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Mild cognitive impairment (MCI) is often considered a critical time window for predicting

early conversion to Alzheimer’s disease (AD). Brain functional connectome data

(i.e., functional connections, global and nodal graph metrics) based on resting-state

functional magnetic resonance imaging (rs-fMRI) provides numerous information about

brain networks and has been used to discriminate normal controls (NCs) from subjects

with MCI. In this paper, Student’s t-tests and group-least absolute shrinkage and

selection operator (group-LASSO) were used to extract functional connections with

significant differences and the most discriminative network nodes, respectively. Based

on group-LASSO, the middle temporal, inferior temporal, lingual, posterior cingulate,

and middle frontal gyri were the most predominant brain regions for nodal observation in

MCI patients. Nodal graph metrics (within-module degree, participation coefficient, and

degree centrality) showed the maximum discriminative ability. To effectively combine

the multipattern information, we employed the multiple kernel learning support vector

machine (MKL-SVM). Combined with functional connectome information, the MKL-

SVM achieved a good classification performance (area under the receiving operating

characteristic curve = 0.9728). Additionally, the altered brain connectome pattern

revealed that functional connectivity was generally decreased in the whole-brain

network, whereas graph theory topological attributes of some special nodes in the brain

network were increased in MCI patients. Our findings demonstrate that optimal feature

selection and combination of all connectome features (i.e., functional connections,

global and nodal graph metrics) can achieve good performance in discriminating NCs

from MCI subjects. Thus, the combination of functional connections and global and

nodal graph metrics of brain networks can predict the occurrence of MCI and contribute

to the early clinical diagnosis of AD.

Keywords: resting-state functional magnetic resonance imaging, functional connectivity, graph theory, multiple

kernel learning, mild cognitive impairment
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder characterized by loss of memory and cognitive decline
(Blennow et al., 2006). With the aging of the global population,
there will be an estimated 115 million AD patients in the world
by 2050, with an average of 1 new AD patient every 33 s (Ijaopo,
2017). Mild cognitive impairment (MCI) is an intermediate stage
that precedes early AD. Evidence indicates that about 15% of
MCI patients progress to AD per year (Petersen et al., 1999;
Grundman et al., 2004). Therefore, MCI is regarded as the
critical time window for early prediction of conversion to AD
(Manly et al., 2008).

Components of the brain functional connectome, including
functional connections and graph theory topological metrics,
have become important imaging markers for exploring brain
networks and predicting the classification of neurodegenerative
diseases (Biswal et al., 2010; Wang et al., 2013; Filippi et al.,
2018). The functional connectome systematically depicts global
graph metrics (i.e., small world, modularity, global efficiency),
nodal graph metrics (i.e., degree, participant coefficient, shortest
path length), and functional connections of the network. It
provides a novel approach for revealing altered brain network
patterns (delEtoile and Adeli, 2017; Khazaee et al., 2017; Filippi
et al., 2018). Given the large numbers of network features in the
brain connectome, the Student’s t-test (Qiao et al., 2016; Li W.
et al., 2019) and sparse methods such as least absolute shrinkage
and selection operator (LASSO) have been applied to select the
critical features of brain networks (Wee et al., 2014; Li Y. et al.,
2019). Nodal graph metrics naturally have a group topology
(i.e., a node corresponds to a group of node-graph theoretical
attributes). Group-LASSO is a regression-analysis method for
group-feature selection and regularization that can be adopted
to select nodal graph metrics (Liu et al., 2019) and maintain
significant discrimination of nodal features.

In recent years, machine learning approaches with data-
driven algorithms have been used to combine and classify
brain features. Some classifiers such as support vector machines
(SVMs) (Prasad et al., 2015; Khazaee et al., 2016), Naïve Bayes
(Zhuo et al., 2018) and deep neural networks (Themistocleous
et al., 2018) are applied to discriminate normal controls from
subjects with MCI. However, most of these methods focus
on a single modality of imaging, the functional connectome,
or graph theory attributes separately, resulting in relatively
poor classification performance (Suk et al., 2014). Therefore,
the multimodal brain network (i.e., functional connections and
graph theory topological metrics) should be used to provide
a comprehensive and insightful understanding of the brain
network in patients with MCI. Combined with information from
different attributes, multiple kernel learning SVM (MKL-SVM)
(Niu et al., 2017) can partially alleviate the high-dimensional
curve of multiple features and measure the contributions of
different features to the classification. These proposed methods
could help select critical features and discriminate normal
controls from subjects with diseases.

The main purposes of the present study were to select
discriminative features of the brain connectome (i.e., functional

connections, global graph metrics, and nodal graph metrics) and
develop a classification of MCI based on different attributes of
the brain network. Altered patterns of discriminative features
were further analyzed using the proposedmethods. By combining
the group-LASSO model and MKL-SVM, we (i) identified the
most discriminative nodal features of the brain connectome
and predominant brain regions in MCI patients, (ii) achieved
accurate and automatic classification of MCI patients and normal
controls (NCs), and (iii) analyzed the changed patterns in
the brain network.

MATERIALS AND METHODS

Participants
Participants with MCI and NCs were recruited to establish
a registry at Huashan Hospital. Each participant underwent
a comprehensive evaluation, including clinical interview,
neuropsychological assessment, laboratory tests, and multimodal
magnetic resonance imaging (MRI) examinations of the brain.
MCI was defined according to the following criteria (Petersen,
2004): (i) cognitive concern/complaint by the subject, nurse,
or physician, with a Clinical Dementia Rating (CDR) = 0.5;
(ii) objective impairment in ≥1 cognitive domain based on 1.5
standard deviations (SDs) below the mean using the norms
obtained in the pilot study; (iii) basic normal functional activities
(determined by CDR and daily living activity assessment);
(iv) absence of dementia according to the Diagnostic and
Statistical Manual of Mental Disorders, 4th edition (Rabe-
Jablonska and Bienkiewicz, 1994). The inclusion criteria of NCs
were: (i) no neurology-related or cerebral vascular diseases
(e.g., Parkinson’s disease, intracranial aneurysms, or cerebral
tumors); (ii) no severe mental retardation or schizophrenia;
(iii) no severe problems in speaking, vision, or hearing;
(iv) able to actively participate in the neuropsychological
assessment. In the present study, 105 participants (41 MCI
patients and 64 NCs) were selected. Two patients with MCI
and four NCs were excluded due to incomplete data in resting
state-functional MRI (rs-fMRI) and severe head motion
at some time points. Finally, data from 99 individuals (39
MCI patients and 60 NCs) were included in the subsequent
statistical analyses. The clinical and demographic data of
these 99 participants were summarized. The study protocol
was approved by the Ethics Committee of Huashan Hospital
of Fudan University (Shanghai, China). Written informed
consent was obtained from each participant (or his/her legal
representative). In addition, we adopted the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)1 dataset as an
independent test dataset to verify the performance of the
pre-trained model.

Data Acquisition
Rs-fMRI and structural MR images were acquired on a 3T MR
scanner (Magnetom R© Verio; Siemens, Munich, Germany) using
a 32-channel head coil. Before imaging, all participants were

1http://adni.loni.usc.edu/
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instructed to keep their eyes closed (but not to fall asleep),
think of nothing, and move as little as possible during data
acquisition. Three-dimensional (3D) T1-weighted sagittal images
were acquired using magnetization-prepared rapid gradient echo
with the following parameters: repetition time (TR) = 2530 ms,
echo time (TE) = 2.34 ms, flip angle = 7◦, inversion time
(TI) = 1100 ms, matrix = 256 × 256, slice number = 192,
thickness = 1.0 mm, and voxel size = 1 × 1 × 1 mm3. The scan
lasted 6 min 03 s. The parameters of the rs-fMRI protocol were
as follows: axial acquisition, TR = 2000 ms, TE = 30 ms, flip
angle = 90◦, slice thickness = 3.8 mm, slice number = 31, field
of view = 220 × 220 mm2, matrix size = 64 × 64, and voxel
size = 3.4× 3.4× 3.8 mm3. Each scan collected 240 volumes with
a scan time of 8 min 06 s. The ADNI dataset was acquired on the
3T Philips with the following scan parameters: TR = 3000 ms,
TE = 30 mm, flip angle = 80◦, slice thickness = 3.3 mm, slice
number = 48, matrix size = 64 × 64, and measurements = 140.

Image Preprocessing
Preprocessing procedures were carried out using Data Processing
Assistant for Resting-State fMRI (DPARSF)2 and Statistical
Parametric Mapping (SPM12)3. The first 10 time points
were not used to ensure stabilization of the initial signal
and adaptation of participants to the environment. Timing
correction to the last slice was conducted. Realignment for
compensation of head-movement effects was achieved using
a six-parameter rigid-body spatial transformation. All spatial
movement was <3 mm of displacement and <3◦ of rotation
in any direction, and no participant was excluded. Next, rs-
fMRI images were co-registered to the high-resolution 3D-
T1 structural images. Normalization of 3D-T1 structural MRI
images to Montreal Neurological Institute (MNI) space was
undertaken by non-linear warping based on Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL). Then, rs-fMRI images were spatially normalized
to the MNI space using the parameters derived from the
normalization of structural images and simultaneously resampled
into 3-mm isotropic voxels. All normalized fMRI images
were smoothed with a 6-mm, full-width at half-maximum
Gaussian kernel. Linear detrending and band-pass filtering
at 0.01–0.1 Hz were carried out to control low-frequency
drift and high-frequency physiological noise. Finally, nuisance
covariates were regressed out, including the Friston 24-
motion parameter model (six head-motion parameters, six
head-motion parameters one time point before, and the 12
corresponding squared items), global mean, white matter, and
cerebrospinal fluid signals.

Brain Network Construction
The average time series within each region based on the
264 putative functional area atlas were separately extracted to
construct the connectivity brain network (Power et al., 2011).
The Pearson’s correlation coefficients of all pairs of 264 regions
of interest (ROIs) were applied separately to define the edges

2http://restfmri.net/forum/index.php
3http://www.fil.ion.ucl.ac.uk/spm

of functional connections. Thus, the functional connectivity
matrix (adjacency matrix) was constructed (Li et al., 2017).
The final functional connection networks produced N∗(N-1)/2
edges, where N corresponded to the number of nodes in the
networks. Considering the ambiguous interpretation of negative
correlations, we restricted the analysis to positive correlations and
set the negative correlation coefficients as zero. A thresholding
method based on network sparsity was adopted to remove the less
significant connections and to retain the topological properties
of graph theory by setting an appropriate threshold for network
sparsity (Dai et al., 2019). Sparsity thresholds (ranging from 0.02
to 0.5, with steps of 0.01) were set to acquire a binary undirected
network (Chang et al., 2016). To avoid ambiguity, we used the
area under the curve (AUC; i.e., the sum value of 49 values of the
corresponding node attributes) as input for the node attribute to
train the classifier.

Computation of Graph Metrics
Based on binary undirected matrices, we systematically analyzed
the global and local properties of the functional brain
network with the Graph Theoretical Network Analysis Toolbox
(GRETNA)4 based on Statistical Parametric Mapping (SPM8;
see text footnote 3) with MATLAB R2013b. Global metrics
[i.e., clustering coefficient (Cp), characteristic path length (Lp),
normalized clustering coefficient (γ), normalized characteristic
path length (λ), small-world σ, global efficiency (Eglobal)],
and nodal properties (i.e., degree centrality, nodal efficiency,
betweenness centrality, shortest path length) were applied to
characterize the different patterns of connections in the brain
network (Table 1; Wang et al., 2015). The modularity (Q) of a
brain network quantified the efficiency of segmenting a network
into modules (Newman, 2006). A modified greedy optimization
algorithm was used as follows:

Q =

Nm
∑

i=1

[li/L − (di/2L)
2]

where Nm represents the number of modules, L is the total
number of edges in the brain network, and li is the number
of within-module edges in module i; di represents the sum
of the linked edges at each node within module i. Modified
greedy optimization was applied to detect the modular structure
(Newman, 2004).

4www.nitrc.org/projects/gretna/

TABLE 1 | Global and local graph metrics of the brain connectome.

Global graph metrics Local graph metrics

Clustering coefficient Cp Betweenness centrality

Characteristic path length Lp Degree centrality

Normalized clustering coefficient γ Nodal clustering coefficient

Normalized characteristic path length λ Local efficiency

Small-world σ Shortest path length

Network efficiency Participant coefficient

Modularity Within-module degree
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At the module level, the intra-module connectivity density
(Ds) and intermodule connectivity density (Ds,t) were calculated
as follows:

Ds =

2
∑

i,j∈s
εi,j

Ns(NS − 1)

whereNS is the number of nodes within module s, and εi,j are the
edges within module s.

Ds,t =

∑

i∈s,j∈t
εi,j

Ns ∗ Nt

where Ns is the number of nodes within module s, Nt represent
the number of nodes within module t, and εij is the number of
edges between module s and module t.

Moreover, at the nodal level, within-module degree (WD) and
the participation coefficient (PC) were measured as follows:

WDi =
ei − ēs

σs

where ei is the nodal degree of node i within module s, ēs is
the average nodal degree of all nodes in module s, and σs is the
standard deviation of the nodal degree within the module of all
nodes in module s.

PCi = 1 −

Nm
∑

s=1

(

ki,s

ki

)2

where Nm is the number of modules and ki,s is the number
of connections between node i and module s. ki represents the
number of connections of node i to all other nodes within the
Nm modules.

Nodes with a degree of 2 standard deviations higher than
the mean of the degree of all nodes were identified as hub
nodes (Rubinov and Sporns, 2010). Small-world attributes were
applied to characterize an optimized balance between functional
segregation and integration of the network.

Statistical Analyses
For demographics and clinical characteristics, two-sample
Student’s t-tests were carried out except for sex, which was tested
by the chi-square test. P < 0.05 indicated a significant difference
in the demographic data. First, functional connections and global
and local metrics were regressed to remove potential effects of
the covariates age, sex, and education duration. Then, differences
pertaining to graph theory metrics between MCI patients and
NCs were compared based on two-sample Student’s t-tests.
A procedure to ascertain the false discovery rate was performed to
further correct for multiple comparisons. To localize the specific
pairs of regions in which functional connections were altered in
MCI patients, we used a network-based statistic (NBS) approach
(Zalesky et al., 2010). A corrected P-value was calculated for each
component using the null distribution of the maximal connected
component size, which was empirically derived using a non-
parametric permutation approach (10,000 permutations) (Zuo
et al., 2012). P < 0.01 indicated a significant difference.

Feature Selection for Nodal Graph
Metrics
As mentioned above, the brain was divided into 264 nodes
based on the 264 putative functional area atlas (Power et al.,
2011), and each node corresponded to seven local graph metrics
(i.e., betweenness centrality, degree centrality, nodal clustering
coefficient, local efficiency, shortest path length, participant
coefficient, within-module degree). Thus, the nodal graphmetrics
naturally have a group topology, that is, a node corresponds to
a group of node-graph theoretical attributes. Given the natural
group attributes, we used group-LASSO as the feature-selection
scheme for nodal graph metrics.

minW

nSub
∑

i=1

log



1 + exp



−yi ×





nROI
∑

j=1

7
∑

k=1

w(j,k)x(j,k) + c













+ λ

nROI
∑

j=1

||wjk||q,

where yi is the label of the i-th participant, and w(j,k) and x(j,k)

are the weight and value of the j-th ROI and k-th Nodal Graphic
Metric, respectively. Note that x(j,k) is normalized by Fisher
Z-transformation to avoid scale imbalance. We used the SLEP
toolbox5 to calculate w(j,k) with a default setting of λ = 1.

Classification
Combination of information provides an effective way to
integrate multiple views of biomarkers (i.e., connections and
graph metrics). The simplest way is to overlay the data directly,
but this approach can be inappropriate due to the high-
dimensional curve and small number of samples. Moreover, a
modality with more dimensions can submerge a modality with
fewer dimensions. To overcome this challenge, we used MKL-
SVM for information combination because the kernel trick can
partially alleviate the high-dimensional curve. MKL-SVM was
conducted as shown below.

Suppose that there are n training samples with connection
values and graph metrics. For xmi ,m = 1,2,3, which correspond to
the connection value, the nodal graph metrics and global graph
metrics respectively. y represent the correcponding class label of
the i-th sample. MKL-SVM solves the following primal problem:

min
w

1

2

2
∑

m=1

βm||wm||2 + C

2
∑

i=1

ξi

s.t. yi

(

2
∑

m=1

βm(wm)Tφm(xmi ) + b

)

≥ 1 − ξi

ξi ≥ 0, i = 1, 2

where φm represents a mapping from the original space to
the Represent Hilbert Kernel Space (RHKS), wm represents the
normal vector of the hyperplane in RHKS, and βm denotes the

5www.yelab.net/software/SLEP
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corresponding combining weight on the m-th modality. Then,
the dual form of MKL-SVM can be represented as:

max
α

n
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyj

2
∑

m=1

βmk
m(xmi , ymi )

s.t.

n
∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2

where km(xmi , ymi ) = φm(xmi )Tφm(xmj ) and is the kernel matrix

on the m-th modality. After we trained the model, we tested the
new samples x = {x1, x2, . . . , xM}. The kernel between the new
test sample and the i-th training sample on the m-th modality
is defined as km(xmi , xm) = φm(xmi )Tφm(xm). In the end, the
predictive level based onMKL-SVMcan be formulated as follows:

f (x1, x2, . . . , xM) = sign

(

n
∑

i=1

yiαi

M
∑

m=1

βmk
m(xmi , xm) + b

)

The proposed formulation of MKL-SVM is similar to but
different from existing multi-kernel learning methods because
βm is selected based on the cross-validation scheme on the grid-
searching space with constraints

∑

m βm = 1. The range of c was
2∧−5 to 2∧5. All data-processing and classification procedures
used in our study are shown in Figure 1. Due to the small sample
size, we used the leave-one-out cross-validation (LOOCV)
strategy to verify the performance of the methods, in which only

one subject is left out for testing while the others are used to train
the models and obtain the optimal parameters. For the choice
of optimal parameters, an inner LOOCV was conducted on the
training data using a grid-search strategy. Moreover, in order to
verify the performance of the proposed model, we also tested the
model on the independent ADNI dataset.

RESULTS

Demographics and Clinical
Characteristics
The demographic data and clinical characteristics of all
participants are summarized inTable 2. There were no significant
differences in sex, age, or education level between the MCI and
NC groups (P > 0.05 for all). However, the MCI group had
significantly lower scores on the Mini Mental State Examination
(P < 0.001) than the NC group. We also selected 50 samples
(27 MCI and 23 NCs) from the independent ADNI dataset. The
details of their demographic and clinical characteristics are listed
in Table 3.

Significant Differences of Functional
Connections in Brain-Network
The mean connection strengths of the whole brain network were
compared between MCI and NC. A total of 3072 connections
with significant differences were extracted between the MCI and
NC groups within the range of fully sparse values from 0.02 to
0.5 (P < 0.01) using Student’s t-tests. After permutation of NBS,

FIGURE 1 | Data-processing and classification procedures employed in our study.
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TABLE 2 | Demographics and clinical characteristics of MCI patients and NCs in

the current study.

Characteristic MCI (n = 39) NCs (n = 60) P

Male/female, n 25/14 30/30 0.168a

Age, years, mean ±SD 74.00 ± 7.67 71.25 ± 7.08 0.071b

Education, years, mean ±SD 10.97 ± 4.29 12.42 ± 3.58 0.074b

MMSE, mean ±D 26.77 ± 2.33 28.28 ± 1.35 <0.001b

Hippocampal volume (×103 mm3) 6.80 ± 0.87 7.43 ± 0.69 0.002b

MMSE, Mini mental state examination. aThe P-value was obtained by using the

chi-square test. bThe P-value was obtained by using a two-sample t-test.

TABLE 3 | Demographics and clinical characteristics of the ADNI dataset.

Characteristic MCI (n = 27) NCs (n = 23) P

Male/female, n 13/14 11/12 0.982a

Age, years, mean ±SD 70.11 ± 8.17 75.22 ± 6.82 0.021b

MMSE, mean ±SD 25.33 ± 1.07 27.17 ± 1.30 <0.001b

MMSE, Mini mental state examination. aThe P-value was obtained by using the

chi-square test. bThe P-value was obtained by using a two-sample t-test.

we retained the most significant 100 connections with the lowest
P-values (Figure 2). We projected them into the corresponding
subnetworks and found that the most discriminative network
connections were mainly distributed in the default mode network
(DMN), subcortical network, frontoparietal task control network,

dorsal attention network, and visual network. Compared with
NCs, patients with MCI had significantly lower functional
connection strength in brain-network connections (P < 0.01).

Global Graph Metrics of the Functional
Brain Connectome
The global graph metrics of the MCI and NC groups showed the
small-world topological attributes. That is, the functional brain
networks had larger clustering coefficients and almost identical
shortest path lengths compared with the matched random
networks. With increasing connection density, Cp increased,
whereas Lp, γ, λ, and small-world σ decreased in theMCI andNC
groups. Statistical analysis revealed that the Cp of MCI patients
was higher than that in the NC group, whereas λ and small-world
σ were lower in the MCI group compared with the NC group
(P < 0.01). However, these differences were only observed at a
few network thresholds (Figure 3).

Nodal Graph Metrics of the Functional
Brain Connectome
Two strategies were developed to investigate the discriminative
features of nodal graphmetrics and nodes based on local network
parameters. On the one hand, we analyzed the most predominant
brain regions with the greatest number of significant differences
in nodal graph metrics. Before group-LASSO, 212 significantly
different nodes were observed between MCI and NC groups
(P < 0.01). However, after feature selection by group-LASSO,

FIGURE 2 | The most significant 100 connections mapped on the ICBM 152 template using the BrainNet Viewer software package (http://nitrc.org/projects/bnv/).

The connectivity matrices of the fully connected network of MCI patients and NCs are shown. The 100 most significant connections were retained, with gray

indicating a reduction in connectivity strength. Plots in this figure were created by BrainNet Viewer (http://nitrc.org/projects/bnv/). The color-bar numbers represent

the subnetworks with reference to the 264 putative functional area atlas proposed by Power et al. (2011). The details are: 1 sensory/somatomotor hand network; 2

sensory/somatomotor mouth network; 3 cingulo-opercular task control network; 4 auditory network; 5 default mode network; 6 memory retrieval network; 7 visual

network; 8 frontoparietal task control network; 9 salience network; 10 subcortical network; 11 ventral attention network; 12 dorsal attention network; 13 cerebellar

network; 14 unknown network.
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we selected the nodal graph metrics from 76 ROIs as inputs.
These 76 ROIs were considered as the extremely predominant
nodes for discriminating MCI patients from NCs, and each
ROI had ≥4 and ≤7 nodal topological metrics with significant
differences. The locations of nodes in the 264 atlas were labeled
according to the AAL_90 atlas (Figure 4 and Table 4). On the
other hand, we identified the distinguishing features for each
nodal graph theory attribute using the feature selection of group-
LASSO (Table 5). The top-20 nodal graph topological features
with maximum discriminative ability are listed in Table 6.
Therefore, the most predominant brain regions with the greatest
numbers of significant nodal graph measures and the most
discriminative nodal graph features were distributed mainly in
the temporal, cingulate, superior frontal, lingual, and parietal
gyri, which corresponded to the DMN, dorsal attention network,
and cingulo-opercular task network.

According to the definition of “hubs,” we identified hub
nodes in MCI patients and NCs. Figure 5 shows the hub nodes
in each group. In MCI patients and NCs, the common hub
regions were mainly located in the left middle temporal gyrus,

right precuneus, left median cingulate gyrus, left cuneus, and
paracingulate gyri. More importantly, some hub nodes were
present only in MCI patients and absent in NCs: the left
paracentral lobule, right paracentral lobule, left postcentral gyrus,
and right cuneus. Simultaneously, there were also some hub
nodes in NCs but not inMCI patients. These regions were located
on the left Heschl, right superior temporal, left inferior occipital,
and left middle occipital gyri. Hub nodes play critical roles
in maintaining high-level cognitive functions by coordinating
overall information flow and supporting the integrity of the
brain connectome (Wang et al., 2013). The similar distributions
suggested preservation of hubs in MCI.

Further comparisons of the predominant brain regions
mentioned above revealed that MCI patients had significantly
lower values of betweenness centrality and degree centrality
and significantly higher values for the nodal shortest path in
the frontal lobe (e.g., bilateral superior frontal gyrus), temporal
lobe (e.g., bilateral inferior temporal gyrus), limbic lobe (e.g.,
left median cingulate and paracingulate gyri), and parietal lobe
(e.g., left inferior parietal gyrus) compared with the NC group

FIGURE 3 | Comparison of clustering coefficient (Cp), normalized clustering coefficient (γ), and small-world σ between MCI and NC groups.

FIGURE 4 | The most predominant nodes for discriminating MCI patients from NCs. Before group-LASSO, 212 significantly different nodes were present between

MCI and NC groups (P < 0.01). After feature selection by group-LASSO, the 76 most highly discriminative nodes were reserved. The color-bar numbers represent

the subnetworks with reference to the 264 putative functional area atlas proposed by Power et al. (2011). The details are: 1 sensory/somatomotor hand network; 2

sensory/somatomotor mouth network; 3 cingulo-opercular task control network; 4 auditory network; 5 default mode network; 6 memory retrieval network; 7 visual

network; 8 frontoparietal task control network; 9 salience network; 10 subcortical network; 11 ventral attention network; 12 dorsal attention network; 13 cerebellar

network; 14 unknown network.
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TABLE 4 | Top 20 most predominant nodes (brain regions) with the greatest

number of significant differences in nodal graph metrics.

ROI

number

Corresponding AAL

area

Sub-network Number of

nodal metrics

77 Lingual_L Default mode 7

126 Fusiform_L Default mode 7

4 Temporal_Inf_L Unknown 7

116 Temporal_Mid_R Default mode 7

22 Precuneus_R Sensory/somatomotor 6

17 Paracentral_Lobule_L Sensory/somatomotor 6

251 Precuneus_R Dorsal attention 6

259 Parietal_Inf_L Dorsal attention 6

75 Frontal_Mid_Orb_R Default mode 6

92 Cingulum_Post_R Default mode 6

224 Thalamus_L Subcortical 6

225 Thalamus_R Subcortical 6

53 Supp_Motor_Area_R Cingulo-opercular task 6

211 Insula_R Salience 6

203 Cingulum_Mid_R Salience 6

124 ParaHippocampal_L Default mode 6

139 Frontal_Inf_Orb_R Default mode 5

51 Cingulum_Mid_L Cingulo-opercular task 5

172 Fusiform_L Visual 5

263 Parietal_Sup_L Dorsal attention 5

AAL, the automated anatomical labeling atlas.

(P < 0.01 for all). Nevertheless, in the occipital lobe (e.g.,
left lingual and left fusiform gyri), the MCI group showed
significantly higher values of betweenness centrality and degree
centrality and significantly lower values of nodal shortest path,
which was opposite to the pattern of nodal graph metrics in the
brain lobes mentioned above (Figure 6).

Classification
After feature selection of functional connections with Student’s
t-tests and nodal graph metrics by group-LASSO, MKL-SVM
was carried out to combine the brain connectome information.
We evaluated the classification performance of different methods
with a set of quantitative measures – accuracy, sensitivity, and
specificity – which were defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

where TP, TN, FP, and FN denote the number of true-
positive, true-negative, false-positive, and false-negative values,
respectively. The area under the receiver operating characteristic
curve (AUC) was calculated as a performance measure for
binary classification of the MCI and NC groups. In particular,
LOOCV was employed in this study due to the small sample
size, which provided an optimistic estimate of the classification
accuracy since all except one of the subjects are used to

TABLE 5 | Number of discriminative features for each nodal graph metrics from

the feature-selection step of LASSO.

Nodal graph metric Number of selected features

Betweenness centrality 33

Degree centrality 46

Nodal clustering coefficient 48

Nodal local efficiency 19

Nodal shortest path length 44

Participant coefficient 70

Within-module degree 81

TABLE 6 | Top 20 features corresponding to nodal graph metrics with maximum

discriminative ability.

Nodal graph measure ROI

number

Corresponding AAL

area

Subnetwork

Within-module degree 124 ParaHippocampal_L Default mode

Within-module degree 89 Precuneus_R Default mode

Within-module degree 191 Parietal_Sup_L Frontoparietal

task

Degree centrality 77 Lingual_L Default mode

Participant coefficient 9 Temporal_Inf_R Uncertain

Within-module degree 92 Cingulum_Post_R Default mode

Degree centrality 225 Thalamus_R Subcortical

Participant coefficient 118 Temporal_Mid_L Default mode

Participant coefficient 75 Frontal_Mid_Orb_R Default mode

Nodal clustering coefficient 75 Frontal_Mid_Orb_R Default mode

Nodal shortest path length 75 Frontal_Mid_Orb_R Default mode

Participant coefficient 17 Paracentral_Lobule_L Sensory/

somatomotor

Degree centrality 224 Thalamus_L Subcortical

Nodal shortest path length 9 Temporal_Inf_R Uncertain

Participant coefficient 83 Temporal_Inf_L Default mode

Degree centrality 126 Fusiform_L Default mode

Betweenness centrality 77 Lingual_L Default mode

Nodal clustering coefficient 77 Lingual_L Default mode

Betweenness centrality 51 Cingulum_Mid_L Cingulo-opercular

task

Nodal local efficiency 92 Cingulum_Post_R Default mode

AAL, the automated anatomical labeling atlas.

train the classifier. For other approaches such as k-fold cross-
validation, only N-k (N is the total number of participants
in the dataset) participants are included during the training
process, resulting in poorer performance due to the small dataset
(Wee et al., 2012). For the functional connections (C), global
metrics (G), and nodal metrics (N) of the brain network,
we obtained AUCs of 0.9605, 0.7290, and 0.9576, respectively
(Table 7). We also performed classification experiments by
combining functional connections (C), global metrics (G), nodal
metrics (N), global metrics (G), and nodal metrics (N). The
results showed that despite the low classification performance
of single global graph metrics, they still effectively increased the
classification performance of nodal graph metrics and functional
connections. For a direct combination of connections, global
metrics, and nodal metrics, we obtained 87.88% accuracy and

Frontiers in Aging Neuroscience | www.frontiersin.org 8 February 2020 | Volume 12 | Article 28

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


Xu et al. Network Feature Combination in MCI

FIGURE 5 | Hub nodes of MCI and NC groups in the brain. The color-bar numbers represent the subnetworks with reference to the 264 putative functional area

atlas proposed by Power et al. (2011). The details are: 1 sensory/somatomotor hand network; 2 sensory/somatomotor mouth network; 3 cingulo-opercular task

control network; 4 auditory network; 5 default mode network; 6 memory retrieval network; 7 visual network; 8 frontoparietal task control network; 9 salience

network; 10 subcortical network; 11 ventral attention network; 12 dorsal attention network; 13 cerebellar network; 14 unknown network.

FIGURE 6 | Comparison of values of nodal graph metrics between MCI patients and NCs. Betweenness centrality, degree centrality, and nodal shortest path length

of Node 9 (right inferior temporal gyrus). Betweenness centrality, degree centrality and nodal shortest path length of Node 259 (left inferior parietal). Betweenness

centrality, degree centrality, and nodal shortest path length of Node 77 (left lingual gyrus).
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TABLE 7 | The evaluation of classification performance corresponding to different

functional connectome features.

Method Accuracy (%) Sensitivity (%) Specificity (%) AUC

Connection (C) 85.86 82.05 88.33 0.9605

Global Metrics (G) 73.74 69.23 76.67 0.7290

Nodal Metrics (N) 87.88 82.05 91.67 0.9576

MKL_CG 86.87 82.05 90.00 0.9329

MKL_CN 90.91 84.62 95.00 0.9581

MKL_GN 89.90 84.62 93.33 0.9371

C + G + N 87.88 92.31 85.00 0.9666

MKL_CGN 92.93 89.74 95.00 0.9728

Hippocampal (H) 72.73 71.67 74.36 0.7005

MKL_CH 86.86 84.62 88.33 0.9509

MKL_GH 76.77 73.33 82.05 0.8117

MKL_NH 89.90 87.18 91.67 0.9647

MKL-SVM, multiple kernel learning support vector machine.

an AUC of 0.9666, which meant that simple combination
did not effectively improve the classification performance.
Finally, the combination of all connectome features based on
MKL-SVM achieved the best classification performance, with
92.93% accuracy, 95.00% specificity, and an AUC of 0.9728.
Moreover, the weight values (β) of functional connections, global
metrics, and nodal metrics were 0.3, 0.01, and 0.6, respectively,
indicating that the node attributes contributed most to the
classification (Figure 7). It should be noted that MKL-SVM
both combines the information of functional connectivity and
graph theory attributes and provides a method to merge more
useful information for MCI identification. Therefore, we also
combined the traditional unimodal marker of hippocampal
volume with the brain connectome; the results are listed in
Table 7. Our results suggest that the AUC of the hippocampal
volume was 0.7005, and the AUCs of the combination
of hippocampal volume with functional connectivity, global
graph theory attributes, or node graph theory attributes were
0.9509, 0.8117, and 0.9647, respectively. In addition, the
independent ADNI dataset was then employed to verify the
generalization of the pre-trained model. The all connectome
features combination based onMKL-SVM achieved classification
performance with 66.00% accuracy, 70.37% sensitivity, and
60.87% specificity.

DISCUSSION

In the present study, we selected discriminative features from
different attributes of the brain connectome (i.e., functional
connections, global graph metrics, and nodal graph metrics) and
combined the information to train a classifier for distinguishing
subjects with MCI from NCs. Based on the feature selection
and combination of the proposed methods, we further described
the altered patterns of the best distinguishing features of MCI
through group comparison, aiming to further clarify disease
pathogenesis. Our detailed results are listed as follows. First, the
most predominant brain regions and most discriminative nodal
graph metrics for discriminating NCs from MCI were selected

FIGURE 7 | ROC of classification based on different features. C, connection;

G, global metrics; N, nodal metrics; H, hippocampal volume; MKL, multiple

kernel learning; FPR, false positive rate; TPR, true positive rate.

by the group-LASSO. Second, the information combination
strategy (MKL-SVM) effectively improved the classification
performance, and the nodal graph metrics of the connectome
contributed most to the classification. Finally, the altered
functional brain connectome pattern in MCI patients included
a general decrease in functional connections in the whole brain
network, whereas nodal topological attributes in some local brain
regions were increased.

The Most Predominant Brain Regions
and Discriminative Nodal Graph Metrics
The nodal graph metrics have a natural group topology; that
is, a node corresponds to a group of node-graph theoretical
attributes. Thus, we used group-LASSO as the feature-selection
scheme for nodal graphmetrics. It effectively extracted the group-
structure information of nodal attributes. The most predominant
brain regions (with seven significantly different nodal topological
metrics) were mainly distributed in the left lingual, left fusiform,
left inferior temporal, and right middle temporal gyri. These
brain regions showed significant changes in nodal graph metrics
and so could be regarded as the most sensitive observation areas
for nodal topological attributes in MCI patients. Also, within-
module degree, degree centrality, and participation coefficient
showed the most significant discriminative ability among the
selected nodal graph metrics. The corresponding brain regions
with the three most discriminative nodal metrics considerably
overlapped with the hub nodes found in MCI patients. Overall,
our results emphasize the importance of analyzing the attributes
of intra-modules and hub nodes for early discrimination of NCs
from subjects with MCI.
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By projecting brain regions with significant differences of
functional connections and graphmetrics in the brain network to
subnetworks, we found that the differences betweenMCI patients
and NCs were distributed mainly in the DMN, dorsal attention
network, cingulo-opercular task network, and frontoparietal
task network. Of these, the DMN had the most significant
discriminative ability. Studies have verified the correlations
between these subnetworks and cognitive functions in the human
brain, corresponding to spatial attention (Rolle et al., 2017),
visual attention (Wirth et al., 2017), and executive function
(Talpos and Shoaib, 2015).

In this study, the DMN carried the most distinguishing
information, which was verified by the proposed feature selection
methods. Previous studies showed that the DMN is involved
in episodic memory and is considered the major cognitive
domain impaired in the early stage of AD (Meskaldji et al.,
2016; Dillen et al., 2017). Besides validating the discriminative
ability of the DMN for discriminating NCs from MCI, we
accurately located the predominant brain regions (middle
temporal, inferior temporal, lingual, posterior cingulate, and
middle frontal gyri) in the DMN and the corresponding nodal
graph metrics. These results may facilitate the early and accurate
diagnosis of MCI. They also demonstrate the repeatability and
verifiability of the proposed methods, which is an important
contribution of our work.

Fusion Classification of MKL-SVM and
Identification of Maximum Contribution
Group-LASSO is valid for nodal feature selection because it can
retain significant features with the most discriminative ability
while avoiding data redundancy. We carried out reduction of
nodal features according to group-LASSO and selected optimal
features to achieve the best performance for discriminating
NCs from MCI. This is an effective way to integrate multiple
views of biomarkers for AD classification. The simplest way is
to directly splice the data. Studies using multivariate pattern
analysis [e.g., linear discriminate analysis (Alam et al., 2017),
artificial neural networks (Quintana et al., 2012), and random
forest (Sarica et al., 2017)] have been undertaken to identify
MCI using complex network characteristics. However, those
approaches could be inappropriate due to the high-dimensional
curves and small samples. Information with higher dimensions
can submerge the low-dimension information. To overcome
these challenges, we employed MKL-SVM for information
combination. MKL (Niu et al., 2017) is a sparse machine-
learning method that allows identification of the most relevant
classification sources. The results suggested that the performance
of classification by combining multiple brain connectome
features was better than that of individual connectome features.
The weight value (β) of functional connections, global metrics,
and nodal metrics emphasized that nodal graph attributes had
the greatest contribution to classification. It also indicated
that MCI patients had significant changes in nodal properties.
More surprisingly, although global metrics showed the worst
classification performance, they can still provide important
information about functional connections and nodal metrics.

After combining functional connections and global metrics
(C + G), functional connections and nodal metrics (C + N), and
global metrics and nodal metrics (G + N), the results indicated
that classification performance was effectively improved by
combining the information of global metrics.

To verify this significant improvement, the Delong test was
applied (DeLong et al., 1988). We found that the proposed
method significantly outperformed the global graph attributes,
functional connection, and nodal graph attributes under the
95% confidence interval with P-values of 0.0002, 0.0227,
and 0.0419, respectively. Although MKL-SVM did not yield
significant improvements compared to the feature concatenation
method (P = 0.1627), it still had two advantages. First, MKL-
SVM could address the imbalanced dimension issue across
modalities to some extent and better embody the contribution
of different information sources to distinguish MCI patients
from NCs. Second, experimental results demonstrated that the
proposed method outperformed the single modality of the
functional connectome in the brain network. It should also
be noted that both methods are simple attempts to verify
information effectiveness.

The classification results based on the traditional marker
of hippocampal volume suggested that the combination of
hippocampal volume and connectome features could also
improve classification accuracy. The MKL-SVM can be used
to combine multiple features of the brain connectome and
effectively integrate multimodal information to discriminate NCs
from patients with MCI.

During validation of the proposed model, the classification
performance of the independent ADNI dataset was not as good
as the pre-trained sample. This may be due to heterogeneity
in scanning machines, parameters, and physiological structures
between western and eastern samples, which obviously violates
the independently identically distribution assumption of SVM.

Altered Pattern of the Brain Network
Connectome in MCI
At the global brain level, we found that MCI patients had
weaker functional connections in the brain network, which was
consistent with previous functional network studies of AD (Li
et al., 2016) and MCI (Wang et al., 2013; Lee et al., 2016). Some
results demonstrated that these abnormal functional connections
were directly related to the global topological attributes of brain
networks (Wang et al., 2013). In our study, we first found
that patients with MCI and NCs fit the features of a small-
world network in a global network topology. That is, the brain
network supported rapid, real-time integration of information
across separate sensory brain regions to confer resilience against
pathology andmaximize efficiency withminimal cost for effective
information processing between brain regions (Sporns and
Zwi, 2004; Achard and Bullmore, 2007; Sporns, 2011). Further
comparison suggested that the value of small-world σ in MCI
patients was lower than that in NCs, indicating “economic
small-world” disruption (Liao et al., 2017) (i.e., reduction of the
segregation and integration functions of effective information
in the brain network). Moreover, we found changes in the
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functional segregation of brain networks in MCI patients
(increased Cp). Cp is a measure of local network connectivity
(Bullmore and Sporns, 2009) that reflects the efficiency of local
information transfer and the ability to defend against random
attacks against a network. A higher value of Cp represents
a more concentrated clustering of local connections and a
stronger capacity for processing local information. It is notable
that previous studies reported decreased Cp in AD patients
(Zhao et al., 2012). The reason for this difference might be
related to the compensatory change of segregation function in
the transition stage of MCI. Therefore, our results suggested
that functional connections in the whole-brain network were
generally decreased, whereas the network segregation of local
information processing was increased.

At the local brain level, further analyses of the hub nodes
and nodes with the most discriminative ability for MCI showed
that MCI patients had significantly lower values of betweenness
centrality and degree centrality and higher values of nodal
shortest path in some brain regions (the frontal, temporal, limbic,
and parietal lobes) compared with NCs. These data suggested
that the network integration and local transmission capability of
these lobes were decreased in MCI patients. However, in critical
nodes in the occipital lobe, the increased betweenness/degree
centrality and decreased shortest path indicated enhanced
integration function and greater local transmission efficiency.We
speculated that enhanced variation of these nodal graph metrics
in some occipital nodes suggests compensation to maintain high-
level cognitive performance despite the pathological process of
amyloid accumulation during the earliest phases of AD. This
functional variation in the occipital lobe was also mentioned
in previous studies. For example, Dai et al. found that the left
fusiform gyrus exhibited higher functional connections in the AD
group (Dai et al., 2015). Bokde et al. (2010) found significantly
greater activation in the right middle occipital gyrus during the
location-matching task.

Therefore, the altered brain connectome patterns in our
study revealed that functional connections generally decreased
in the whole brain network but increased for nodal graph
topological attributes of local brain regions. This might suggest
functional compensation in some brain regions to maintain
normal cognitive function in the early stage of AD.

Limitations and Future Directions
There are still several limitations that need to be considered
further. First, the class imbalance issue. Although there are
several approaches (e.g., resampling or reweighting) to overcome
imbalance, taking them makes it difficult to estimate whether the
improvement of performance is based on these adjustments or on
the proposed methods. In the future, we plan to investigate high-
quality data with more balanced samples for feature selection and
classification or develop a more robust algorithm that improves
classification accuracy and generalization.

Second, we assessed a small sample size. The optimization of
parameters and hyperparameters inevitably leads to overfitting
for small samples. To avoid this issue, we empirically chose
parameters with a default setting of lambda = 1 and C = 1
instead of optimized parameters and hyperparameters. In the

future, we will conduct parameter optimization based on a
larger sample size.

Third, we must consider the generalization of the model.
For the independent ADNI dataset, classification performance
was not as good as observed for the pre-trained sample,
which suggests a limitation in modal generalization for different
centers. We intend to improve the classification performance of
multicenter data sources by combining domain adaptation.

Finally, our cross-validation approach may have been
insufficient. Evaluation of classification by k-fold cross-validation
might be more precise when sufficient data are available.
Therefore, in the future, it is necessary to compare the results
obtained by different cross-validation methods (i.e., LOOCV and
k-fold cross-validation).

CONCLUSION

In the present study, the discriminative features of functional
connections and nodal graph metrics were selected by Student’s
t-tests and group-LASSO, respectively. The combination of
all connectome information using MKL-SVM achieved the
best classification performance (AUC = 0.9728). In addition,
the altered brain connectome pattern revealed that functional
connectivity was generally decreased in the whole-brain network,
whereas graph theory topological attributes of some special nodes
were increased in MCI patients. Our findings demonstrate that
optimal feature selection and the combination of all connectome
features could achieve good performance for discriminating NCs
from MCI. The combination of functional connections and
global and nodal graph metrics of brain networks can predict
the occurrence of MCI and contribute to the early clinical
diagnosis of AD.
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