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Fast and accurate fault classi	cation is essential to power system operations. In this paper, in order to classify electrical faults
in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classi	er has been
proposed. �e proposed PSO based SVM classi	er is able to select appropriate input features and optimize SVM parameters
to increase classi	cation accuracy. Further, a time-domain re
ectometry (TDR) method with a pseudorandom binary sequence
(PRBS) stimulus has been used to generate a dataset for purposes of classi	cation. �e proposed technique has been tested on a
typical radial distribution network to identify ten di�erent types of faults considering 12 given input features generated by using
Simulink so�ware andMATLAB Toolbox.�e success rate of the SVM classi	er is over 97%, which demonstrates the e�ectiveness
and high e�ciency of the developed method.

1. Introduction

Distribution networks deliver electrical energy from trans-
mission systems to consumers and are important and integral
part of all power systems. Once an electrical fault occurs in
any distribution feeder, immediate fault classi	cation plays
an important role in postfault analysis and power supply
restoration.�e accuracy of the fault type information assists
the fault diagnosis system not only to locate the electrical
faults promptly but also to ensure power quality as well as
reliability of the system [1, 2].

A variety of approaches have been developed to build
an e�ective fault classi	er in electrical distribution feed-
ers. As the amount of power delivered by a distribution
system signi	cantly increases, it is essential to focus on
fault classi	cation schemes. �e studies of fault classi	cation
in distribution feeder can be divided into three separate
categories, as follows: (1) impedance based method [3, 4],
(2) travelling wave based method [5, 6], (3) and arti	cial

intelligence based method [7, 8]. �e most common method
for fault classi	cation in power systems is known as time-
domain re
ectometry (TDR) [9–11].

TDR is rather simple to implement; however, it is not
a perfect fault-location method since any single pulse stim-
ulus injected into the electrical line is quickly attenuated
along that line, causing fault location and classi	cation to
become inaccurate. To overcome this problem, an improved
TDRmethod using incident pseudorandom binary sequence
(PRBS) excitation is proposed to locate such faults in [12];
however, it should be noted that it is only applied for high-
power transmission lines. Actually, it is quite di�cult to
apply the TDR method to 	nd faults in distribution feeders
because of the various junctions and ends of branched
network involved. As a result, various re
ected responsesmay
occur in the re
ectometry trace [13].�erefore, an intelligent
algorithm is required to extract fault location information
on a multiple-branched network from the re
ectometry
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trace provided. SVM has been used successfully to resolve
classi	cation issues for a wide range of applications because
of its strongly regularized characteristic and rapid training
speed [14–16].

To build a SVM classi	er, the aspect of feature subset
selection plays an important role in detecting relevant vari-
ables in classi	cation spaces. Principal component analysis
(PCA) [17] and multidimensional scaling (MDS) [18] are two
traditional methods applied to remove redundant variables
in the original feature vectors. Authors in [19] proposed
a Hadoop scheme to extract feature in parallel, in which
hundreds of mappers are composed. In a recent paper [20],
Ma and Niu used the 	rework algorithm to select input
features by removing redundant in
uence in order to improve
the icing forecasting of high voltage transmission line.

In addition to feature subset selection, the optimal set
of SVM parameters also plays an important role in the
distribution of samples in a given search space. Vapnik
showed that the penalty parameter � and kernel function
parameter such as gamma � for the radial basis function
(RBF) signi	cantly a�ect the performance of SVM [21].
Various researches have been proposed to select these two
parameters, but there is no general opinion for their settings
[22]. �e grid search method (GSM) is investigated to deter-
mine optimal parameters by attempting di�erent values and
selecting those values possessing the least amount of testing
error [23]. Because of the computational complexity involved
with GSM, genetic algorithm (GA) has been developed to
improve classi	cation accuracy and reduce training time by
using a minimal number of features [24]. However, it takes
signi	cant amounts of calculation time due to the complex
operational process, including inheritance, selection, recom-
bination, and mutation. To overcome this relative problem,
Kennedy and Eberhart proposed a population-based search
technique known as particle swarm optimization (PSO) [25].
�e primary advantage of the PSO based encoding technique
is in its capacity to decrease trapped status in local optima
and increase the classi	cation accuracy as well as the training
speed.

In this paper, a novelmethod based upon PSO techniques
is developed to simultaneously optimize input features and
SVM parameters in order to classify the fault types found in
the distribution network.�ese fault types can be divided into
ten classes, including single phase-to-ground faults (AG, BG,
andCG), line-to-line faults (AB, AC, and BC), double line-to-
ground faults (ABG, ACG, and BCG), and three-phase short-
circuit faults (ABC). Further, this PSO-SVM classi	er uses
a dataset obtained from TDR analysis with PRBS excitation.
Not only is the proposed PSO based encoding technique easy
to use, but it also helps to signi	cantly increase the success
rate of the SVM classi	er.

�e remainder of this paper is constructed as follows. In
Section 2, the theory of the proposed method is discussed,
including TDR, SVM, and PSO. Section 3 presents the
modeling of a typical two-branched distribution feeder. �e
developed PSO based SVM fault diagnosis approach is given
in Section 4. In Section 5, experimental simulation results and
discussions are presented. Finally, a conclusion is presented in
Section 6.

L/2dz L/2dzR/2dz R/2dz

Cdz Gdz

Figure 1: �e classical model for a lumped section.

2. Basic Theory of the Proposed Method

2.1. Time-Domain Re�ectometry. Time-domain re
ectome-
try (TDR) is widely used for fault classi	cation and location
of faults in electrical transmission and distribution lines. TDR
is based on a single pulse being injected into the given line or
cable to be examined. A�erwards, some of the pulse energy
is re
ected back to source whenever it reaches the point of
any discontinuities, such as electrical faults, tee joints, or line
terminals. Since the propagation velocity is assumed to be
constant, the fault distance can be measured based on the
expected pulse transit time. Hence, the re
ectometry trace
will not only display the desired information of the fault type,
but also determine the fault location.

Assume a distribution line is modeled by a lumped-
parameter equivalent circuit as shown in Figure 1 with a
distributed series inductance �, resistance �, capacitance �,
and conductance �.

A voltage introduced at the generator will require a cer-
tain amount of time to propagate along the line represented
in the following equation:

�V (�, 	)�� = −�
 (�, 	) − ��
 (�, 	)�	 ,
�
 (�, 	)�� = −�V (�, 	) − ��V (�, 	)�	 ,

(1)

where V(�, 	) and 
(�, 	) are the forward travelling voltage
and current waves, respectively. �e amplitude of incident
pulse will be attenuated along the line and the phase of the
voltage travelling along the line will be distorted resulting
from varying frequency [26].�e attenuation and phase shi�
are determined by the propagation coe�cient, as shown in

� = √(� + ��) (� + ��) = � + �, (2)

where � and � are the attenuation coe�cient and the phase
change coe�cient, respectively. �e velocity at which the
voltage moves down the line can be de	ned in

� = �� . (3)

From (1), using the Laplace transform and di�erential
equation, we can obtain

V (�, 	) = V
+ (	 − ��) + V

− (	 + ��) ,

 (�, 	) = 
+ (	 − ��) + 
− (	 + ��) ,

(4)
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where V+(	 − �/�) and 
+(	 − �/�) are the forward travelling
voltage and current waves, respectively; V−(	+�/�) and 
−(	+�/�) are the backward travelling voltage and current waves,

respectively. Equating the coe�cients of �−��/�, (4) can be
rewritten as

� (�, �) = 1�� [�
+ (�) �−��/� − �− (�) �+��/�] ,

�� = √ ��,
(5)

where �� is called the characteristic impedance. When the
line is terminated with any load whose impedance value is
other than the characteristic impedance, a re
ected wave will
occur at the load and then propagate back toward the source.
�e voltage moving down the line in this case is given by
means of

� (�, �) = �� (�) ∗ � (�, �) , (6)

where �� is called the load impedance. �is re
ected wave is
related to the incident wave by representation in the following
equation:

�− (�, �) = Γ (�) �+ (�) �−2��,
Γ = �� − ���� + �� ,
 = �� ,

(7)

where Γ is called the receiving-end voltage re
ection coe�-
cient and  is called the transit time.

TDR is quite simple to implement, but it is not a perfect
technique since the use of single pulse excitation that is
quickly attenuated along the line. In addition, the pulse
width is one of the factors that a�ect the accuracy rate
of the re
ectometry method. TDR method, using incident
pseudorandom binary sequence (PRBS) excitation can solve
these problems by using cross-correlation (CCR) function
between the re
ected wave and incident wave given by (8)
for fault diagnosis in distribution feeders:

��� (!) = 1�
	∑

=1

� (
) # (
 + !) , (8)

where ��� is the cross-correlation (CCR) function between
the re
ected wave and incident wave; �
 is the forward signal
and #
 is the feedback signal.

As previously mentioned, a variety of di�erent compo-
nents exist along electrical distribution lines like transform-
ers, capacitors, tap changers, phase splitters, and so forth
so it is not easy to extract fault locations from various
re
ections observed in the re
ectometry trace. In this study,
a multilayer SVM classi	er is proposed as a supporting
technique for the TDR method to provide fault diagnosis in
multibranch distribution networks, including single phase-
to-ground faults (AG, BG, and CG), line-to-line faults (AB,
AC, and BC), double line-to-ground faults (ABG, ACG, and
BCG), and three-phase faults (ABC).

2.2. Support Vector Machine. A support vector machine
(SVM) was 	rst mentioned by Vapnik in 1995, and it
has become one of the most optimal techniques for data
classi	cation. It has a solid theoretical foundation based
on a combination between the structural risk minimization
principle and statistical machine learning theory (SLR). �e
main advantages of SVM are the global optimization and
high generalization ability. Further, it overcomes over	tting
problems and provides sparse solutions in comparison to
existing methods such as arti	cial neuron network (ANN)
and re	ned genetic algorithm (RGA) in fault classi	cation.

In standard linear classi	cation problem, for example,
one should separate the set of training data, (�
, #
), 
 =1, 2, . . . , $,$ is the number of given observations, where �
 ∈�� are feature vectors and #
 ∈ (−1, +1) are label vectors. A
binary classi	cation problem can be posed as an optimization
problem in the following way:

Min:
12 ‖'‖22 + � �∑


=1
*
 (9)

Subjected to: #
 (' × �
) + - ≥ 1 − *
,
*
 ≥ 0, 
 = 1, . . . , $, (10)

where � is the regularization parameter; *
 the penalizing
relaxation variables. Equation (10) means

' × 5 (�
) + - ≥ +1 if #
 = +1,
' × 5 (�
) + - ≥ −1 if #
 = −1. (11)

It is to be noted that the nonlinear classi	er may be
denoted in the input space as

6 (�) = sign( �∑

=1

�
∗ × #
 × 8 (�
, #
) + -∗) , (12)

where 6(�) is the decision function and the bias -∗ is
calculated by the Karush-Kuhn-Tucker (KKT) conditions;8(�
, #
) is the kernel function that produces the inner
product for this feature space. In this paper, the following
radial basis function (RBF) is used:

8(�, #) = exp (−� ;;;;� − #;;;;2) , (13)

where � is the kernel parameter.
To obtain optimum performance, some SVM parameters

need to be select property, including the regularization
parameter � and the kernel parameter �. In this work,
PSO technique is applied to optimize these two parameters
accordingly.

2.3. Particle Swarm Optimization. Particle swarm optimiza-
tion (PSO) is inspired by the social and cooperative behavior
displayed by various species to 	ll their needs in the search
space.�is algorithm is guided by personal experience>-��	,
overall experience �-��	, and the present movement of the
particles to decide their next positions in the search space.



4 Computational Intelligence and Neuroscience

Vp
k

Xp
k

Vp
k+1

Xp
k+1

Pbestp
k

GbestkVp
Gbest

Vp
Pbest

Figure 2: �e PSO search mechanism ?th particle at !th iteration.

Further, the experiences are accelerated by two factors @1 and@2, and two random numbers A1 and A2 generated between[0 1]; whereas, the present movement is multiplied by an
inertia factor '. Mathematically, updated positions of each
particle in the search space can be expressed using the two
equations discussed below.

�e initial population (swarm) of size B and dimensionC is denoted as D = [D1, D2, . . . , D�]�, where E denotes
the transpose operator. Each individual particle D� (? =1, 2, . . . , B) is given as D� = [D�,1, D�,2, . . . , D�,�]�. Also,
the initial velocity of the population is denoted as � =[�1, �2, �3]�. �us, the velocity of each particle D� (? =1, 2, . . . , B) is given as�� = [��,1, ��,2, . . . , ��,�]. �e index ?
varies from 1 toB whereas the index F varies from 1 toC.

��+1�,� = ' × ���,� + @1A1 (>-��	��,� − D��,�)
+ @2A2 (�-��	�� − D��,�) ,

(14)

D�+1�,� = D��,� + ��+1�,� . (15)

In (14), >-��	��,� represents personal best Fth component

of ?th individual, whereas �-��	�� represents Fth component

of the best individual of population up to iteration !. Figure 2
shows the search mechanism of PSO in a multidimensional
search space.

�e initial >-��	 of each particle is their initial position,
whereas the initial �-��	 is the initial best particle position
among randomly initialized population.�e>-��	 and�-��	
of each particle are updated as follows.

At iteration !,
If 6 (X�+1� ) < 6 (>-��	��) then >-��	�+1�

= X
�+1
� else >-��	�+1� = >-��	��

If 6 (X�+1� ) < 6 (�-��	�) then �-��	�
= X
�+1
� else �-��	�+1 = �-��	�,

(16)

where6(D) is the objective function subject tominimization.
�e updating procedure should be repeated until a stop con-
dition is reached, such as a prespeci	ed number of iterations

PRBS

SS
Main feeder

Figure 3: A two-branched distribution line diagram of the sample
system.

are met. Once terminated, the �-��	� and 6(�-��	�) are
reported as the solution of PSO technique.More details about
the basic concept of PSO can be found in [27–30].

3. System Modeling

An equivalentmodel has to be constructed by using Simulink
so�ware and MATLAB Toolbox to simulate a typical two-
branched distribution feeder shown in Figure 3, inwhich dots
represent the distribution transformers and their loads.

Two distribution transformers in the sample system are
used to reduce the voltage on the distribution line to the
level of customers that are distributed along a feeder. �eir
parameters and connection phases are shown in Table 1 [31].
It is noted that these distribution transformers are operated
in a full-load condition with 0.8 lagging power factor; as
a result, the sample distribution system is operated with
unbalanced conditions in occurrence. �e main feeder and
laterals are constructed by means of overhead lines whose
positive-sequence impedance is 0.131 + 0.364Ω/km [31].

4. Developed PSO Based SVM Fault
Diagnosis Approach

Since the TDR technique does not diagnose fault easily in
the distribution networks hence it requires to be supported
from other intelligent techniques in order to obtain the best
results. �is paper proposes a PSO based SVM classi	er
to improve the performance of the TDR method in fault
classi	cation in electrical distribution feeders. �e overall
structure of SVM short-circuit classi	er is shown in Figure 4,
in which PSO is performed to optimize the feature subset
and SVM parameters. For this, the data acquisition for data
preprocessing is mentioned 	rst.

4.1. Data Acquisition. To obtain a suitable dataset for clas-
si	cation process, PRBS disturbance is injected directly into
the secondary circuit of the current transformer (CT) 200/5A
which is placed at the beginning of the line under test. �e
primary circuit of the CT is connected to the main feeder;
thus the ampli	ed PRBS is propagated along the line to
diagnose any faults which may occur.

Once a fault occurs in the distribution feeder, it causes
producing a re
ected signal that travels between the fault
location and the substation. �en, these re
ected responses
are cross-correlated with the incident impulse by (8) in order
to reduce the impact of noise as well as surmount amplitude
attenuation. It is worth noting that, for each of the fault types
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Table 1: Parameters and connection phases of distribution transformers in the sample system.

Number Windings connection Phases Secondary voltages (V) Capacity (kVA) Impedance (�%)

1 Delta-Wye-Gnd. A, B, C 220 500 1.89

2 Delta-Delta A, B, C 220 500 1.89

Testing 
dataset

Training 
dataset

Re�ected data 
acquisition 

Selection of feature set 
and SVM
parameters using PSO

Optimum 
SVM

ABC

BCG

ACG

ABG

BC

AC

AB

CG

BG

AG

Figure 4: Block diagram of the proposed PSO based SVM classi	er.

speci	ed, the magnitudes of the feedback waves are di�erent
at the shortage time; as a result, the peaks of the CCR are not
found to be the same.Hence, the re
ected responses andCCR
between the re
ected wave and the incident wave are used as
input feature vectors for the training phase.�e total number
of feature vectors is 12, and they comprise a feature vector� = [V1, V2, . . . , V12]�, in which V1–V6 are the re
ected voltage
and current obtained at the substation and V7–V12 are the
peaks of CCR between the re
ected and the incident waves.

4.2. Feature Extraction. For utilization of the re
ectometry
method, various echo responses are collected, in which
some irrelevant data may be confusing to the SVM clas-
si	er and subsequently increase the training time. Feature
extraction is the best e�ective method to select appropriate
input features in order to improve the speed of training
as well as to ensure the success rate of classi	cation. For
optimum feature selection in this work, PSO is employed
to improve the performance of the SVM classi	er. To select
optimum features of the given dataset, a binary string has
been optimized using PSO where each bit represents a given
feature of the dataset. In the binary string, a “0” represents
an ignored feature, whereas a “1” represents a selected feature
of the dataset. �e optimum features are those features taken
from the given dataset which correspond to the optimized
binary string having its bit as a “1.” For this, a given set
of prede	ned SVM parameters has been used while the
selection of features of the given dataset usingPSO ismade.At
the end of feature selection stage, the selected strings provide
the information regarding the features needed for optimizing
the SVM parameters.

4.3. Optimum SVM Parameters. �e performance of SVM is
susceptible to kernel function parameter � and the regular-
ization parameter �, so these parameters must be carefully

selected to increase the classi	cation accuracy. In this paper,
PSO technique is used to select the parameters of the SVM
classi	er. Performance is measured according to the classi	-
cation accuracy on unseen testing data. In the learning stage,
the PSO based encoding SVM model is trained based on
structural risk minimization to minimize the training error.
While training error improvement occurs, penalty parameter� and kernel function parameter � are regulated by means
of PSO. �e regulated parameters with minimal error are
reported as the most suitable parameters. As a result, the
optimal parameters (� and �) are to be obtained.

Once the optimized parameters of the SVM are obtained,
then it is used for the retraining of the SVM model. A�er
the training phase, the SVM classi	er is ready to identify new
samples in the testing phase. �e testing set is also chosen by
means of the above feature selection from the original dataset
obtained by theTDR trace.�en, testing patterns are inputted
to the trained multilayer SVM classi	er which can identify
all the 10 types of faults, including single-phase-to-ground
faults (AG, BG, and CG), line-to-line faults (AB, AC, and
BC), double-line-to-ground faults (ABG, ACG, and BCG),
and three-phase faults (ABC).

Detailed experiment procedure for feature extraction
and SVM parameter selection using PSO algorithm can be
expressed using the following steps:

(1) Read complete data and set ', @1, and @2 parameters.

(2) Initialize positions X and velocitiesV of each particle
of population.

(3) Initialize sets of SVM parameters within its ranges as
particle position and velocity.

(4) Form SVM using training dataset and initialized
positions of each particle.

(5) Evaluate 	tness of each particle K�� = 6(X��), ∀?,
and 	nd the best particle index -.
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Form SVM using training datasets and 
initialized position of each particle 

Initialize sets of SVM parameters within its 
ranges as particle positions and velocity 

Print optimum values of SVM 

Update velocity and position 
of each particle

Evaluate initial �tness of each particle 

Evaluate �tness of each particle 

No

Yes

Read complete datasets 
and set PSO parameters 

Testing datasetTraining dataset

Data acquisition

Trained SVM classi�er with 
optimum feature and parameters

SVM Output

Various faults types

Set iteration count k = 1

k = k + 1

and update Pbest and Gbest

and select Pbest and Gbest

parameters as Gbest

If k ≤ Ｇ；Ｒ ＣＮ？

Figure 5: Flowchart of the proposed approach.

(6) Select >-��	�� = X�
�, and �-��	� = X�

�.

(7) Set iteration count ! = 1.
(8) ' = 'max − ('max − 'min) × ite/max ite.

(9) Update velocity and position of each particle using
(14) and (15).

(10) Evaluate updated 	tness of each particle K��+1 =
6(X��+1), ∀?, and 	nd the best particle index -1.

(11) Update >-��	 of each particle ∀?
If K��+1 < K�� then >-��	��+1 = D��+1; else>-��	��+1 = >-��	��.

(12) Update �-��	 of population
If K�1�+1 < K�� then �-��	�+1 < >-��	�1�+1 and set- = -1; else �-��	�+1 < �-��	�.

(13) If !max ite then ! = ! + 1 and go to step (6); else go
to step (14).

(14) Optimum solution obtained: print the results of

optimum generation as �-��	�
(15) Retrain SVMwith optimum features and parameters;

then identify unknown samples on testing dataset.

�e experiment procedure can be visualized in Figure 5.
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Table 2: Dataset of ten fault types located at distances of 3 km and 4 km from the substation.

V
a

V
b

V
c



a



b



c

cc-V
a

cc-V
b

cc-V
c

cc-

a

cc-

b

cc-

c

AG
1.9197 −0.3071 0.1245 4.9815 −0.7968 0.3232 0.5941 −0.0950 0.0385 0.0502 −0.0080 0.0033

0.6990 −0.1118 0.0453 1.5998 −0.2559 0.1038 3.5687 −0.5708 0.2315 3.0765 −0.4921 0.1996

BG
1.4521 0.7277 0.5122 3.7681 1.8884 1.3290 0.4494 0.2252 0.1585 0.0380 0.0190 0.0134

0.5287 0.2650 0.1865 1.2101 0.6064 0.4268 2.6995 1.3528 0.9521 2.3271 1.1662 0.8208

CG
0.4648 4.5783 3.1718 0.0857 0.8445 0.5851 0.0275 0.2711 0.1878 0.0237 0.2331 0.1615

0.0880 0.8668 0.6005 0.2284 2.2492 1.5582 0.0272 0.2683 0.1858 0.0023 0.0227 0.0157

BCG
−8.2016 9.6684 16.2648 −2.5267 2.9785 5.0107 −0.1137 0.1340 0.2254 −0.1137 0.1340 0.2254−4.1309 4.8697 8.1921 −0.7620 0.8983 1.5112 −0.2446 0.2884 0.4852 −0.2104 0.2480 0.4172

ACG
−1.2835 2.5576 4.8025 −0.9796 1.9519 3.6650 −1.6907 3.3688 6.3257 −1.4240 2.8375 5.3279−1.4241 1.7834 3.8278 −1.0868 1.3610 2.9212 −1.8757 2.3491 5.0419 −1.5799 1.9786 4.2466

ABG
−1.1327 0.0679 2.6912 −2.9393 0.1763 6.9832 −0.3506 0.0210 0.8329 −0.0296 0.0018 0.0704−2.0970 0.1258 4.9821 −1.6003 0.0960 3.8021 −2.7621 0.1657 6.5623 −2.3265 0.1395 5.5272

AB
−7.4589 −4.8688 17.7206 −1.3759 −0.8981 3.2688 −0.4417 −0.2883 1.0495 −0.3798 −0.2479 0.9024−1.4121 −0.9218 3.3549 −3.6643 −2.3918 8.7055 −0.4370 −0.2853 1.0383 −0.0369 −0.0241 0.0877

AC
−1.0143 −1.2113 7.8915 −0.7741 −0.9244 6.0225 −1.3360 −1.5955 10.3945 −1.1253 −1.3439 8.7550−1.5121 −7.9329 40.5259 −0.4658 −2.4439 12.4847 −0.0210 −0.1099 0.5616 −0.0210 −0.1099 0.5616

BC
2.0444 −4.2356 23.5915 0.3771 −0.7813 4.3518 0.1211 −0.2508 1.3972 0.1041 −0.2157 1.2013

0.1409 −0.2920 1.6262 0.3225 −0.6682 3.7220 0.7195 −1.4907 8.3028 0.6203 −1.2851 7.1576

ABC
0.3508 −0.3674 1.9940 0.8029 −0.8408 4.5638 1.7911 −1.8757 10.1807 1.5440 −1.6170 8.7765

1.7837 −1.8679 10.1386 1.3612 −1.4255 7.7374 2.3494 −2.4604 13.3543 1.9788 −2.0723 11.2480

AG, BG, and CG are single phase-to-ground faults; BCG, ACG, and ABG are double line-to-ground faults; AB, AC, and BC are line-to-line faults; ABC is three-
phase faults; Va, Vb, Vc, 
a, 
b, and 
c are magnitudes of re
ected voltages and currents, respectively; cc-Va, cc-Vb, cc-Vc, cc-
a, cc-
b, and cc-
c are CCR between
re
ected signal and incident signal.

Table 3: Results of SVM classi	cation without and with considering PSO optimization techniques.

SVM classi	er Number of features � � Classi	cation accuracy (%) Training time (s)

Without PSO 12 181.0193 1.1212 93.00 134.8

With PSO 8 15.0381 0.0334 97.15 83.54

5. Test Results and Discussion

In this paper, the fault types are considered by using a 127-
bit PRBS stimulus with frequency 6 = 1MHz and a velocity
of 198,000 km/s propagated along the sample system given
in Figure 2. �e dataset used in this study was obtained at
the substation end by TDR analysis, with the number of
features being 12, in which six features are considered to be
themagnitudes of re
ected signals and six remaining features
are extracted from the peaks of CCR between the feedback
wave and the forward wave.�is dataset is comprised of 5700
samples generated by creating each type of fault at di�erent
locations on two laterals with varying fault impedance value.
Note that training and test sets are randomly divided from the
original dataset, in which 4500 and 1200 are used for training
and testing set, respectively. Table 2 only gives a few portions
of the dataset for purposes of brevity, which were created
by a simulation of the ten types of short-circuit fault on the
	rst lateral, located at distances of 3 km and 4 km from the
substation.

In this paper, PSO technique is used to select the features
and parameters of the SVM classi	er. Preliminary experi-
ments also permit this study set population size as 10; inertia

weight has been taken into account as between 0.1 and 0.5
(considered randomly at each iteration); and acceleration
factors (@1 and @2) have been taken as equal to 2 with a
maximum iteration set to 1000.

Table 3 gives the results of the classi	cation accuracy for
the SVM algorithm using a dataset both with and without
PSO optimization. �e optimum values of � and � of SVM
classi	er are 181.0193 and 1.1212 without consideration of
PSO and are 15.0381 and 0.0334 with consideration of PSO.
From this table, it is observed that the classi	cation accuracy
in the case of using the entire feature is 93%, whereas the
classi	cation accuracy in the case of using a PSO based
encoding technique is found to be 97.15%. �is demonstrates
the optimal e�ciency of the proposed method in which
PSO optimization is applied. All 12 features are autoselected
from the corresponding input, and the testing success rate
has been improved signi	cantly. �e remaining features are
8, which are 1–7 and 9. Furthermore, Table 3 provides the
computational times for training SVM classi	er. �e overall
simulation time taken by the SVM classi	er without PSO is
134.8 seconds, whereas with PSO it is 83.54 seconds. It should
be concluded that the PSO technique takes a relatively shorter
computational time for training.
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Figure 6: Convergence characteristic of the proposed PSO.

�e convergence characteristic of the proposed PSO is
shown in Figure 6. From this 	gure, it is can be observed
that MSE beyond 15 iterations is nondecreasing; thus the
optimized SVM parameters can be obtained prior to the total
training time taken (83.54 sec).

6. Conclusions

In this paper, a multilayer support vector machine (SVM)
based on optimum parameters optimization and feature
selection approach has been developed to classify ten types
of faults in radial distribution feeders. Particle swarm opti-
mization (PSO) has been used as an optimizer to improve
the performance of SVMclassi	er by selecting an appropriate
feature subset and kernel parameters. Further, time-domain
re
ectometry (TDR) with pseudorandom binary sequence
(PRBS) stimulus has been utilized for generating a fault
dataset. In the proposed technique, not only does using PRBS
injection overcome the stimulus distortion problem, but it
also surmounts the impact of noise to provide a reliable
dataset for SVM classi	er. �e proposed PSO based SVM
classi	er has been successfully applied to identify all ten
types of short-circuit faults in the radial distribution network
observed. �e achieved high accuracy rate in classifying
fault types (over 97%) demonstrates greater e�ectiveness over
existing fault identi	ers.
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