the correlation between a new feature anthe form ofX in the following discussions. The linear dis-
the already selected features is larger than a tolerance threstriminant classifier is the optimal classifier when the two
old, then the feature will not be entered into the selecteatlasses have a multivariate Gaussian distribution with equal
feature pool even if it satisfies the feature entry criterioncovariance matrices.
described in the previous paragraph. For the class separation measures considered in this paper

Since the optimal values &, andF for a given clas- (refer to Sec. IIC), the constant term ,uIE‘l,ul
sification task are not knowa priori, these thresholds have —,uZE’l,uz)/Z in Eq. (1)is irrelevant. Therefore, the classi-
to be varied over a range in order to find the “best” combi- fier design can be viewed as the estimatiork gfarameters
nations of features in a practical application. In this simula-of the vectorb= (u,— ;) "> " using the design samples.
tion study, we limit our selection df,; to F,=F;,— 1, so When a finite number of design samples are available, the
that we do not search through all combinationd=ofalues. = means and covariances are estimated as the sample means

where\, is Wilks’ lambda before entering the feature, and

Medical Physics, Vol. 27, No. 7, July 2000



1512 Sahiner et al.: Feature selection and classifier performance 1512

and the sample covariances from the design samples. The the squared signal-to-noise ratio of the distributions of the
substitution of the true means and covariances in(Egby  two classes for théh feature.

their estimates causes a bias in the performance measure of Using Eq.(3), and the normality of the classifier outputs,
the classifier. In particular, if the designed classifier is usedt can be shown thét

for the classification of design samples, then the performance

is optimistically biased. On the other hand, if the classifier is  p (o)~ f BB —teizgy (10)
used for classifying test samples that are independent from \/ﬁ —

the design samples, then the performance is pessimistical

ly . . .
biased. ¥ Finite sample size

When a finite sample size is available, the means and
covariances of the two class distributions are estimated as the
C. Measures of class separation sample means and the sample covariances using the design

The traditional assessment methodology in medical imaggamples. The output score of the linear discriminant classifier
ing is receiver operating characteris®OC) analysis, °f & test sample is computed using Eg). The accuracy of

which was first developed in the context of signal detectionf€ classifier in discriminating the samples from the two
theory?5-27 In this study, the output score of the cIassifierCIasses_ is measured by ROC_ r_nethodqlogy. '_I'he discriminant
was used as the decision variable in ROC analysis, and the¥0® |532use_d as the decision variable in tBROC
areaA, under the ROC curve was used as the principal meaProgram.” which pr_owd_esathe ROC curve based on maxi-
sure of class separation. Excellent reviews of ROC method@um likelihood estimatiort

applied to medical imaging can be found in the

literature28-3° D. Simulation conditions

In our simulation study, we assumed that the two classes
1. Infinite sample size follow multivariate Gaussian distributions with equal covari-

o . nce matri nd different means. Thi mption is an
When an infinite sample size is available, the class meang °o atrices and different means $ assumption is a

and covariance matrices can be estimated without bias. I'r‘njeal'z"’ltlon of the real class distributions that one may ob-

s case, we use the Square Mablanobis disans or | S#1° 1 8 races classfalon poblem, It reticts e
the arean, () under the ROC curve as the measures of CIaS?an e w?ﬂlep ermitting us to approximate a range of%itua
separation, as explained below. The infinity sign in parenthe: A P 9 P 9

ses denotes that the distance is computed using the trl}lgr\]/sethaén??aytfde:rs]gt)ﬁtirgr?\Irl]eg?\rlc))h each class distri-
means and covariance matrices, or, equivalently, using 9 s P

infinite number of random samples from the population. algution using a random number generator. The sample space

Assume that two classes with multivariate Gaussian dis\-/i/al\? rtan?omrlr)]/ Ipartltlorneld mtd)'l:t trralnl?vg :amfnlels andlly W
tributions and equal covariance matrices have been classified est samples per class. For a given sampie Space, we

using Eq.(1). Since Eq(1) is a linear function of the feature ufsfedtsiv;]ralddlff'erent vallues'ftNt n (Iere'rf. tot.study the
vector X, the distribution of the classifier outputs for class pErect ot the design sample size on classincation accuracy.

and class 2 will be Gaussian. Let; and m, denote the Eor a given_Nt, the sample_ space was independently parti-
means of the classifier output for the case of the normaﬁ'gnmedleio etlr”(]:?z:ssmg\g ttrzzlrcliggsiirgtpé?ﬁsaigms_ Nt;.f:;
class, and for the case of the abnormal class, respectivel Pies p X meatl uhaabtai

and lets; and s denote the variances. With the squaredJg:;:;issfztgepilrggg;ii;\tlizsn ?;rjf]aid 'QS%?]ZQO;EZUC;EZ?
Mahalanobis distancA(«) defined as y ' P

dure described above was referred to as one experiment. For
A(e)= (o= p) 2" Y o= pe), (6)  each class distribution described in Cases 1, 2, and 3 below,
50 statistically independent experiments were performed,
and the results were averaged.

My —m;=s7=s3=A(%). (7) Two methods for feature selection were considered. In the

The quantityA(«) is referred to as the squared Mahalano-fIrSt method, the entire sample space WNG samples per
bis distance between the two classes. It is the square of t ass was used for feature selection. In other words, the en-

Euclidean distance between the two classes, normalized {ge sample space was treated as a training set at the feature
the common covariance matrix selection step of classifier design. After feature selection, the
In particular, ifS is a k—by-k.diagonal matrix withs: - training-test partitioning was used to evaluate the resubstitu-
— (i), then ’ "' tion and hold-out performances of the coefficient estimation
’ step of classifier design. In the second method, both feature

it can be shown that

X _ selection and coefficient estimation were performed using
A(°°>=i§1 a(i), (8) only the training set witiN; samples per class.
Case 1: Identity covariance matrix
where In the first simulation condition, a hypothetical feature
8()=[ (i) — ()12 0?(i) (9) space was constructed such that the covariance matrices of
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the two classed ;=2,=2 was the identity matrix, and the 0.90 +————
mean differenceAu between the two classes for feature ]
was

Ap(i)=po(i) = pi(i)=ep', i=1..M andp<1,

11
whereM refers to the number of available features for fea-
ture selection. Note thakt, previously defined in Sec. II B,
refers to the number of features selected for classifier param
eter estimation; therefore, in genersll=k. For a given data
set, the number of available featufdsis fixed, whereas the
number of selected featurésdepends on thé&;, and F;
parameters of the stepwise selection algorithm. Siads
chosen to be less than 1, the ability for separation of the twao
classes by feature nbdecreased asncreased, as evidenced
by 8(i) = (aB')? [see Eq(5)]. The squared Mahalanobis dis-

0.80 -

0.75 7

Area A, under the ROC curve

tanceA(«) was computed as 0.70 - -
2 n2
o
A(w)= 1_11‘;2 (1_[32M) Number of features

. =1 f i Fic. 1. The ared, under the ROC curve versus the number of featukes,
sincea (i) - Or_ airs. used in linear discriminant analysis for Casédentity covariance matrix
In our simulation, we chosg=0.9, and chose: such that  In this figure, it is assumed that an infinite number of features are available

A(0)=3.0, orA,()=0.89. The value ofA,(«) versusk is for classifier training, and that featuries 1,2,...,kare used for classification.

plotted in Fig. 1, when features 1 throughvere included in

the linear discriminant. It is seen that fkr-25, the contri-

bution of an additional feature to the classification accuracy Case 2(b). The features given in Case 2(@n be trans-

was very close to zero. With this simulation condition, weformed into a set of uncorrelated features using a linear

studied the classification accuracy for three different numtransformation, which is called the orthogonalization trans-

bers of available features, nameM,=50, M =100, andM formation. The linear orthogonalization transformation is de-

=200. fined by the eigenvector matrix &, so that the covariance
matrix after orthogonalization is diagonal. After the transfor-
mation, the new covariance matrix is the identity matrix, and

Case 2: Compatrison of correlated and diagonal the new mean difference vector is
covariance matrices R, .
Case 2(a). In this simulation condition, the number of 0.5477 if i is a multiple of 10

Au(i)= (14)

available features was fixed 8 =100. In contrast to the 0 otherwise
simulation condition shown in Case 1 in this section, some of

) Since a linear transformation will not affect the separabil-
the features were assumed to have non-zero correlation. The - .
. . ity of the two classes, the squared Mahalanobis distance is
covariance matrixz, for the 100 features was assumed to

. the same as in Case 2(a), i.A()=3.0 andA,(»)=0.89.
have a block-diagonal structure . : 7 .
In practice, given a finite set of samples with correlated

~A 0 O -+ 07 features, the transformation matrix to diagonalize the feature
0O A O - 0 space is not known, and has to be estimated from the given
samples. In our simulation study, this transformation matrix
=0 0 A ' (12)  \as estimated from the samples used for feature selection.
Do .0
0 0 -~ 0 Al Case 3: Simulation of a possible condition in CAD
where the 10-by-10 matrid was defined as In order to simulate covariance matrices and mean vectors
- 1 08 08 --- 08 that one may encounter in CAD, we used texture features
08 1 06 - 06 extracted from patient mammograms in our earlier study,
' ' X which aimed at classifying regions of interg®Ols) con-
A= 08 06 1 . |, (13)  taining masses on mammograms as malignant or benign. Ten
: : ) 06 different spatial gray level dependen¢8GLD) features
08 06 -~ 06 1 were extracted from each ROI at five different distances and
- ' ' - two directions. The number of available features was there-

andA (i) =0.1732 for alli. Using Eq.(2), the squared Ma- fore M=100. The image processing methods that were ap-
halanobis distance is computed Agx)=3.0 and A,(«) plied to the ROI before feature extraction, and the definition
=0.89. of SGLD features can be found in the literatdté* The
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—— Fin=1.0, resubs
—+ — Fin=1.0, hold-out
—&— Fin=2.0, resubs
—O= Fin=2.0, hold-out
—&— Fin=3.0, resubs
—0 = Fin=3.0, hold-out
{| —&— Fin=4.0, resubs
—A — Fin=4.0, hold-out
i , resubs
, hold-out
.0, resubs
—O = Fin=6.0, hold-out

Area A, under the ROC curve

0.60

Fic. 4. Case Xidentity covariance matrjx A,()=0.89. Feature selection
from the entire sample space of 100 samples/class: TheAgreader the
ROC curve versus the inverse of the number of design samlpsr class.
Feature selection was performed using an input feature spatke=0f00
available features.

Fic. 2. The correlation matrix for the 100-dimensional texture feature space
extracted from 249 mammograms. The covariance matrix corresponding tgifficult to provide an idea about how the covariance matrix
these features was used for simulations for C&@. 3 looks without listing all the entries of the 100-by-100 matrix
>. The correlation matrix, which is normalized so that all
means and covariance matrices for each class were estimat_lg_ﬁ‘gm;)al Ientneslare :cm:y, IS belttgr suited for thr'ls purpose.
from a database of 249 mammograms. In this study, we as- ¢ & _Solé‘_te \éa Iue ﬁ_ the corre atlo”n Tatrlx IS Sf or\]/vn as an
sumed that these estimated means and covariance matridlg?ge In F1g. 2. dn t IIS m;ageasmka e_erlnentsdo ht ((aj_corre-l
were the true means and covariance matrices from muItivari—":}tlon matrlxr?ri ISplayed as adr_ erl plxzs, aT) ! he 'aQO’}a
ate Gaussian distribution of the population. These distribu€ €Ments, which are unity, are displayed as brighter pixels.

tions were then used to generate random samples for tHgom Fig. 2, it is observed that some of the features are

; . highly correlated or anticorrelated. The squared Mahalanobis
simulation study. di q —5 hich ded
Case 3(a). In this simulation condition, the two classes istance was computed a¢)=2.4, which corresponded to

were assumed to have a multivariate Gaussian distributioﬁ‘z(m)zo'%' i
with S =(3,+3.,)/2, where3 ; and3., were estimated from Case_3(b). To deter_mln_e _the _performance of a f_eature
the feature samples for the malignant and benign classesPace with equivalent discrimination potential to that in Case

Since the feature values have different scales, their variances® Put with independent features, we performed an or-
can vary by as much as a factor of®10Therefore, it is thogonalization transformation on the SGLD features of the

generated random samples used for each partitioning, as ex-
plained previously in Case 2(b).

1.00 +—— ; ——
ros 7ﬁéﬁﬁ/7/‘ Ill. RESULTS
§ 0.90 ‘;%Mq%:‘;ﬁ[u_ e FineL0, resubs A. Case 1: Identity covariance matrix
- '"*"i‘i*%*%%&tiE*L***E‘ 77777 :fgg 5%%::}: 1. Feature selection from entire sample space
£ RN ?3%‘::2 —=— Fin=30, reubs The areaA, under the ROC curve for the resubstitution
5 o "“T‘“:*"“*:“"\:’_\"\f_\t_\?' e ot e and the hold-out methods is plotted as a function of; in
B S SRR WA R | Docist i Fig. 3 for Ng=100 (number of samples per clasand M
- _,,,,L,,L,,L,,j,,,J,:\g}\;_“ Dawrve =50 (number of available featurgsin this figure, theF,
| : : : 1 AN | ikt value in stepwise feature selection is varied between 1 and 6,
0.65 T -~ e e e sy and F,,=F;,— 1. Figures 4 and 5 depict the relationship
0.60 N N T NN SR betweerA, and 1/N for M =100 andM = 200, respectively,
000 001 002 003 004 005 006 007 andNg= 100 for both cases. The average number of selected

features for different values df;, is plotted in Fig. 6. The
fraction of experimentgout of a total of 50 experimentsn

Fic. 3. Case 1(identity covariance matrjx A,()=0.89. Feature selection
from the entire sample space of 100 samples/class: TheAgreader the
ROC curve versus the inverse of the number of design sarhplpsr class.
Feature selection was performed using an input feature spadé=050
available features.

which featurel was selected in stepwise feature selection is
plotted in Fig. 7. For the results shown in Figs. 3—7, 100
samples per clasd\Ng) were used in the simulation study,
and the number of available features was changed fvbm
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1.00 L I : L I I 1
I | | | | w [
! I \ \ I \ i
0.95 - ———+ e ‘ b
® I X \ I i \ . M=50
g 0.90 +———1-3 —&— Fin=2.0, resubs \ I I \ =
5 | —O— Fin=2.0, hold-out S S SR B M=100 |C
8 1 ~#— Fin=3.0, resubs [ ! ‘ ] k . M[=2000)
& 0.85 +———1 + 1 : = [ —0- Fin=3.9, hold-out ) ! | | |
2 I A \! = —A— Fin=4.0, resubs 13 e e e e if— | =t
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Fic. 5. Case 1identity covariance matrjx A () =0.89. Feature selection
from the entire sample space of 100 samples/class: TheAgreader the

ROC curve versus the inverse of the number of design sarhlpsr class.
Feature selection was performed using an input feature spabé=a200
available features.

Feature number

Fic. 7. Case Xidentity covariance matrjx A,()=0.89. Feature selection
from the entire sample space of 100 samples/class: The frequency of feature
numberi, defined as the fraction of experiments in which featumwas
selectedF;,=3.0,F,,~=2.0.

=50 to M=200. In Fig. 8, we show the simulation results
for a larger number of samplellg=250, andM = 50.

2. Feature selection from training samples alone . )
B. Case 2: Comparison of correlated and diagonal

The area@\, under the ROC curve versud\k/is plotted in  covariance matrices

Figs. 9—-11 forM =50, 100, and 200, respectively. In these

experiments, the number of samples per class Was ;7 Feature selection from entire sample space

=100. The average number of selected features changes as o

one moves along the abscissa of these curves. Figure 12 The areaA, under the ROC curve for the resubstitution

shows the average number of selected features\ferg0 ~ @nd hold-out methods is plotted versusilin Figs. 13(a)

per class. and 13(b)for Cases 2(aand 2(b), respectively, as described
in Sec. IID forNg=100 andM =100. Since the individual

features in Case 2(g@rovide less discriminatory power than

those in Case 1, the;, value was varied between 0.5 and 1.5
in Fig. 13(a). F,,; was defined ag-,,=max{(Fi,—1),0].
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from the entire sample space of 250 samples/class: Thefgreader the
Fic. 6. Case 1identity covariance matrjx A () =0.89. Feature selection ROC curve versus the inverse of the number of design sarplpsr class.
from the entire sample space of 100 samples/class: The number of featur€gature selection was performed using an input feature spad#=060
selected in stepwise feature selection vemsyéF, =Fi,—1). available features.
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Fic. 9. Case identity covariance matrix A,(=)=0.89. Feature selection Fic. 11. Case lidentity covariance matrjxA,(o) =0.89. Feature selection
from the design samples. Total sample gize= 100 samples per class. The from the design samples. Total sample sige=100 samples per class. The
areaA, under the ROC curve versus the inverse of the number of desigrféa@A, under the ROC curve versus the inverse of the number of design
samples\, per class. Feature selection was performed using an input featurgamples\; per class. Feature selection was performed using an input feature
space ofM =50 available features. space ofVl =200 available features.

2. Feature selection from training samples alone
Figures 14(ajand 14(b)are the counterparts of Figs. (A3

and 13(b), respectively, simulated with the number of
samples per clagd,=500.

The areaA, under the ROC curve versusNL/for Case
3(a)is plotted forNg= 100 andN¢=500 in Figs. 17 and 18,
respectively.

C. Case 3: Simulation of a possible condition in CAD IV. DISCUSSION
Figures 3—5 demonstrate that, in general, when the num-
1. Feature selection from entire sample space ber of available samples is fixed, the bias in the mean resub-

The areaA, under the ROC curve for the resubstitution stitution performance of the classifiers increases when the
and hold-out methods is plotted versudNlin Figs. 15(a) number of available features increases, or when the number
and 15(b)for Cases 3(a), and 3(b), respectiveM ,&100  of selected features increases. The results also reveal the po-
andM =100). TheF;, value was varied between 0.5 and 3.0,
and F,,; was defined as-,,;=maX{(Fi,—1),0]. Figures
16(a)and 16(b)are the counterparts of Figs. (@ and 15(b), 40
simulated with the number of samples per clags-500.
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Fic. 10. Case lidentity covariance matrjx A, () =0.89. Feature selection

from the design samples. Total sample dize= 100 samples per class. The Fic. 12. Case lidentity covariance matrjx A () =0.89. Feature selection
areaA, under the ROC curve versus the inverse of the number of desigrirom N,;=80 design samples per class. Total sample Kigze 100 samples
samplesN, per class. Feature selection was performed using an input featurper class. The number of features selected in stepwise feature selection
space ofM =100 available features. versusF;(Fou=Fin—1).
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Fic. 13. (a) Case 2(a) dorrelated samples, no diagonalizajio () Fic. 14. (a) Case 2(a) dorrelated samples, no diagonalizadioi, ()

=0.89. Feature selection from the entire sample space of 100 samples/class0.89. Feature selection from the entire sample space of 500 samples/class:
The are&A, under the ROC curve versus the inverse of the number of desigiThe area\, under the ROC curve versus the inverse of the number of design
samplesN, per class. Feature selection was performed using an input featursamplesN, per class. Feature selection was performed using an input feature
space ofM =100 available featuregb) Case 2(b) correlated samples, and space ofVl =100 available featuregb) Case 2(b) ¢orrelated samples, and
diagonalizatiol, A,(«)=0.89. Feature selection from the entire sample diagonalizatioh, A,(~)=0.89. Feature selection from the entire sample
space of 100 samples/class: The afgaunder the ROC curve versus the space of 500 samples/class: The afgaunder the ROC curve versus the
inverse of the number of design sampiégsper class. Feature selection was inverse of the number of design samplésper class. Feature selection was
performed using an input feature spaceMbf 100 available features. performed using an input feature spaceMbf 100 available features.

tential problems with the hold-out performance when featurghe variance in the Wilks’ lambda estimates causes some
selection is performed using the entire sample space. Thieature combinations to appear more powerful than they ac-
best possible hold-out performance with infinite sample sizeually are. Recall that for Case 1, the discriminatory power of
for Case 1 isA,(«)=0.89. However, in Figs. 3—5, we ob- a given feature decreases with the feature number. Figure 7
serve that the “hold-out” estimates for lard¢, values are demonstrates that the features numbered larger than 100,
higher than 0.89. Some of these estimates were as high aghich have practically no classification capability, have
0.97, as observed from Fig. 5. These hold-Aytalues were  more than 10% chance of being selected whg 3.0 and
higher thanA,() because the hold-out samples were notF,,=2.0. If training-test partitioning is performed after fea-
excluded from classifier design in the feature selection stageure selection, and a relatively large portion of the available
but were excluded only in the second stage of classifier desamples are used for training so that the estimation of linear
sign, where the coefficients of the linear classifier were comdiscriminant coefficients is relatively accurate, the hold-out
puted. When feature selection is performed using a smakstimates can be optimistically biased. Figures 3-5 suggest
sample size, some features that are useless for the genethht a larger dimensionality of the available feature space
population may appear to be useful for the classification ofM) may imply a larger bias. This is expected intuitively
the small number of samples at hand. This was previouslpecause, by using a larger number of features, one increases
demonstrated in the literatifeby comparing the probability the chance of finding a feature that is useless but appears to
of misclassification based on a finite sample to that based ope useful due to a finite sample size.

the entire population when a certain number of features were The observation made in the previous paragraph about the
used for classification. In our study, given a small data setpossible optimistic bias of the hold-out estimate when fea-
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Fic. 15. (a) Case 3(a)dn example from CAD, no diagonalizatigr,() Fic. 16. (a) Case 3(a)dn example from CAD, no diagonalizatiorh,(=)
=0.86. Feature selection from the entire sample space of 100 samples/class0.86. Feature selection from the entire sample space of 500 samples/class:
The area, under the ROC curve versus the inverse of the number of desigThe area\, under the ROC curve versus the inverse of the number of design
samples\, per class. Feature selection was performed using an input featureamplesN, per class. Feature selection was performed using an input feature
space ofM =100 available featuregb) Case 3(b) &n example from CAD, space ofM =100 available featuregb) Case 3(b) &n example from CAD,

and diagonalization A,() =0.86. Feature selection from the entire sample and diagonalization A,(») =0.86. Feature selection from the entire sample
space of 100 samples/class: The afgaunder the ROC curve versus the space of 500 samples/class: The afgaunder the ROC curve versus the
inverse of the number of design samphésper class. Feature selection was inverse of the number of design sampigsper class. Feature selection was
performed using an input feature spaceMbf 100 available features. performed using an input feature spaceM 100 available features.

ture selection is performed using the entire sample space &fter this transformation is applied, the hold-out estimates
not a general rule. Figures (3 and 15(a)show that one can be optimistically biased for small sample sizd; (
does not always run the risk of obtaining an optimistic bias=100). However, in the range of small training sample size
in the hold-out estimate when the feature selection is per(N;) below about 50, the orthogonalization reduces the bi-
formed using the entire sample space, even when the size aes and thus improves the performance estimation. This
the entire sample space is small&100) and the dimen- shows that performing a linear combination of features be-
sionality of the feature space is largel € 100). For Case 2, fore stepwise feature selection can have a strong influence on
the best possible test performance with infinite sample size igs performance. This result is somewhat surprising, because
A,()=0.89, however, the best hold-out estimate in Fig.the stepwise procedure is supposed to select a set of features
13(a)is A,=0.82. Similarly, for Case 3, the best possible testwhose linear combination can effectively separate the
performance with infinite sample size #,(«)=0.86, but classes. One possible reason is that the orthogonalization
the best hold-out estimate in Fig. (8 is A,=0.84. The transformation is applied to the entire feature spacevof
features in both Caseqd@ and 3(a)were correlated. Cases features, whereas the stepwise procedure only produces com-
2(b) and 3(b)were obtained from Casegd@ and 3(a)by  binations of a subset of these features.

applying a linear orthogonalization transformation to the fea- Figures 9—-11, 17, and 18 demonstrate that, when feature
tures so that they become uncorrelated. Note that the lineaelection is performed using the training set alone, the hold-
transformation matrix is estimated from the samples used foout performance estimate is pessimistically biased. The bias
feature selection, so it can be considered to be part of thimcreases, as expected, when the number of available features
feature selection process. Figuregi)3and 15(b)show that is increased fromM =50 in Fig. 9 toM =200 in Fig. 11.
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Fic. 17. Case 3(a)an example from CAD, no diagonalizatipnA,() Fic. 18. Case 3(a)an example from CAD, no diagonalizatignA ()
=0.86. Feature selection from the design samples. Total sampleNsize =0.86. Feature selection from the design samples. Total sampleNgize
=100 samples per class. The arda under the ROC curve versus the =500 samples per class. The arda under the ROC curve versus the
inverse of the number of design sampiésper class. Feature selection was inverse of the number of design samphgsper class. Feature selection was
performed using an input feature spaceMbf 100 available features. performed using an input feature spaceMbf 100 available features.

When a larger number of features are available, it is mor@umber of selected features, thg value, and the number of
likely that there will be features that appear to be more usefuavailable features when feature selection is performed using
for the classification of training samples than they actuallythe training set alone.
are for the general population. This bias reduces as the num- When theF;, andF,, values were low, the resubstitution
ber of training sampled\;, increases. performance estimates were optimistically biased for all the
The biases of the hold-out performance estimates disecases studied. LoW;, andF, values imply that many fea-
cussed above are summarized in Table | when the number ¢idires are selected using the stepwise procedure. From previ-
available featuresl =100. WhenN¢=100, Cases 1, 2(b), ous studies, it is known that a larger number of features in
and 3(b)can exhibit optimistic hold-out estimates if the fea- classification implies larger resubstitution biasOn the
ture selection is performed using the entire sample spacether hand, wher;, and F, values were too high, the
When the number of available samples is increasetifo number of selected features could be so low that even the
=500, we do not observe this undesired behavior, and all theesubstitution estimate would be pessimistically biased, as
hold-out performance estimates are conservative. When thean be observed from Fig. 14(éF;,=1.5) and Fig. 15(a)
feature selection is performed using the training set along(F;,=3.0). In all of our simulations, for a given number of
the average hold-out performance estimate is always pesdraining samples\,, the resubstitution estimate increased
mistically biased. monotonically as the number of selected features were in-
Figure 6 plots the number of selected features for Case treased by decreasirig, andF ;.
versus the-;, value when feature selection is performed us- In contrast to the resubstitution estimate, the hold-out es-
ing the entire sample space of 100 samples per class. It mate for a given number of training samples did not change
observed that, for a giveR;, value, the number of selected monotonically as;, andF,, were decreased. This trend is
features increases when the number of available feaMres apparent in Fig. 4, where the hold-out estimate Nt
is increased. Figure 12 shows a similar trend between the80(1/N=0.0125) is the largest foF;,=2.0, but atN,

TasLE I. Summary of the hold-out performance bias with respect to infinite sample performance for the class
distributions used in this study. Number of available samMes100. P: Always pessimistically biased for all

Fi, andF, thresholds used in stepwise feature selection in this study; O: Could be optimistically biased for
someF;, andF thresholds used in stepwise feature selection.

Samples
per class Case 1 Caséa2 Case 2(b) Case 3(a) Case 3(b)

Feature selection Ns=100 (0] P O P (0]
from the entire
sample space
Ns=500 P P P P P
Feature selection Ng=100 P P P P P
from the design
samples alone
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=30(1/N=0.033) it is next-to-smallest for the sankg,
value. Another way of examining the same phenomenon is tc
consider different 1/Nvalues on the abscissa of Fig. 4, and
to observe that at differentN values, a differenf;, thresh- |
old provided the best hold-out performance. In Fig. 4, the !
feature selection was performed using the entire samplex
space. A similar phenomenon can be observed in Fig. 18-5 0.88 '***ﬂ:
where the feature selection is performed using the trainings i
samples alone. This means that for a given number of desigr=
samples, there is an optimal value fey, andF; (or num-
ber of selected featurgshat provides the highest hold-out
estimate. This is the well-known peaking phenomenon de-;
scribed in the literaturé® For a given number of training 084 'H'V.\Km;_"
samples, increasing the number of features in the classifica I
tion has two opposing effects on the hold-out performance. 0.82 I
On the one hand, the new features may provide some nev 0 1
information about the two classes, which tends to increase
the hold-out performance. On the other hand, the increaseu n
number of features increases the complexity of the classifiekic. 19. The estimated values of classifier accuracy in the limit of infinite
which tends to decrease the hold-out performance. Dependtaining samples, obtained by fitting a linear regression to the holdhput
ing on the balance between how much new information thefy:%: TE T8 19 e Bleoee ol sample Sie 500 samples
new features provide and how much the complexity in- =" c =0 P~ = T e e oo P
creases, the hold-out performance may increase or decrease
when the number of features is increased.

For different cases studied here, the rang&gfandF
values shown in the performance-versuN:lplots was dif-

ferent. As mentioned in the Methods Sectiéfy, and Fou  f4ct0rs that affect the resubstitution performance wheis
values for a given classification task are not knawpriori,  j,creased. The first factor, which seems to be dominant, is
and these thresholds have to be varied over a range in Ordgfy 50t that, with larg\, , overtraining is decreased so that
to find the best combinations of features. As mentioned iy resypstitution performance is reduced. The second factor,
the previous paragraph, for a given number of designypich is visible forF;,=6.0 in Fig. 9, andF;,=3.0 in Figs.
samples, there is an optimum value B, and Foy that 17 and 18, is the fact that with largé,, the stepwise pro-

provides the highest hold-out estimate. In this study, Weequre selects more features, which may increase the resub-
aimed at finding this peak for the highéétin a given graph  gitution performance.

whenever possible. After this peak was found, Fg and In this study, for Cases 1, 2, and 3, we investigated the
Fout values shown in the figures were chosen to demonstratgassifier performance when feature selection was performed
the performance of the classifier at each side of the peak. BMsing the entire sample space, and the number of samples per
examining the figures, it can be observed that the peak hold:jass () was five times that of available features for fea-
out performance was found in every case except in Fig. 5. Ifyre selectior{M). The results of these simulations are shown
Fig. 5, the best hold-out performance occursfgy=2.0, for  in Figs. 8, 14, and 16 for Cases 1, 2 and 3, respectively. Our
which the resubstitution performance is 1.0 forflvalues, first observation concerning these figures is that none of the
and the hold-out performance is 0.97. Since fhjs value  hold-out estimates in these figures are higher than their re-
already shows that the hold-out performance can be too ogspectiveA, () values. This suggests that it may be possible
timistic, we did not search further for the peak of the hold-to avoid obtaining optimistic hold-out estimates by increas-
out performance in Fig. 5. ing the number of available samples or by decreasing the
An interesting observation is made by examining the renumber of features used for feature selection. A second ob-
substitution performances in Figs. 9, 17, and 18, in which th&ervation is that, compared to other results in this study, the
feature selection is performed using the design sampleslationship between thd, values and 1/Nis closer to a
alone. FoiF;,=6.0 in Fig. 9, and;,=3.0 in Figs. 17 and 18, linear relation in these figures. In order to test whether the
the resubstitution estimate increases as the number of trairk,(«) value can be obtained by extrapolation as was sug-
ing samples\, increases. This may seem to contradict somegested in the literaturel’ we performed regression analysis
previous studies in which the resubstitution estimate alway$or the hold-outA, estimates(versus 1/N) for eachF;,
decreased with increasing; .2 However, Figs. 9, 17, and 18 value, and computed theaxis intercept of the resulting re-
are different from previous studies in that the number ofgression equation. For regression analysis, we used curves
selected features changesNyschanges in these figures. The obtained withNg=500 andM =100 for all casegshown in
number of features selected by the stepwise procedure d&igs. 14 and 16 for Cases 2 and 3, and not shown for Case
pends on the number of samples used for selection, which i%). The resulting extrapolated values are shown in Fig. 19.

—W¥— Case 2(a) (correlated samples, no diag.)
—7— Case 2(b) {correlated samples, and diag.)
—— Case 3(a) (example from CAD, no diag.)

| L
| | . . .
0.92 +—————— = —@— Case 1 (identity covariance matrix)
|
|
|
I —{F Case 3(b) (example from CAD, and diag.)

0.90 T

mit of infinite N,

rge +—— -V —L—— =

Estimated A,

A

equal to 2\, in these figures. With an argument similar to
that for the hold-out performance, there are two opposing
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