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Abstract

Single-cell RNA-Seq (scRNA-Seq) profiles gene expression of individual cells. Recent scRNA-Seq datasets have
incorporated unique molecular identifiers (UMIs). Using negative controls, we show UMI counts follow multinomial
sampling with no zero inflation. Current normalization procedures such as log of counts per million and feature
selection by highly variable genes produce false variability in dimension reduction. We propose simple multinomial
methods, including generalized principal component analysis (GLM-PCA) for non-normal distributions, and feature
selection using deviance. These methods outperform the current practice in a downstream clustering assessment
using ground truth datasets.

Keywords: Gene expression, Single cell, RNA-Seq, Dimension reduction, Variable genes, Principal component
analysis, GLM-PCA

Background
Single-cell RNA-Seq (scRNA-Seq) is a powerful tool for

profiling gene expression patterns in individual cells, facil-

itating a variety of analyses such as identification of novel

cell types [1, 2]. In a typical protocol, single cells are iso-

lated in liquid droplets, and messenger RNA (mRNA) is

captured from each cell, converted to cDNA by reverse

transcriptase (RT), then amplified using polymerase chain

reaction (PCR) [3–5]. Finally, fragments are sequenced,

and expression of a gene in a cell is quantified by the

number of sequencing reads that mapped to that gene

[6]. A crucial difference between scRNA-Seq and tradi-

tional bulk RNA-Seq is the low quantity of mRNA isolated

from individual cells, which requires a larger number of

PCR cycles to produce enough material for sequencing

(bulk RNA-Seq comingles thousands of cells per sam-

ple). For example, the popular 10x Genomics protocol

uses 14 cycles [5]. Thus, many of the reads counted in

scRNA-Seq are duplicates of a single mRNA molecule in

the original cell [7]. Full-length protocols such as SMART-

Seq2 [8] analyze these read counts directly, and several
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methods have been developed to facilitate this [9].

However, in many experiments, it is desirable to ana-

lyze larger numbers of cells than possible with full-length

protocols, and isoform-level inference may be unneces-

sary. Under such conditions, it is advantagous to include

unique molecular identifiers (UMIs) which enable com-

putational removal of PCR duplicates [10, 11], producing

UMI counts. Although a zero UMI count is equivalent to a

zero read count, nonzero read counts are larger than their

corresponding UMI counts. In general, all scRNA-Seq

data contain large numbers of zero counts (often > 90%

of the data). Here, we focus on the analysis of scRNA-Seq

data with UMI counts.

Starting from raw counts, a scRNA-Seq data analysis

typically includes normalization, feature selection, and

dimension reduction steps. Normalization seeks to adjust

for differences in experimental conditions between sam-

ples (individual cells), so that these do not confound

true biological differences. For example, the efficiency

of mRNA capture and RT is variable between samples

(technical variation), causing different cells to have differ-

ent total UMI counts, even if the number of molecules

in the original cells is identical. Feature selection refers

to excluding uninformative genes such as those which
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exhibit no meaningful biological variation across sam-

ples. Since scRNA-Seq experiments usually examine cells

within a single tissue, only a small fraction of genes are

expected to be informative since many genes are bio-

logically variable only across different tissues. Dimension

reduction aims to embed each cell’s high-dimensional

expression profile into a low-dimensional representation

to facilitate visualization and clustering.

While a plethora of methods [5, 12–15] have been devel-

oped for each of these steps, here, we describe what is

considered to be the standard pipeline [15]. First, raw

counts are normalized by scaling of sample-specific size

factors, followed by log transformation, which attempts to

reduce skewness. Next, feature selection involves identi-

fying the top 500–2000 genes by computing either their

coefficient of variation (highly variable genes [16, 17]) or

average expression level (highly expressed genes) across

all cells [15]. Alternatively, highly dropout genes may be

retained [18]. Principal component analysis (PCA) [19] is

the most popular dimension reduction method (see for

example tutorials for Seurat [17] and Cell Ranger [5]).

PCA compresses each cell’s 2000-dimensional expression

profile into, say, a 10-dimensional vector of principal com-

ponent coordinates or latent factors. Prior to PCA, data

are usually centered and scaled so that each gene has

mean 0 and standard deviation 1 (z-score transformation).

Finally, a clustering algorithm can be applied to group cells

with similar representations in the low-dimensional PCA

space.

Despite the appealing simplicity of this standard

pipeline, the characteristics of scRNA-Seq UMI counts

present difficulties at each stage. Many normalization

schemes derived from bulk RNA-Seq cannot compute size

factors stably in the presence of large numbers of zeros

[20]. A numerically stable and popular method is to set

the size factor for each cell as the total counts divided by

106 (counts per million, CPM). Note that CPM does not

alter zeros, which dominate scRNA-Seq data. Log trans-

formation is not possible for exact zeros, so it is common

practice to add a small pseudocount such as 1 to all nor-

malized counts prior to taking the log. The choice of pseu-

docount is arbitrary and can introduce subtle biases in the

transformed data [21]. For a statistical interpretation of

the pseudocount, see the “Methods” section. Similarly, the

use of highly variable genes for feature selection is some-

what arbitrary since the observed variability will depend

on the pseudocount: pseudocounts close to zero arbitrar-

ily increase the variance of genes with zero counts. Finally,

PCA implicitly relies on Euclidean geometry, which may

not be appropriate for highly sparse, discrete, and skewed

data, even after normalizations and transformations [22].

Widely used methods for the analysis of scRNA-Seq

lack statistically rigorous justification based on a plau-

sible data generating a mechanism for UMI counts.

Instead, it appears many of the techniques have been bor-

rowed from the data analysis pipelines developed for read

counts, especially those based on bulk RNA-Seq [23]. For

example, models based on the lognormal distribution can-

not account for exact zeros, motivating the development

of zero-inflated lognormal models for scRNA-Seq read

counts [24–27]. Alternatively, ZINB-WAVE uses a zero-

inflated negative binomial model for dimension reduction

of read counts [28]. However, as shown below, the sam-

pling distribution of UMI counts is not zero inflated [29]

and differs markedly from read counts, so application of

read count models to UMI counts needs either theoretical

or empirical justification.

We present a unifying statistical foundation for scRNA-

Seq with UMI counts based on the multinomial dis-

tribution. The multinomial model adequately describes

negative control data, and there is no need to model zero

inflation. We show the mechanism by which PCA on

log-normalized UMI counts can lead to distorted low-

dimensional factors and false discoveries. We identify the

source of the frequently observed and undesirable fact

that the fraction of zeros reported in each cell drives the

first principal component in most experiments [30]. To

remove these distortions, we propose the use of GLM-

PCA, a generalization of PCA to exponential family like-

lihoods [31]. GLM-PCA operates on raw counts, avoiding

the pitfalls of normalization. We also demonstrate that

applying PCA to deviance or Pearson residuals provides

a useful and fast approximation to GLM-PCA. We pro-

vide a closed-form deviance statistic as a feature selection

method. We systematically compare the performance of

all combinations of methods using ground truth datasets

and assessment procedures from [15]. We conclude by

suggesting best practices.

Results and discussion
Datasets

We used 9 public UMI count datasets to benchmark our

methods (Table 1). The first dataset was a highly con-

trolled experiment specifically designed to understand the

technical variability. No actual cells were used to gener-

ate this dataset. Instead, each droplet received the same

ratio of 92 synthetic spike-in RNA molecules from Exter-

nal RNA Controls Consortium (ERCC). We refer to this

dataset as the technical replicates negative control as there

is no biological variability whatsoever, and in principle,

each expression profile should be the same.

The second and third datasets contained cells from

homogeneous populations purified using fluorescence-

activated cell sorting (FACS). We refer to these datasets

as biological replicates negative controls. Because these

cells were all the same type, we did not expect

to observe any significant differences in unsupervised

analysis. The 10× Zheng monocytes data had low total
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Table 1 Single cell RNA-Seq datasets used

Number Author Tissue Cells MTU Notes

1 Zheng [5] ERCC 1015 11,125 Spike-in only; technical negative control

2 Zheng [5] Monocytes 2612 782 1 cell type; biological negative control

3 Tung [32] iPSCs 57 24,170 1 cell type; biological negative control

4 Duo [15] PBMCs 3994 1215 4 equal clusters of FACS-purified cells

5 Duo [15] PBMCs 3994 1298 8 equal clusters of FACS-purified cells

6 Haber [33] Intestine 533 3755 Authors computationally identified 12 types

7 Muraro [34] Pancreas 2282 18,795 Authors computationally identified 9 types

8 Zheng [5] PBMCs 68,579 1292 Benchmarking computational speed

Species: all H. sapiens except Haber (M.musculus). Protocols: all 10× except Muraro (CEL-Seq2) and Tung (SMARTer).MTUmedian total UMI count. iPSCs induced pluripotent
stem cells

UMI counts, while the SMARTer Tung data had high

counts.

The fourth and fifth datasets were created by [15].

The authors allocated FACS-purified peripheral blood

mononuclear cells (PBMCs) from 10× data [5] equally

into four (Zheng 4eq dataset) and eight (Zheng 8eq

dataset) clusters, respectively. In these positive control

datasets, the cluster identity of all cells was assigned inde-

pendently of gene expression (using FACS), so they served

as the ground truth labels.

The sixth and seventh datasets contained a wider variety

of cell types. However, the cluster identities were deter-

mined computationally by the original authors’ unsuper-

vised analyses and could not serve as a ground truth. The

10× Haber intestinal dataset had low total UMI counts,

while the CEL-Seq2 Muraro pancreas dataset had high

counts.

The final Zheng dataset consisted of a larger number

of unsorted PBMCs and was used to compare computa-

tional speed of different dimension reduction algorithms.

We refer to it as the PBMC 68K dataset.

UMI count distribution differs from reads

To illustrate the marked difference between UMI count

distributions and read count distributions, we created

histograms from individual genes and spike-ins of the

negative control data. Here, the UMI counts are the com-

putationally de-duplicated versions of the read counts;

both measurements are from the same experiment,

so no differences are due to technical or biological

variation. The results suggest that while read counts

appear zero-inflated and multimodal, UMI counts fol-

low a discrete distribution with no zero inflation

(Additional file 1: Figure S1). The apparent zero inflation

in read counts is a result of PCR duplicates.

Multinomial sampling distribution for UMI counts

Consider a single cell i containing ti total mRNA tran-

scripts. Let ni be the total number of UMIs for the same

cell. When the cell is processed by a scRNA-Seq proto-

col, it is lysed, then some fraction of the transcripts are

captured by beads within the droplets. A series of com-

plex biochemical reactions occur, including attachment of

barcodes and UMIs, and reverse transcription of the cap-

tured mRNA to a cDNA molecule. Finally, the cDNA is

sequenced, and PCR duplicates are removed to generate

the UMI counts [5]. In each of these stages, some frac-

tion of the molecules from the previous stage are lost

[5, 7, 32]. In particular, reverse transcriptase is an ineffi-

cient and error-prone enzyme [35]. Therefore, the number

of UMI counts representing the cell is much less than

the number of transcripts in the original cell (ni ≪ ti).

Specifically, ni typically ranges from 1000 − 10, 000 while

ti is estimated to be approximately 200,000 for a typical

mammalian cell [36]. Furthermore, which molecules are

selected and successfully become UMIs is a random pro-

cess. Let xij be the true number of mRNA transcripts of

gene j in cell i, and yij be the UMI count for the same

gene and cell. We define the relative abundance πij as the

true number of mRNA transcripts represented by gene j

in cell i divided by the total number of mRNA transcripts

in cell i. Relative abundance is given by πij = xij/ti where

total transcripts ti = ∑

j xij. Since ni ≪ ti, there is a

“competition to be counted” [37]; genes with large relative

abundance πij in the original cell are more likely to have

nonzero UMI counts, but genes with small relative abun-

dances may be observed with UMI counts of exact zeros.

The UMI counts yij are a multinomial sample of the true

biological counts xij, containing only relative information

about expression patterns in the cell [37, 38].

The multinomial distribution can be approximated

by independent Poisson distributions and overdispersed

(Dirichlet) multinomials by independent negative bino-

mial distributions. These approximations are useful for

computational tractability. Details are provided in the

“Methods” section.

The multinomial model makes two predictions which

we verified using negative control data. First, the fraction
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of zeros in a sample (cell or droplet) is inversely related

to the total number of UMIs in that sample. Second,

the probability of an endogenous gene or ERCC spike-in

having zero counts is a decreasing function of its mean

expression (equations provided in the “Methods” section).

Both of these predictions were validated by the negative

control data (Fig. 1). In particular, the empirical probabil-

ity of a gene being zero across droplets was well calibrated

to the theoretical prediction based on the multinomial

model. This also demonstrates that UMI counts are not

zero inflated , consistent with [29].

To further validate the multinomial model, we assessed

goodness-of-fit of seven possible null distributions to

both the Tung and Zheng monocytes negative control

datasets (Additional file 1: Figure S2). When applied to

UMI counts, the multinomial, Dirichlet-multinomial, and

Poisson (as approximation to multinomial) distributions

fit best. When applied to read counts, the zero-inflated

lognormal was the best fitting distribution followed by the

Dirichlet-multinomial.

These results are consistent with [39], which also found

that the relationship between average expression and zero

probability follows the theoretical curve predicted by a

Poisson model using negative control data processed with

Indrop [4] and Dropseq [3] protocols. These are droplet

protocols with typically low counts. It has been argued

that the Poisson model is insufficient to describe the sam-

pling distribution of genes with high counts and the neg-

ative binomial model is more appropriate [11]. The Tung

dataset contained high counts, and we nevertheless found

the Poisson gave a better fit than the negative binomial.

However, the difference was not dramatic, so our results

do not preclude the negative binomial as a reasonable

sampling distribution for UMI counts. Taken together,

Fig. 1Multinomial model adequately characterizes sampling distributions of technical and biological replicates negative control data. a Fraction of
zeros is plotted against the total number of UMI in each droplet for the technical replicates. b As a but for cells in the biological replicates
(monocytes). c After down-sampling replicates to 10,000 UMIs per droplet to remove variability due to the differences in sequencing depth, the
fraction of zeros is computed for each gene and plotted against the log of expression across all samples for the technical replicates data. The solid
curve is theoretical probability of observing a zero as a function of the expected counts derived from the multinomial model (blue) and its Poisson
approximation (green). d As c but for the biological replicates (monocytes) dataset and after down-sampling to 575 UMIs per cell. Here, we also add
the theoretical probability derived from a negative binomial model (red)
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these results suggest our data-generating mechanism is an

accurate model of technical noise in real data.

Normalization and log transformation distorts UMI data

Standard scRNA-Seq analysis involves normalizing raw

counts using size factors, applying a log transformation

with a pseudocount, and then centering and scaling each

gene before dimension reduction. The most popular nor-

malization is counts per million (CPM). The CPM are

defined as (yij/ni)×106 (i.e., the size factor is ni/10
6). This

is equivalent to the maximum likelihood estimator (MLE)

for relative abundance π̂ij multiplied by 106. The log-CPM

are then log2(c + π̂ij10
6) = log2(π̃ij) + C, where π̃ij is

a maximum a posteriori estimator (MAP) for πij (math-

ematical justification and interpretation of this approach

provided in the “Methods” section). The additive constant

C is irrelevant if data are centered for each gene after log

transformation, as is common practice. Thus, normaliza-

tion of raw counts is equivalent to using MLEs or MAP

estimators of the relative abundances.

Log transformation of MLEs is not possible for UMI

counts due to exact zeros, while log transformation of

MAP estimators of πij systematically distorts the differ-

ences between zero and nonzero UMI counts, depending

on the arbitrary pseudocount c (derivations provided in

the “Methods” section). To illustrate this phenomenon,

we examined the distribution of an illustrative gene

before and after the log transform with varying normal-

izations using the biological replicates negative control

data (Fig. 2). Consistent with our theoretical predictions,

this artificially caused the distribution to appear zero

inflated and exaggerated differences between cells based

on whether the count was zero or nonzero.

Focusing on the entire negative control datasets, we

applied PCA to log-CPM values. We observed a strong

correlation (r = 0.8 for technical and r = 0.98 for

monocytes biological replicates) between the first princi-

pal component (PC) and the fraction of zeros, consistent

with [30]. Application of PCA to CPM values without log

transform reduced this correlation to r = 0.1 for tech-

nical and r = 0.7 for monocytes biological replicates.

Additionally, the first PC of log-CPM correlated with the

log of total UMI, which is consistent with the multinomial

model (Fig. 3). Note that in datasets with strong biological

variability, the nuisance variation from zero fraction and

total counts could appear in secondary PCs rather than

the first PC, but it would still confound downstream anal-

yses. Based on these results, the log transformation is not

necessary and in fact detrimental for the analysis of UMI

counts. The benefits of avoiding normalization by instead

directly modeling raw counts have been demonstrated in

the context of differential expression [40]. Where normal-

ization is unavoidable, we propose the use of approximate

multinomial deviance residuals (defined in the “Residuals

and z-scores” section) instead of log-transformed CPM.

Zero inflation is an artifact of log normalization

To see how normalization and log transformation intro-

duce the appearance of zero inflation, consider the follow-

ing example. Let yij be the observed UMI counts following

a multinomial distribution with size ni for each cell and

relative abundance πj for each gene, constant across cells.

Focusing on a single gene j, yij follows a binomial distri-

bution with parameters ni and pj. Assume πj = 10−4 and

the ni range from 1000 − 3000, which is consistent with

the biological replicates negative control data (Fig. 1 and

Additional file 1: Figure S1). Under this assumption, we

expect to see about 74–90% zeros, 22–30% ones, and less

than 4% values above one. However, notice that after nor-

malization to CPM and log transformation, all the zeros

remain log 2(1 + 0) = 0, yet the ones turn into values

ranging from log2(1 + 1/3000 × 106) = log2(334) ≈ 8.4

to log2(1001) ≈ 10. The few values that are 2 will have

values ranging from log2(668) ≈ 9.4 to log2(2001) ≈ 11.

The large, artificial gap between zero and nonzero val-

ues makes the log-normalized data appear zero-inflated

Fig. 2 Example of how current approaches to normalization and transformation artificially distort differences between zero and nonzero counts.
a UMI count distribution for gene ENSG00000114391 in the monocytes biological replicates negative control dataset. b Counts per million (CPM)
distribution for the exact same count data. c Distribution of log2(1 + CPM) values for the exact same count data
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Fig. 3 Current approaches to normalization and transformation induce variability in the fraction of zeros across cells to become the largest source of
variability which in turn biases clustering algorithms to produce false-positive results based on distorted latent factors. a First principal component
(PC) from the technical replicates dataset plotted against fraction of zeros for each cell. A red to blue color scale represents total UMIs per cell. b As a
but for the monocytes biological replicates data. c Using the technical replicates, we applied t-distributed stochastic neighbor embedding (tSNE)
with perplexity 30 to the top 50 PCs computed from log-CPM. The first 2 tSNE dimensions are shown with a blue to red color scale representing the
fraction of zeros. d As c but for the biological replicates data. Here, we do not expect to find differences, yet we see distorted latent factors being
driven by the total UMIs. PCA was applied to 5000 random genes

(Fig. 2). The variability in CPM values across cells is

almost completely driven by the variability in ni. Indeed, it

shows up as the primary source of variation in PCA plots

(Fig. 3).

Generalized PCA for dimension reduction of sparse counts

While PCA is a popular dimension reduction method, it is

implicitly based on Euclidean distance, which corresponds

to maximizing a Gaussian likelihood. Since UMI counts

are not normally distributed, even when normalized and

log transformed, this distancemetric is inappropriate [41],

causing PCA to produce distorted latent factors (Fig. 3).

We propose the use of PCA for generalized linear models

(GLMs) [31] or GLM-PCA as a more appropriate alterna-

tive. The GLM-PCA framework allows for a wide variety

of likelihoods suitable for data types such as counts and

binary values. While the multinomial likelihood is ideal

for modeling technical variability in scRNA-Seq UMI

counts (Fig. 1), in many cases, there may be excess bio-

logical variability present as well. For example, if we wish

to capture variability due to clusters of different cell types

in a dimension reduction, we may wish to exclude bio-

logical variability due to cell cycle. Biological variability

not accounted for by the sampling distribution may be

accomodated by using a Dirichlet-multinomial likelihood,

which is overdispersed relative to the multinomial. In

practice, both the multinomial and Dirichlet-multinomial

are computationally intractable and may be approximated

by the Poisson and negative binomial likelihoods, respec-

tively (detailed derivations provided in the “Methods”
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section). We implemented both negative binomial and

Poisson GLM-PCA, but we focused primarily on the latter

in our assessments for simplicity of exposition. Intuitively,

using Poisson instead of negative binomial implies, we

assume the biological variability is captured by the fac-

tor model and the unwanted biological variability is small

relative to the sampling variability. Our implementation

also allows the user to adjust for gene-specific or cell-

specific covariates (such as batch labels) as part of the

overall model.

We ran Poisson GLM-PCA on the technical and bio-

logical (monocytes) replicates negative control datasets

and found it removed the spurious correlation between

the first dimension and the total UMIs and fraction of

zeros (Fig. 4). To examine GLM-PCA as a visualization

tool, we ran Poisson and negative binomial GLM-PCA

along with competing methods on the 2 ground truth

datasets (Additional file 1: Figure S3). For the Zheng 4eq

dataset, we directly reduced to 2 dimensions. For the

Zheng 8eq dataset, we reduced to 15 dimensions then

applied UMAP [42]. While all methods effectively sep-

arated T cells from other PBMCs, GLM-PCA methods

also separated memory and naive cytotoxic cells from the

other subtypes of T cells. This separation was not visible

with PCA on log-CPM. Computational speed is discussed

in the “Computational efficiency of multinomial models”

section.

Deviance residuals provide fast approximation to GLM-PCA

One disadvantage of GLM-PCA is it depends on an iter-

ative algorithm to obtain estimates for the latent factors

and is at least ten times slower than PCA. We therefore

Fig. 4 GLM-PCA dimension reduction is not affected by unwanted fraction of zeros variability and avoids false-positive results. a First GLM-PCA
dimension (analogous to the first principal component) plotted against the fraction of zeros for the technical replicates with colors representing the
total UMIs. b As a but using monocytes biological replicates. c Using the technical replicates, we applied t-distributed stochastic neighbor
embedding (tSNE) with perplexity 30 to the top 50 GLM-PCA dimensions. The first 2 tSNE dimensions are shown with a blue to red color scale
representing the fraction of zeros. d As c but for the biological replicates data. GLM-PCA using the Poisson approximation to the multinomial was
applied to the same 5000 random genes as in Fig. 3
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propose a fast approximation to GLM-PCA. When using

PCA a common first step is to center and scale the data

for each gene as z-scores. This is equivalent to the fol-

lowing procedure. First, specify a null model of constant

gene expression across cells, assuming a normal distri-

bution. Next, find the MLEs of its parameters for each

gene (the mean and variance). Finally, compute the resid-

uals of the model as the z-scores (derivation provided in

the “Methods” section). The fact that scRNA-Seq data

are skewed, discrete, and possessing many zeros suggests

the normality assumption may be inappropriate. Further,

using z-scores does not account for variability in total

UMIs across cells. Instead, we propose to replace the nor-

mal null model with a multinomial null model as a better

match to the data-generating mechanism. The analogs to

z-scores under this model are called deviance and Pear-

son residuals. Mathematical formulae are presented in

the “Methods” section. The use of multinomial residu-

als enables a fast transformation similar to z-scores that

avoids difficulties of normalization and log transformation

by directly modeling counts. Additionally, this framework

allows straightforward adjustment for covariates such as

cell cycle signatures or batch labels. In an illustrative sim-

ulation (details in the “Residuals and z-scores” section),

residual approximations to GLM-PCA lost accuracy in the

presence of strong batch effects, but still outperformed

the traditional PCA (Additional file 1: Figure S4). System-

atic comparisons on ground truth data are provided in the

“Multinomial models improve unsupervised clustering”

section.

Computational efficiency of multinomial models

We measured time to convergence for reduction to two

latent dimensions of GLM-PCA, ZINB-WAVE, PCA on

log-CPM, PCA on deviance residuals, and PCA on Pear-

son residuals. Using the top 600 informative genes, we

subsampled the PBMC 68K dataset to 680, 6800, and

68,000 cells. All methods scaled approximately linearly

with increasing the numbers of cells, but GLM-PCA was

23–63 times faster than ZINB-WAVE across sample sizes

(Additional file 1: Figure S5). Specifically, GLM-PCA pro-

cessed 68,000 cells in less than 7 min. The deviance and

Pearson residuals methods exhibited speeds compara-

ble to PCA: 9–26 times faster than GLM-PCA. We also

timed dimension reduction of the 8eq dataset (3994 cells)

from 1500 informative genes to 10 latent dimensions.

PCA (with either log-CPM, deviance, or Pearson residu-

als) took 7 s, GLM-PCA took 4.7 min, and ZINB-WAVE

took 86.6 min.

Feature selection using deviance

Feature selection, or identification of informative genes,

may be accomplished by ranking genes using the deviance,

which quantifies how well each gene fits a null model

of constant expression across cells. Unlike the competing

highly variable or highly expressed genes methods, which

are sensitive to normalization, ranking genes by deviance

operates on raw UMI counts. An approximate multino-

mial deviance statistic can be computed in closed form

(formula provided in the “Methods” section).

We compared gene ranks for all three feature selection

methods (deviance, highly expressed, and highly variable

genes) on the 8eq dataset (Table 1). We found a strong

concordance between highly deviant genes and highly

expressed genes (Spearman’s rank correlation r = 0.9987),

while highly variable genes correlated weakly with both

high expression (r = 0.3835) and deviance (r = 0.3738).

Choosing informative genes by high expression alone

would be ineffective if a gene had high but constant

expression across cells. To ensure the deviance criterion

did not identify such genes, we created a simulation with

three types of genes: lowly expressed, high but constantly

expressed, and high and variably expressed. Deviance

preferentially selected high and variably expressed genes

while filtering by highly expressed genes identified the

constantly expressed genes before the variably expressed

(Additional file 1: Figure S6, Table S1). Furthermore, an

examination of the top 1000 genes by each criteria on

the Muraro dataset showed that deviance did not identify

the same set of genes as highly expressed genes (Addi-

tional file 1: Figure S7, Table S2). Empirically, deviance

seems to select genes that are both highly expressed and

highly variable, which provides a rigorous justification for

a common practice.

Multinomial models improve unsupervised clustering

Dimension reduction with GLM-PCA or its fast multino-

mial residuals approximation improved clustering perfor-

mance over competing methods (Fig. 5a, Additional file 1:

Figure S8a). Feature selection by multinomial deviance

was superior to highly variable genes (Fig. 5b).

Using the two ground truth datasets described under

the “Datasets” section, we systematically compared the

clustering performance of all combinations of previously

described methods for normalization, feature selection,

and dimension reduction. In addition, we compared

against ZINB-WAVE since it also avoids requiring the

user to pre-process and normalize the UMI count data

(e.g., log transformation of CPM) and accounts for vary-

ing total UMIs across cells [28]. After obtaining latent

factors, we used Seurat’s Louvain implementation and k-

means to infer clusters, and compared these to the known

cell identities using adjusted Rand index (ARI, [43]). This

quantified accuracy. We assessed cluster separation using

the silhouette coefficient. We varied the number of latent

dimensions and number of clusters to assess robust-

ness. Where possible, we used the same combinations

of hyperparameters as [15] to facilitate comparisons to
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Fig. 5 Dimension reduction with GLM-PCA and feature selection using deviance improves Seurat clustering performance. Each column represents a
different ground truth dataset from [15]. a Comparison of dimension reduction methods based on the top 1500 informative genes identified by
approximate multinomial deviance. The Poisson approximation to the multinomial was used for GLM-PCA. Dev. resid. PCA, PCA on approximate
multinomial deviance residuals. b Comparison of feature selection methods. The top 1500 genes identified by deviance and highly variable genes
were passed to 2 different dimension reduction methods: GLM-PCA and PCA on log-transformed CPM. Only the results with the number of clusters
within 25% of the true number are presented

their extensive benchmarking (details are provided in the

“Methods” section).

We compared the Seurat clustering performance of

GLM-PCA (with Poisson approximation to multinomial)

to running PCA on deviance residuals, which adheremore

closely to the normal distribution than log-CPM. We

found both of these approximate multinomial methods

gave similar results on the 4eq dataset and outperformed

PCA on log-CPM z-scores. However, GLM-PCA outper-

formed the residuals method on the 8eq dataset. Also,

performance on ZINB-WAVE factors degraded when

the number of latent dimensions increased from 10 to

30, whereas GLM-PCA and its fast approximation with

deviance residuals were robust to this change (Fig. 5a).

GLM-PCA and its residual approximations produced

better cluster separation than PCA or ZINB-WAVE,

even in scenarios where all methods had similar accu-

racy (Additional file 1: Figure S8a). The performance of

Pearson residuals was similar to that of deviance residuals

(Additional file 1: Figure S9, S10).

Focusing on feature selection methods, deviance

had higher accuracy than highly variable genes

across both datasets and across dimension reduction

methods (Fig. 5b). Filtering by highly expressed genes
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led to similar clustering performance as deviance

(Additional file 1: Figure S9), because both criteria

identified strongly overlapping gene lists for these data.

The combination of feature selection with deviance and

dimension reduction with GLM-PCA also improved

clustering performance when k-means was used in place

of Seurat (Additional file 1: Figure S11). A complete table

of results is publicly available (see the “Availability of data

and materials” section).

Finally, we examined the clustering performance of

competing dimension reduction methods on two pub-

lic datasets with more complex subtypes (Table 1). The

10× Haber dataset [33] was annotated with 12 types

of enteroendocrine cells from the intestine. The CEL-

Seq2 Muraro dataset [34] was annotated with 9 types

of pancreatic cells. Since these cluster labels were com-

putationally derived, they did not constitute a ground

truth comparison. Nevertheless, GLM-PCA had the clos-

est concordance with the original authors’ annotation in

both datasets (Additional file 1: Tables S3, S4).

Conclusions
We have outlined a statistical framework for analysis of

scRNA-Seq data with UMI counts based on a multino-

mial model, providing effective and simple to compute

methods for feature selection and dimension reduction.

We found that UMI count distributions differ dramatically

from read counts, are well-described by a multinomial

distribution, and are not zero inflated. Log transforma-

tion of normalized UMI counts is detrimental, because

it artificially exaggerates the differences between zeros

and all other values. For feature selection, or identifica-

tion of informative genes, deviance is a more effective

criterion than highly variable genes. Dimension reduction

via GLM-PCA, or its fast approximation using residu-

als from a multinomial model, leads to better clustering

performance than PCA on z-scores of log-CPM.

Although our methods were inspired by scRNA-Seq

UMI counts, they may be useful for a wider array of

data sources. Any high dimensional, sparse dataset where

samples contain only relative information in the form of

counts may conceivably be modeled by the multinomial

distribution. Under such scenarios, our methods are likely

to bemore effective than applying log transformations and

standard PCA. A possible example is microbiome data.

We have not addressed major topics in the scRNA-Seq

literature such as pseudotime inference [44], differential

expression [45], and spatial analysis [46]. However, the sta-

tistical ideas outlined here can also be used to improve

methods in these more specialized types of analyses.

Our results have focused on (generalized) linear mod-

els for simplicity of exposition. Recently, several promis-

ing nonlinear dimension reductions for scRNA-Seq have

been proposed. The variational autoencoder (VAE, a type

of neural network) method scVI [47] utilizes a negative

binomial likelihood in the decoder, while the encoder

relies on log-normalized input data for numerical stability.

The Gaussian process method tGPLVM [48] models log-

transformed counts. In both cases, we suggest replac-

ing log-transformed values with deviance residuals to

improve performance. Nonlinear dimension reduction

methods may also depend on feature selection to reduce

memory consumption and speed computation; here, our

deviance method may be utilized as an alternative to high

variability for screening informative genes.

Methods
Multinomial model for scRNA-Seq

Let yij be the observed UMI counts for cell or droplet i and

gene or spike-in j. Let ni = ∑

j yij be the total UMIs in the

sample, and πij be the unknown true relative abundance of

gene j in cell i. The random vector �yi = (yi1, . . . , yiJ )
⊤ with

constraint
∑

j yij = ni follows a multinomial distribution

with densit function:

f (�yi) =
(

ni

yi1, . . . , yiJ

)

∏

j

π
yij
ij

Focusing on a single gene j at a time, the marginal dis-

tribution of yij is binomial with parameters ni and πij.

The marginal mean is E[ yij]= niπij = µij, the marginal

variance is var[ yij]= niπij(1 − πij) = µij − 1
ni

µ2
ij, and

the marginal probability of a zero count is (1 − πij)
ni =

(

1 − µij

ni

)ni
. The correlation between two genes j, k is:

cor[ yij, yik]=
−√

πijπik
√

(1 − πij)(1 − πik)

The correlation is induced by the sum to ni constraint.

As an extreme example, if there are only two genes (J =
2), increasing the count of the first gene automatically

reduces the count of the second gene since they must add

up to ni under multinomial sampling. This means when

J = 2, there is a perfect anti-correlation between the gene

counts which has nothing to do with biology. More gen-

erally, when either J or ni is small, gene counts will be

negatively correlated independent of biological gene-gene

correlations, and it is not possible to analyze the data on a

gene-by-gene basis (for example, by ranking and filtering

genes for feature selection). Rather, comparisons are only

possible between pairwise ratios of gene expression values

[49]. Yet, this type of analysis is difficult to interpret and

computationally expensive for large numbers of genes (i.e.,

in high dimensions). Fortunately, under certain assump-

tions, more tractable approximations may be substituted

for the true multinomial distribution.

First, note that if correlation is ignored, the multinomial

may be approximated by J-independent binomial distri-

butions. Intuitively, this approximation will be reasonable
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if all πij are very small, which is likely to be satisfied for

scRNA-Seq if the number of genes J is large, and no sin-

gle gene constitutes the majority of mRNAs in the cell.

If ni is large and πij is small, each binomial distribu-

tion can be further approximated by a Poisson with mean

niπij. Alternatively, the multinomial can be constructed

by drawing J-independent Poisson random variables and

conditioning on their sum. If J and ni are large, the differ-

ence between the conditional, multinomial distribution,

and the independent Poissons becomes negligible. Since

in practice ni is large, the Poisson approximation to the

multinomial may be reasonable [50–53].

The multinomial model does not account for biologi-

cal variability. As a result, an overdispersed version of the

multinomial model may be necessary. This can be accom-

modated with the Dirichlet-multinomial distribution. Let

�yi be distributed as a multinomial conditional on the rel-

ative abundance parameter vector �πi = (πi1, . . . ,πiJ )
⊤.

If �πi is itself a random variable with symmetric Dirich-

let distribution having shape parameter α, the marginal

distribution of �yi is Dirichlet-multinomial. This distribu-

tion can itself be approximated by independent negative

binomials. First, note that a symmetric Dirichlet ran-

dom vector can be constructed by drawing J-independent

gamma variates with shape parameter α and dividing by

their sum. Suppose (as above) we approximate the condi-

tional multinomial distribution of �yi such that yij follows

an approximate Poisson distribution with mean niπij. Let

λij be a collection of non-negative random variables such

that πij = λij
∑

j λij
. We require that �πi follows a symmet-

ric Dirichlet, which is accomplished by having λij follow

independent gamma distributions with shape α and mean

ni/J . This implies
∑

j λij follows a gamma with shape Jα

and mean ni. As J → ∞, this distribution converges to

a point mass at ni, so for large J (satisfied by scRNA-

Seq),
∑

j λij ≈ ni. This implies that yij approximately

follows a conditional Poisson distribution with mean λij,

where λij is itself a gamma random variable with mean

ni/J and shape α. If we then integrate out λij we obtain

the marginal distribution of yij as negative binomial with

shape α and mean ni/J . Hence a negative binomial model

for count data may be regarded as an approximation to an

overdispersed Dirichlet-multinomial model.

Parameter estimation with multinomial models (and

their binomial or Poisson approximations) is straight-

forward. First, suppose we observe replicate samples �yi,
i = 1, . . . , I from the same underlying population of

molecules, where the relative abundance of gene j is πj.

This is a null model because it assumes each gene has a

constant expected expression level, and there is no biolog-

ical variation across samples. Regardless of whether one

assumes a multinomial, binomial, or Poisson model, the

maximum likelihood estimator (MLE) of πj is π̂j =
∑

i yij
∑

i ni

where ni is the total count of sample i. In the more real-

istic case that relative abundances πij of genes vary across

samples, the MLE is π̂ij = yij
ni
.

An alternative to the MLE is the maximum a posteri-

ori (MAP) estimator. Suppose a symmetric Dirichlet prior

with concentration parameter αi is combined with the

multinomial likelihood for cell i. The MAP estimator for

πij is given by:

π̃ij = αi + yij

Jαi + ni
= wi

1

J
+ (1 − wi)π̂ij

where wi = Jαi/(Jαi + ni), showing that the MAP is

a weighted average of the prior mean that all genes are

equally expressed (1/J) and the MLE (π̂ij). Compared to

the MLE, the MAP biases the estimate toward the prior

where all genes have the same expression. Larger values of

αi introduce more bias, while αi → 0 leads to the MLE.

If αi > 0, the smallest possible value of π̃ij is αi/(Jαi +
ni) rather than zero for the MLE. When there are many

zeros in the data, MAP can stabilize relative abundance

estimates at the cost of introducing bias.

Mathematics of distortion from log-normalizing UMIs

Suppose the true counts in cell i are given by xij for genes

j = 1, . . . , J . Some of these may be zero, if a gene is not

turned on in the cell. Knowing xij is equivalent to know-

ing the total number of transcripts ti = ∑

j xij and the

relative proportions of each gene πij, since xij = tiπij. The

total number of UMI counts ni = ∑

j yij does not esti-

mate ti. However, under multinomial sampling, the UMI

relative abundances π̂ij = yij
ni

are MLEs for the true pro-

portions πij. Note that it is possible that π̂ij = 0 even

though πij > 0. Because
∑

j π̂ij = 1 regardless of ni, the

use of multinomial MLEs is equivalent to the widespread

practice of normalizing each cell by the total counts.

Furthermore, the use of size factors si = ni/m leads to

π̂ij × m (ifm = 106, this is CPM).

Traditional bulk RNA-Seq experiments measured gene

expression in read counts of many cells per sample rather

than UMI counts of single cells. Gene counts from bulk

RNA-Seq could thus range over several orders of mag-

nitude. To facilitate comparison of these large numbers,

many bulk RNA-Seq methods have relied on a logarithm

transformation. This enables interpretation of differences

in normalized counts as fold changes on a relative scale.

Also, for count data, the variance of each gene is a function

of its mean, and log transformation can help to prevent

highly expressed outlier genes from overwhelming down-

stream analyses. Prior to the use of UMIs, scRNA-Seq

experiments also produced read counts with wide ranging

values, and a log transform was again employed. However,

with single cell data, more than 90% of the genes might

be observed as exact zeros, and log(0) = −∞ which is

not useful for data analysis. UMI data also contain large
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numbers of zeros, but do not contain very large counts

since PCR duplicates have been removed. Nevertheless,

log transformation has been commonly used with UMI

data as well.

The current standard is to transform the UMI counts

as log2(c + π̂ij × m) where c is a pseudocount to avoid

taking the log of zero, and typically c = 1. As before, m

is some constant such as 106 for CPM (see also [54] for

an alternative). Finally, the data are centered and scaled so

that the mean of each gene across cells is 0, and the stan-

dard deviation is 1. This standardization of the data causes

any subsequent computation of distances or dimension

reduction to be invariant to constant additive or multi-

plicative scaling. For example, under Manhattan distance,

d(x + c, y + c) = |x + c − (y + c)| = |x − y| = d(x, y). In

particular, using size factors such as CPM instead of rel-

ative abundances leads to a rescaling of the pseudocount,

and use of any pseudocount is equivalent to replacing the

MLE with the MAP estimator. Let k = c/m and αi =
kni. Then, the weight term in the MAP formula becomes

wi = Jk/(1 + Jk) = w which is constant across all cells i.

Furthermore Jk = w/(1 − w), showing that:

log2(c + π̂ij × m) = log2(k + π̂ij) + log2(m)

= log2

(

w

1 − w

1

J
+ π̂ij

)

+ log2(m)

= log2

(

w
1

J
+ (1 − w)π̂ij

)

− log2(1 − w) + log2(m)

= log2(π̃ij) + C

Where C is a global constant that does not vary across

cells or genes. For illustration, if c = 1 andm = 106, this is

equivalent to assuming a prior where all genes are equally

expressed and for cell i, a weight ofw = J/(106+J) is given

to the prior relative to theMLE. Since the number of genes

J is on the order of 104, we have w ≈ .01. The prior sample

size for cell i is Jαi = 10−6Jni ≈ .01 × ni where ni is the

data sample size. The standard transformation is therefore

equivalent to using a weak prior to obtain a MAP estimate

of the relative abundances, then log transforming before

dimension reduction.

In most scRNA-Seq datasets, the total number of UMIs

ni for some cells may be significantly less than the con-

stant m. For these cells, the size factors si = ni/m are less

than 1. Therefore, after normalization (dividing by size

factor), the counts are scaled up to match the target size

of m. Due to the discreteness of counts, this introduces a

bias after log transformation, if the pseudocount is small

(or equivalently, if m is large). For example, let c = 1 and

m = 106 (CPM). If ni = 104 for a particular cell, we have

si = .01. A raw count of yij = 1 for this cell is normalized

to 1/.01 = 100 and transformed to log2(1 + 100) = 6.7.

For this cell, on the log scale, there cannot be any values

between 0 and 6.7 because fractional UMI counts cannot

be observed and log2(1 + 0) = 0. Small pseudocounts

and small size factors combined with log transform arbi-

trarily exaggerate the difference between a zero count and

a small nonzero count. As previously shown, this sce-

nario is equivalent to using MAP estimation of πij with

a weak prior. To combat this distortion, one may attempt

to strengthen the prior to regularize π̃ij estimation at the

cost of additional bias, as advocated by [21]. An extreme

case occurs when c = 1 and m = 1. Here, the prior sam-

ple size is Jni, so almost all the weight is on the prior. The

transform is then log2(1+π̂ij). But this function is approx-

imately linear on the domain 0 ≤ π̂ij ≤ 1. After centering

and scaling, a linear transformation is vacuous.

To summarize, log transformation with a weak prior

(small size factor, such as CPM) introduces strong arti-

ficial distortion between zeros and nonzeros, while log

tranformation with a strong prior (large size factor) is

roughly equivalent to not log transforming the data.

Generalized PCA

PCA minimizes the mean squared error (MSE) between

the data and a low-rank representation, or embedding. Let

yij be the raw counts and zij be the normalized and trans-

formed version of yij such as centered and scaled log-CPM

(z-scores). The PCA objective function is:

min
u,v

∑

i,j

(zij − �u′
i�vj)2

where �ui, �vj ∈ R
L for i = 1, . . . , I, j = 1, . . . , J . The

�ui are called factors or principal components, and the �vj
are called loadings. The number of latent dimensions L

controls the complexity of the model. Minimization of

the MSE is equivalent to minimizing the Euclidean dis-

tance metric between the embedding and the data. It is

also equivalent to maximizing the likelihood of a Gaussian

model:

zij ∼ N
(

�u′
i�vj, σ 2

)

If we replace the Gaussian model with a Poisson, which

approximates the multinomial, we can directly model the

UMI counts as:

yij ∼ Poi
(

ni exp{�u′
i�vj}

)

or alternatively, in the case of overdispersion, we may

approximate the Dirichlet-multinomial using a negative

binomial likelihood:

yij ∼ NB
(

ni exp{�u′
i�vj}; φj

)

We define the linear predictor as ηij = log ni + �u′
i�vj.

It is clear that the mean µij = e
η
ij appears in both the

Poisson and negative binomial model statements, showing

that the latent factors interact with the data only through

the mean. We may then estimate �ui and �vj (and φj) by

maximizing the likelihood (in practice, adding a small



TOWNES et al. Genome Biology          (2019) 20:295 Page 13 of 16

L2 penalty to large parameter values improves numeri-

cal stability). A link function must be used since �ui and
�vj are real valued whereas the mean of a Poisson or nega-

tive binomial must be positive. The total UMIs ni term is

used as an offset since no normalization has taken place;

alternative size factors si such as those from scran [20]

could be used in place of ni. If the first element of each

�ui is constrained to equal 1, this induces a gene-specific

intercept term in the first position of each �vj, which is

analogous to centering. Otherwise, the model is very sim-

ilar to that of PCA; it is simply optimizing a different

objective function. Unfortunately, MLEs for �ui and �vj can-
not be expressed in closed form, so an iterative Fisher

scoring procedure is necessary. We refer to this model as

GLM-PCA [55]. Just as PCA minimizes MSE, GLM-PCA

minimizes a generalization of MSE called the deviance

[56]. While generalized PCA was originally proposed by

[31] (see also [57] and [58]), our implementation is novel

in that it allows for intercept terms, offsets, overdisper-

sion, and non-canonical link functions. We also use a

blockwise update for optimization which we found to be

more numerically stable than that of [31]; we iterate over

latent dimensions l rather than rows or columns. This

technique is inspired by non-negative matrix factorization

algorithms such as hierarchical alternating least squares

and rank-one residue iteration, see [59] for a review.

As an illustration, consider GLM-PCA with the Poisson

approximation to a multinomial likelihood. The objective

function to be minimized is simply the overall deviance:

D =
∑

i,j

yij log

(

yij

µij

)

− (yij − µij)

logµij = ηij = log si + �u′
i�vj = log si + vj1 +

L
∑

l=2

uilvjl

where si is a fixed size factor such as the total number of

UMIs (ni). The optimization proceeds by taking deriva-

tives with respect to the unknown parameters: vj1 is a

gene-specific intercept term, and the remaining uil and vjl
are the latent factors.

The GLM-PCAmethod is most concordant to the data-

generating mechanism since all aspects of the pipeline are

integrated into a coherent model rather than being dealt

with through sequential normalizations and transforma-

tions. The interpretation of the �ui and �vj vectors is the

same as in PCA. For example, suppose we set the num-

ber of latent dimensions to 2 (i.e., L = 3 to account for

the intercept). We can plot ui2 on the horizontal axis and

ui3 on the vertical axis for each cell i to visualize the rela-

tionships between cells such as gradients or clusters. In

this way, the �ui and �vj capture biological variability such as

differentially expressed genes.

Residuals and z-scores

Just as mean squared error can be computed by taking

the sum of squared residuals under a Gaussian likelihood,

the deviance is equal to the sum of squared deviance resid-

uals [56]. Since deviance residuals are not well-defined

for the multinomial distribution, we adopt the binomial

approximation. The deviance residual for gene j in cell i is

given by:

r
(d)
ij = sign(yij−µ̂ij)

√

2yij log
yij

µ̂ij
+ 2(ni − yij) log

ni − yij

ni − µ̂ij

where under the null model of constant gene expression

across cells, µ̂ij = niπ̂j. The deviance residuals are the

result of regressing away this null model. An alternative to

deviance residuals is the Pearson residual, which is sim-

ply the difference in observed and expected values scaled

by an estimate of the standard deviation. For the binomial,

this is:

r
(p)
ij = yij − µ̂ij

√

µ̂ij − 1
ni

µ̂2
ij

According to the theory of generalized linear models

(GLM), both types of residuals follow approximately a

normal distribution with mean zero if the null model is

correct [56]. Deviance residuals tend to be more symmet-

ric than Pearson residuals. In practice, the residuals may

not have mean exactly equal to zero, and may be stan-

dardized by scaling their gene-specific standard deviation

just as in the Gaussian case. Recently, Pearson residuals

based on a negative binomial null model have also been

independently proposed as the sctransform method [60].

The z-score is simply the Pearson residual where we

replace the multinomial likelihood with a Gaussian (nor-

mal) likelihood and use normalized values instead of raw

UMI counts. Let qij be the normalized (possibly log-

transformed) expression of gene j in cell i without center-

ing and scaling. The null model is that the expression of

the gene is constant across all cells:

qij ∼ N

(

µj, σ 2
j

)

The MLEs are µ̂j = 1
I

∑

i qij, σ̂
2
j = 1

I

∑

i(qij − µ̂j)
2, and

the z-scores equal the Pearson residuals zij = (qij− µ̂j)/σ̂j.

We compared the accuracy of the residuals approxi-

mations by simulating 150 cells in 3 clusters of 50 cells

each with 5000 genes, of which 500 were differentially

expressed across clusters (informative genes).We also cre-

ated 2 batches, batch 1 with total counts of 1000 and

batch 2 with total counts of 2000. Each cluster had an

equal number of cells in the 2 batches. We then ran GLM-

PCA on the raw counts, PCA on log2(1 + CPM), PCA

on deviance residuals, and PCA on Pearson residuals with

L = 2 dimensions.
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Feature selection using deviance

Genes with constant expression across cells are not infor-

mative. Such genes may be described by the multinomial

null model where πij = πj. Goodness of fit to a multino-

mial distribution can be quantified using deviance, which

is twice the difference in log-likelihoods comparing a sat-

urated model to a fitted model. The multinomial deviance

is a joint deviance across all genes,and for this reason is

not helpful for screening informative genes. Instead, one

may use the binomial deviance as an approximation:

Dj = 2
∑

i

[

yij log
yij

niπ̂j
+ (ni − yij) log

(ni − yij)

ni(1 − π̂j)

]

A large deviance value indicates the model in question

provides a poor fit. Those genes with biological variation

across cells will be poorly fit by the null model and will

have the largest deviances. By ranking genes according to

their deviances, one may thus obtain highly deviant genes

as an alternative to highly variable or highly expressed

genes.

Systematic comparison of methods

We considered combinations of the following methods

and parameter settings, following [15]. Italics indicate

methods proposed in this manuscript. Feature selec-

tion: highly expressed genes, highly variable genes, and

highly deviant genes. We did not compare against highly

dropout genes because [15] found this method to have

poor downstream clustering performance for UMI counts

and it is not as widely used in the literature. The num-

bers of genes are 60, 300, 1500. Normalization, trans-

formation, and dimension reduction: PCA on log-CPM

z-scores, ZINB-WAVE [28], PCA on deviance residu-

als, PCA on Pearson residuals, and GLM-PCA. The

numbers of latent dimensions are 10 and 30. Cluster-

ing algorithms are k-means [61] and Seurat [17]. The

number of clusters is all values from 2 to 10, inclu-

sive. Seurat resolutions are 0.05, 0.1, 0.2, 0.5, 0.8, 1, 1.2,

1.5, and 2.
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