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The complexity and high dimensions of big data sonar, as well as the unavoidable presence of unwanted signals such as noise,
clutter, and reverberation in the environment of sonar propagation, have made the classification of big data sonar one of the
most interesting and applicable topics for active researchers in this field. This paper proposes the use of the Grasshopper
Optimization Algorithm (GOA) to train Multilayer Perceptron Artificial Neural Network (MLP-NN) and also to select optimal
features in big data sonar (called GMLP-GOA). GMLP-GOA hybrid classifier first extracts the features of experimental sonar
data using MFCC. Then, the most optimal features are selected using GOA. In the last step, MLP-NN trained with GOA is
used to classify big data sonar. To evaluate the performance of GMLP-GOA, this classifier is compared with MLP-GOA, MLP-
GWO, MLP-PSO, MLP-ACO, and MLP-GSA classifiers in terms of classification rate, convergence rate, local optimization
avoidance power, and processing time. The results indicated that GMLP-GOA achieved a classification rate of 98.12% in a
processing time of 3.14 s.

1. Introduction

Nowadays, big data analysis and classification are highly
valuable [1, 2]. The reason is that as the data increase, the need
for more accurate data analysis and classification also increases
[3, 4]. The more precise and accurate analysis, the more secure
our decision-making will be. Better decisions mean more
practicality and less cost. Sonar data is one type of data that is
regarded to be part of the big data family [5, 6].

Concerning the complex physical characteristics of sonar
purposes, classifying original purposes and avoiding unreal
purposes has developed into a critical practical area for
active researchers and craftsmen [7, 8]. Due to the complex-
ity and heterogeneity of sound circulation in saltwater,

several parameters for categorization and differentiation of
sonar purposes should be extracted. As the dimensions of
the feature vectors grow, the data dimensions also grow.

There are two distinct ways of categorizing high-
dimensional data [9]. The first is to employ the Deterministic
Approach [10]. Because this approach is so reliable, it almost
always results in the best response; nonetheless, the method
encounters difficulties as data dimensions rise, which is
followed by an increase in spatial and temporal complexity
[11]. Furthermore, this strategy is inapplicable to the data
classified as big data [12, 13]. The stochastic method is the sec-
ond approach [14]. These methodologies yield a near-optimal
solution [15]. Additionally, they are less complicated in terms
of spatial and temporal dimensions than deterministicmethods
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[16, 17]. Artificial Neural Networks (ANN) is one of the most
effective stochastic methods utilized in the actual world of big
data.

Neural networks have the ability to learn [18]. Learn-
ing here means, these networks are the basics of all neural
networks, which may be parted into two groups of super-
vision learning [19] and without supervision learning [20,
21]. Most appliances are optimized for Multilayer Artificial
Neural Networks, optimized [22] or standard [10, 23].
Backpropagation algorithm is used as a learning method
that is considered among the family of supervised learn-
ing. The backpropagation algorithm is on an incline basis
which has some problems such as gradual convergence
[24] and appliance in a limit area [25, 26]. Thus, they
are unreliable for functional appliances.

The eventual purpose for the process of learning in
neural networks is to acquire the best structure of weighted
edges and their bios. Such a way that the least number of
errors may occur in network training and test specimens
[27, 28]. The reference [29] demonstrates that metaheuristic
optimization methods may be substituted with gradient-
based learning algorithms, since the stochastic character of
these algorithms prevents them from being trapped in a local
optimum, increases the convergence rate, and decreases
classification errors.

Some of the metaheuristic methods which have been
recently used for training neural networks, are genetic algo-
rithm (GA) [30], simulated annealing (SA) [31],
biogeography-based optimization (BBO) [32], Magnetic
Optimization Algorithm (MOA) [33], Artificial Bee Colony
Algorithm (ABC) [34], Gray Wolf Optimizer (GWO) [35],
Social Spider Algorithm (SSA) [36, 37], Particle Swarm Opti-
mization and Gravity Search Algorithm (PSOGSA) [7], and
so on. GA and SA decrease the possibility of getting stuck
in the local optimum, but their low convergence rate. This
shortage leads to a weak performance when the need for an
immediate process exists. ABC acts properly dealing with
small problems and data with low dimensions, but when
the problem dimensions increase, the time for training
increases greatly as well. MOA has an unsuitable perfor-
mance and low accuracy, facing nonlinear data. BBO requires
lengthy computations. Despite its simplicity and speed of
convergence, GWO becomes trapped in the local optimum
and so is not ideal for situations with a global optimization.
Numerous adjustment parameters and a high level of com-
plexity are SSA’s flaws. PSOGSA is formed by a combination
of PSO and GSA which leads to an increase in the spatial and
temporal complexity.

One of the commonalities between metaheuristic algo-
rithms and other search algorithms is the split of the
search region into two phases: exploration and exploitation
[38–40]. The first phase occurs concurrently with the algo-
rithm’s attempt to examine the most dependable areas of
the search region [15, 41]. During the exploration phase,
the population is subjected to abrupt alterations in order
to properly investigate the whole region of the problem.
The exploitation phase happens when the algorithm is
converged toward a reliable answer. At this stage, the pop-
ulation is undergoing very small changes.

In most cases, given the random nature of evolutionary
algorithms, there is no specified boundary betwixt these 2
phases [18, 42]. In other words, the lack of balance betwixt
these two phases causes the algorithm to get stuck in the
local optimum. This problem is intensified, dealing with data
with high dimensions. By adjusting the displacement behav-
ior betwixt these 2 phases, the probability of getting stuck in
the local optimum can be reduced. As proved in the refer-
ence [43], GOA can properly recognize the border between
exploration and exploitation phases [44, 45]. Thus, the algo-
rithm converges toward more reliable answers.

On the other hand, any system that performs data classi-
fication consists of three main parts: data acquisition, feature
extraction, and classifier design. The novelty of this article
occurred in the feature extraction section. In general, all
extracted features are not useful and may contain useless
or duplicate information. Feature selection can be seen as
the process of identifying useful features and removing use-
less and repetitive features. The goal of feature selection is to
obtain a subset of features that solve problems well with
minimal performance degradation. The goal of feature selec-
tion is to obtain a subset of features that solve problems well
with minimal performance degradation.

This theory is mentioned here: No Free Lunch (NFL)
[46, 47]. This proposition demonstrates logically that no
metaheuristic method exists that is capable of resolving all
optimization problems. In other words, one metaheuristic
technique may perform admirably and predictably on one
set of issues while failing miserably on another set of prob-
lems [48, 49]. NFL stimulates this field of study and contrib-
utes to the development of new methodologies and the
formulation of new metaheuristic methods on an annual
basis [50]. Taking into mind the described theory, the afore-
mentioned issues, and GOA’s capacity to cope with big data,
this approach may be utilized to train Multilayer Perceptron
Neural Networks (MLP-NN) and, subsequently, to classify
sonar data.

On the other hand, any system that performs data
classification consists of three main parts: data acquisition,
feature extraction, and classifier design. The novelty of this
article occurred in the feature extraction section. In gen-
eral, all extracted features are not useful and may contain
useless or duplicate information. Feature selection can be
seen as the process of identifying useful features and
removing useless and repetitive features. The goal of fea-
ture selection is to obtain a subset of features that solve
problems well with minimal performance degradation.
The NFL theorem and the ability of GOA to find the
boundary between the two phases of exploration and
extraction in the search space is a strong motivation to
investigate GOA for the problem of feature selection.
Therefore, in this paper, in addition to GOA being used
as a neural network training algorithm, GOA is used to
select optimal features (GMLP-GOA).

The main contribution of this paper is as follows:

(i) Obtaining and collecting experimental data sets

(ii) Feature extraction using the MFCC method
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(iii) Feature selection using GOA

(iv) Designing an optimal GMLP-GOA hybrid classifier
and classification of big data sonar

(v) Data classification using MLPs trained with five
population-based metaheuristic algorithms

This paper is organized as section two will introduce the
MLP-NN. Section 3 explains general issues for GOA. Section
4 will describe how the outcoming GOA as a training algo-
rithm for metaheuristic methods in MLP-NNs is applied. Sec-
tion 5 will present the dataset and feature selection. Section 6
presents experimental results and discussion. References used
are provided in Section 7.

2. Multilayer Perceptron Neural Network

Figure 1 displays an MLP-NN where m, l, and s, respectively,
stand for the number of input nodes, hidden nodes, and
output nodes [51, 52]. As observed, there is a one-sided
junction betwixt the nodes of MLP-NN, which is among the
group of neural networks (FNN) [53, 54]. MLP-NN output
is computed by

Uj = 〠
m

i=1
Wij∙Xi

À Á
− θ j:j = 1:2:⋯:l: ð1Þ

In this relationWij stands for the weight of the edge which
connects i-th node (input layer) to j-th node (hidden layer),Xi
stands for the input to i-th node (input layer), θj stands for the
bios of j-th node (hidden layer), andm stands for the number
of input nodes. Any hidden node’s output is acquired as a rela-
tion (2) to a sigmoid function.

Uj = sigmoid U j

À Á
= 1

1 + exp −sj
À ÁÀ Á :j = 1:2:⋯:h, ð2Þ

Zk = 〠
l

j=1
Wjk∙Uj

À Á
− θk′:k = 1:2:⋯:s, ð3Þ

Zk = sigmoid Zkð Þ = 1
1 + exp −Zkð Þð Þ :k = 1:2:⋯:s: ð4Þ

After calculating the hidden nodes, it is possible to define
the final outputs as follows.

In whichWjk stands for the weight of the edge which θk′
stands for the bios of the node k -th and connects the node j
−th (hidden layer) to the node k −th (output layer). The
most essential factors of an MLP-NN, are the weight for
edges and their bios. As seen in the above relations, edges
weigh, and bios have defined the ultimate output. Training
an MLP-NN, consist of detecting the best optimal output
out of certain outputs.

3. Grasshopper Optimization Algorithm

Grasshoppers are an insect species. They are classified as
pestilences owing to the harm they do to agricultural crops
[55–57]. Although grasshoppers seem to be alone in nature,
they are part of one of the biggest animal groups on the
planet. They, sometimes, are a threat to farmers. One of their
unique features is their social behavior which can be seen
both in their childhood and their maturity. Millions of their
kids jump and roll-like rollers and eat almost all the plants
along the way. Slow movements and short steps are the main
features of grasshoppers. Short and sudden movement is one
feature of a mature grasshopper community. An important
feature of their community is the search for food resources
[58]. GOA being inspired by nature, logically, divides the
searching process into 2 phases of exploration, and
exploitation.

While seeking agents are encouraged to make abrupt
moves during the exploration phase, they prefer to make
local movements during the exploitation phase. The mathe-
matical model for simulating this grasshopper social behav-
ior is as follows [43]:

Xi = Ai + Si +Gi, ð5Þ

where Xi is the location of the i -th grasshopper, Ai denotes
the wind, Si denotes social interaction, and Gi denotes the

Input layer

Hidden layer

Output layer

Xi

Ui

Zk

Wjk

Wij

Figure 1: An artificial multilayer neural network.
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gravity placed on the i -th grasshopper. To include random-
ness, the equation is modified as follows:

Xi = r1Si + r2Gi + r3Ai, ð6Þ

where r1, r2 and r3 are random numbers between [0,1].

Si = 〠
N

j=1
j≠i

s dij
À Ácdij ,

dij = xj − xi
�� ��,

ð7Þ

where dij is the distance between the i-th and j-th grasshop-
pers and is calculated using the relationship (8). S is a func-
tion that is used to define social power. As seen in equation

(9) and in the relationship below, cdij is a unit vector extend-
ing from the i-th grasshopper to the j-th grasshopper.

cdij = xj − xi
dij

: ð8Þ

The function s shows social power as follows:

S rð Þ = f e−r/l − e−r: ð9Þ

f is the intensity of absorption and l is absorption length
scale. The function S is not able to impose strong powers
between faraway grasshoppers. The G component of the
relation (6) is computed as follows:

Gi = −g beg , ð10Þ

where g denotes the gravitational constant and beg denotes a
unit vector pointing toward the earth’s center. Component A
in relation (1) is obtained by

Ai = ucew , ð11Þ

where u denotes a constant displacement and cew denotes a
unit vector perpendicular to the wind direction.

Because grasshopper larvae lack wings, their motions are
entirely dependent on the direction of the wind. After plac-
ing S and G values in the equation (1), this equation can be
expanded as

Xi = 〠
N

j=1
j≠i

s xj − xi
�� ��À Á xj − xi

dij
− g beg + ucew , ð12Þ

where the relation (9) and N are equal to the number of
grasshoppers. Their children’s location on the ground should
not be lower than the threshold. We will not, however, utilize
this equation to simulate the grasshopper group and the opti-
mization algorithm in order to prevent the algorithm from
exploring and exploiting the search space around the

solutions. The mathematical model is capable of simulating
the grasshopper community in 2- and 3-dimensional as well
as multidimensional spaces. However, this mathematical
model cannot directly be used for solving optimization prob-
lems. The main reason for this is the rapid growth of grass-
hopper in the area of inertia. As a result, this group cannot
converge on a single point. A reformed version of this equa-
tion is presented as follows for the purpose of addressing
optimization problems:

Xd
i = c 〠

N

j=1
j≠i

c
ubd − lbd

2 ∙s xdj − xdi
��� ���� � xj − xi

dij

0
BBB@

1
CCCA + cTd ,

ð13Þ

where ubd is the upper limit on the d dimension, lbdis the
purpose value of the d dimention (the best answer so far).

Relation (9) and also cTd is a constant decreasing coefficient
to reduce the area of inertia, absorption, and desorption. It
should be considered that S is almost similar to S in the rela-
tion (1). However, we disregard the linear trend and assume
that the wind component is always ideal (purpose value).

Equation (13) demonstrates that the position of the
grasshopper is determined in terms of its present location,
the position of the best solution, and the position of all grass-
hoppers in the group. It is worth noting that the first compo-
nent of this equation examines the current location of the
grasshopper in relation to the positions of other grasshop-
pers. To determine the placement of search agents around
the purpose, we assessed the state of all grasshopper posi-
tions. This is in contrast to the particle swarm algorithm.
Each particle in the particle mass algorithm has two vectors:
a location vector and a velocity vector.

However, in the grasshopper algorithm, each search
agent is represented by a single vector. Another significant
distinction between the two methods is that the particle
swarm algorithm modifies its location depending on the par-
ticle’s current position, the particle’s best position, and the
group’s best response. Whereas in the Grasshopper Algo-
rithm, the location of the search agent is modified based
on its current position, the best response, and the positions
of all the particles in the group. This implies that none of
the other groups in the particle swarm algorithm engage in
updating a particle’s location, but the Grasshopper Algo-
rithm needs all search agents to participate in deciding each
agent’s next position.

The parameter C is utilized twice in equation (13) for the
following reasons. The first C on the left is fairly similar to the
particle swarm algorithm’s (w) weighted inertia. This setting
reduces the grasshoppers’ movements in the vicinity of the
objective spot. In other words, this parameter optimizes the
balance between the exploration (search) and exploitation
stages of the input population. The second parameter in the
equation decreases grasshopper absorption, inertia, and
desorption. Consider the component cðubd − lbdÞ/2∙sðjxdj −
xdi jÞ in the equation (13), the component cðubd − lbdÞ/2
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linearly reduces the space that grasshoppers should explore
and exploit. The component s ðxj − xiÞ/dij indicates the
grasshopper’s absorption to the purpose or the grasshopper’s
desorption from the optimal location.

Internal C decreases absorption and desorption forces
among grasshoppers as the number of repetitions increases,
but external C decreases the coverage area around the ideal
response as the number of repetitions increases. In summary,
the first statement of equation (13) takes into account the total
of the positions of the other grasshoppers and applies the

grasshoppers’ natural interaction. cTd replicates the grasshop-
pers’ hunger for food in the second sentence. Additionally,
parameter C replicates the decline in the grasshoppers’ acceler-
ation to and intake of the food source. To increase the
randomness of the behavior and as a substitute, both phrases
of equations (13)might bemultiplied by a random value. Single
sentences can also bemultiplied by random values tomodel the
grasshopper’s random behavior in interaction with each other
as well as the tendency toward the food source. The mathemat-
ical approach offered here is capable of exploring and
exploiting the search space. However, a mechanism must exist
to transition candidates from the exploration stage to the
exploitation stage. Naturally, grasshoppers look for food locally
initially, since they lack wings throughout their infancy. They
then fly freely across the air, discovering new regions. Unlike
this, in stochastic optimization techniques, the exploration
phase is conducted first to determine the permissible regions
of the search space. Following the discovery of permitted areas,
the exploitation phase forces the search agents to locate an
accurate approximation of the optimal answer location on a
local level.

To balance the two phases of exploration and operation,
parameter C must be reduced according to the number of
repetitions. This mechanism increases efficiency when the
number of repetitions increases. The area of inertia is
reduced in proportion to the number of repetitions and is
computed as follows:

c = c max − l c max − c min
L

, ð14Þ

where c max is the maximum value, c min is the minimum
value, l is the current repetition count, and L is the maxi-
mum repetition count. These parameters were assigned
values of 1 and 0.00001 in this study. The appropriate pur-
pose chase by the group is due to the effect of the last sen-
tence of equation (12) that the grasshoppers tend to be
attracted to the purpose value. The more interesting pattern
is the gradual convergence of the grasshoppers toward the
purpose with increasing repetition, which is again due to
the decrease in the parameter C. This behavior helps the
GOA algorithm not to quickly converge to the optimal
answer and thus not get stuck in the local optimal. There-
fore, in the latter phases of optimization, the grasshoppers
approach as closely as possible to the objective, which is
important in the exploitation space.

The preceding discussion demonstrates that the sug-
gested mathematical model motivates grasshoppers to prog-

ress toward the goal with increasing repetitions. However, in
a true search space, there are no objectives, since it is not
quite evident what the best and most significant objective
is. As a result, each optimization phase requires us to assign
a purpose to each collection of grasshoppers. The Grasshop-
per Algorithm makes the assumption that the best or pur-
pose value is the most suitable grasshopper (response
vector) throughout the optimization process. This will help
the algorithm store the most appropriate answer vector in
each repetition and in the search space and direct the grass-
hopper group toward that purpose value. This is done in the
goal of discovering a more precise and superior purpose that
serves as the best approximation for the overall and true
optimization of the search space.

The Grasshopper Algorithm flowchart utilized in the
neural network is seen in Figure 2. The GOA method begins
by generating a random beginning population. Agents of
search revise their positions in light of connections (13).
Each iteration has updated the best answer so far. Addition-
ally, factor c is determined using equation (14), and the dis-
tance between grasshoppers is normalized to a value
between one and four. Updating the grasshopper position
has been repeatedly performed to reach the criterion of ter-
minating the algorithm. The position and value of the objec-
tive function of the optimal answer, as the best
approximation of the overall optimal answer, is finally
obtained.

4. Training a Multilayer Neural Network Using
the Grasshopper Algorithm

In general, there are three ways for training MLP-NN using
evolutionary algorithms. The first is to utilize evolutionary
networks to determine the optimal mix of edge weight and
node bias in an MLP-NN. The second is the use of evolution-
ary networks to determine the optimal arrangement of MLP-
NNs in a given situation, and the third is the use of evolu-
tionary networks to determine the learning rate and amount
of movement of the gradient-based learning algorithm. The
Grasshopper Optimization Algorithm is evaluated against
an MLP-NN utilizing the 1-th approach in this research.
To appropriately represent the weights of edges and nodes
in a training procedure for MLP-NN networks, the weights
of edges and nodes must be properly represented.

Generally, three methods are used to express the weight of
edges and the bias of nodes: vector, matrix, and binary. Each
element is represented as a vector, matrix, or string of binary
bits in the vector, matrix, and binary methods. Each of these
strategies has a number of benefits and downsides that may
be advantageous in certain situations. Figure 3 shows how
to train a neural network using GOA.

While it is straightforward to convert elements to vec-
tors, matrices, or strings of binary bits using the first tech-
nique, the process of retrieving them is more complex. As
a result, this technique is often utilized in rudimentary
neural networks. In the second technique, it is simpler to
recover than it is to encode components in complicated
networks. This approach is particularly well-suited for
developing algorithms for generic neural networks. The
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variables must be supplied in binary form for the third tech-
nique. When the network structure becomes intricate in this
item, the length of each element likewise increases. As a result,
the coding and decoding processes will be very difficult.

In this paper, since we do not deal with complex multi-
layer neural networks, the vector method is used. The
MATLAB generic toolbox will not be used to reduce the
time of the multilayer neural network operation. As an
example of this coding method, the final vector of the mul-
tilayer neural network shown in Figure 4 is given in.

Position = w13 w23w14w24w15w25w36w46w56θ1θ2θ3θ4½ �:
ð15Þ

5. Data Set

This chapter uses one of the most challenging engineering
problems in the real world to prove GOA’s capability. The
chosen issue is the classification of sonar data, which is one
of the challenges and concerns of engineers and scientists,
working in this field.

5.1. Scenario Test Design and Experimental Data Formation.
Since our goal is to obtain a reliable and realistic set of high-
dimensional sonar data, a real experiment was designed and
implemented. The experiment was conducted using the tun-
nel cavitation model NA-10, made in England. In the first

phase, three types of impellers were produced in classes A,
B, and C. The Class A impeller has three blades that can
be used to pick up sound from a boat, and small passenger
ship. The Class B impeller has four blades that are used to
get the sound from a container ship, ocean liner, and small
oil tanker. The Class C impeller has five blades and is used
to extract sound from the aircraft carrier and large oil
tanker. In this experiment, the impellers are evaluated at dif-
ferent speeds to simulate different operating conditions.
During these experiments, the sound (acoustic noise) of
the various impellers was stored on a computer using the

Inputs

Outputs

MSE

Weights &
biases

GOA

Figure 3: How to train a neural network using GOA.

GOA MLP NN

Input

Initialize the population

Processing

Parameter setting GOA

Generate initialize population

Calculate the fitness of each
search agent

Update value c

Normalize the distance
between search agent in [1, 4]

Update the position of the
current search agent

Stop condition met?

YES
YES

NO

NO

Predicting outputs

Stop condition met?

Optimizing weights and biases

Error calculation

Updating weights and biases

Initial weights & biases

Generate MLP

Figure 2: Flowchart related to the Grasshopper Algorithm used in a neural network.
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B&K 8103 hydrophone and Data-Logger of the UDAQ_Lite
model.

The proposed test scenario is shown in Figure 5. Propul-
sion velocity in free water is expressed as a number without J
dimension, proportional to rotation speed N(RPM) or rota-
tion speed per second (RPS) and impeller diameter D (m)
and v the water flow velocity:

J = v
nD

: ð16Þ

At all experiments, the atmospheric pressure of 100 kPa
and pressure inside the tunnel were considered concerning
the depth of impeller placement in that floating class. The
water flow rate inside the tunnel is also 4m/s. One of the
hydrophones is mounted next to the propeller at a distance
of 10 cm and the other 50 cm from the first hydrophone.

In this section, the noise of the designed impellers is
measured in four steps. In the first step, after the water flow
slows down, the noise is received by the hydrophones and
then received and stored by the MATLAB software and
Data-Logger. Secondly, by turning on the impeller and with-
out the impeller wheel, the engine noise is also obtained in
several stages, so that we can obtain a reasonable estimate
of this noise. In the third stage, the impeller rotates at differ-
ent rotations (depending on the type of the model float) to
obtain the impeller rotation noises for the different floating
classes. In the fourth step, by turning on the water rotation
pump and the bubble discharging pump into the discharge

tunnel, the impeller motor is activated and the sound is col-
lected by the Data-Logger and the MATLAB software, in the
computer. At all stages, all the actual data, without amplify-
ing the values, are stored in the computer for later use.

5.1.1. Drawing Noise Curves for Model propeller’s. According
to the standard reference [30, 31] the power is calculated in
dB related to the water acoustic reference power (1μPa).
Figure 6 shows noise curves at the hydrophone surface, Fou-
rier transforms, and dB power spectrum, respectively, for
different classes of impellers.

Generally, the relation (17) is used to obtain the funda-
mental frequency by RPM.

f Fundamental =
RPM ×Number of blade

60 Hz: ð17Þ

In this section, 500 samples with different propeller and
a number of rotations were obtained.

5.2. Feature Extraction. After the preprocessing section after
receiving the detected frames containing the audio matching
to the received signals, the detected sounds are provided to
the feature extraction section with the effects of synthetic
phenomena eliminated and converted to the frequency
domain (called S ðkÞ). At this point, the signal spectrum’s
energy is calculated using the following;

S kð Þj j2 = S2r kð Þ + S2i kð Þ: ð18Þ

2

1
W23

W25

W14

W13

W36

W46

W56

W24

W15

3

4 6

5 𝜃3

𝜃2 𝜃4

𝜃1

Figure 4: The structure of the multilayer neural network with the structure of 2-3-1.

Display

Data logger
Telemeter

Location of the propeller’s
Tunnel cavitation

 

Figure 5: An overview of the proposed test scenario.
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SrðkÞ and SiðkÞ denote the real and imaginary compo-
nents of the detected signal’s Fourier transform, respectively.
After that, Mel-scaled triangle filters are used to filter the
spectral energy of jSðkÞj2. The relationship between the out-
put energy of the l filter and (20).

E lð Þ = 〠
N−1

k=0
S kð Þj j2 Hl kð Þ: ð19Þ

N is the number of discrete frequencies utilized in the
FFT conversion of the preprocessing phase, and HlðkÞ is a
filtered transfer functions, where l = 0. The logarithm func-
tion compresses the dynamic range of the Mel-Filtered
Energy Spectrum.

E lð Þ = log E lð Þð Þ: ð20Þ

Eventually, the relation (21) and discrete cosine trans-

form are used to convert the Mel-Frequency Cepstral Coef-
ficients (MFCC) to the time domain (DCT).

C nð Þ = 〠
M

l=1
e lð Þ cos n l −

1
2

� �
π

M

� �
: ð21Þ

The feature vector will be as the relation in this situation
and for any explicit purpose.

Xm = c 0ð Þ:c 1ð Þ:⋯:c P − 1ð Þ½ �T : ð22Þ

Figure 7 shows a block diagram of the procedures
involved in the classification steps.

This section contains 140 extracted characteristics.
Given 500 samples, the data set will be 500 × 140 in size,
with 140 representing the number of input nodes (n) in
the neural network and 281 being the number of neurons
in the hidden layer. Thus, despite the vast data sets,
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Figure 6: The received noise curves at the hydrophone surface, the Fourier transform, and the power spectrum in dB relative to the acoustic
water reference power (1 Pa) for the different model floats.
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computational and deterministic approaches have a high
time complexity, and random methods are regarded as the
optimal answer for this kind of problem.

5.3. Feature Extraction. As discussed in the previous subsec-
tion, the dimension of the feature matrix is 500 × 140. All
extracted features are not useful and may contain useless
or duplicate information. As shown in Table 1, there are
2140 states for the obtained feature matrix. The binary ver-
sion of GOA is responsible for selecting the optimal features.

It is assumed that the initial population is 209. Table 2
shows the hypothetical values for the initial population of
209.

In Table 2, each row is used as a feature selection pattern.
By using these patterns, the entire educational input data is
selected. In this paper, accuracy is used as a fitness function.
In the following, MLP-GOA is used to calculate the fitness
function. Therefore, for each selected pattern, the accuracy
is calculated using MLP-GOA (the accuracy value is exactly
the fit value of each pattern). Assuming that the initial pop-
ulation is 209, the length of the fitness vector will also be

Table 2: Assumed values for an initial population of 209.

Initial population f1 f2 f3 ⋯ f138 f139 f140
1 0 1 0 ⋯ 0 0 0

2 0 0 1 ⋯ 0 1 0

3 1 0 0 ⋯ 0 1 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

207 0 0 0 ⋯ 1 0 1

208 1 1 1 ⋯ 0 1 0

209 1 0 1 ⋯ 0 0 1

Mel-scale filters

MFCC

Scaling

Detection

FFTPing

Down
sampling

Windowing
512 points 

Inverse
filtering

Normalization Energy
spectrum

Log

DCT

2

Feature extraction

4
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Matched-
filter
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optimal
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GOA
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Figure 7: Block diagram of the procedures involved in classification steps.

Table 1: Different feature modes.

Feature vector states f1 f2 f3 ⋯ f138 f139 f140
1 0 0 0 ⋯ 0 0 0

2 1 0 0 ⋯ 0 0 0

3 1 1 0 ⋯ 0 0 0

4 1 1 1 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2140-2 1 1 1 ⋯ 1 0 0

2140-1 1 1 1 ⋯ 1 1 0

2140 1 1 1 ⋯ 1 1 1
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Figure 8: Feature selection from the most optimal selection pattern.

Table 3: Parameters and initial values of training algorithms.

Algorithm Parameter Value

GWO
Population size 209

The number of Gray Wolf 13

PSO

Population size 208

Cognitive constant (C1) 1.1

Social constant (C2) 1.1

Local constant (W) 0.4

ACO

Population size 209

ACO primary pheromone (τ0) 0.000001

Pheromone updating constant (Q) 20

Pheromone constant (q0) 1.1

Decreasing rate of the overall pheromone (Pg) 0.8

Decreasing rate of local pheromone (Pt) 0.6

Pheromone sensitivity (a) 2

Observable sensitivity (β) 6

GSA

Population size 209

Coefficient (α) 21

Limit down -31

Limit up 31

Gravitational constant (G°) 1

The initial speed of the masses [0, 1]

The initial value of the acceleration 0

The initial value of mass 0

GOA

Population size 209

Highest value (c max) 1

Lowest value (c min) 0.00001
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equal to 209. Figure 8 shows how to select the feature from
the most optimal selection pattern.

If the stop condition (reaching 100% accuracy or reach-
ing the maximum number of iterations) occurs, the program
ends, and the data in the best pattern (selected and reduced
features) is selected for classification with MLP-GOA.

6. Experimental Results and Discussion

For fair comparison and performance evaluation of GMLP-
GOA classifier, five classifiers MLP-GOA, MLP-GWO,
MLP-PSO, MLP-ACO, and MLP-GSA are used. The selec-
tion algorithms are all population based. GMLP-GOA and
MLP-GOA classifiers have the same training by GOA. The
only difference between these two classifiers is that in the
GMLP-GOA classifier, GOA is used for feature selection.
Table 3 contains the parameters and beginning values for
these algorithms.

In the GMLP-GOA hybrid classifier, the optimal features
obtained from GOA are used. If for other classifiers, a fea-
ture matrix with dimensions of 500 × 140 is used. Classifiers
are evaluated in terms of classification rate, local minimiza-
tion avoidance and convergence speed.

Table 4 shown the classification rate, mean and standard
deviation of the smallest error, and P value for each method
after it has been run 20 times. The classification rate indi-
cates the correct recognition accuracy of the classifier, while
the smallest error’s mean values and standard deviation, as
well as the P value, and show the algorithmic power in
avoiding local optimization. Also shown in Figure 9, is a
comprehensive comparison of the convergence rate and
method and the final error of the classifiers.

As shown in Figure 9, GMLP-GOA has the best conver-
gence rate and MLP-GSA has the worst convergence rate
among the used classifiers. The results obtained in Table 4
show that in terms of classification rate, GMLP-GOA suc-
ceeded in classifying sonar big data with 98.12% accuracy,
while MLP-GSA had the worst performance with a classifi-
cation rate of 69.66%. In terms of processing time, GMLP-
GOA had the fastest processing time with 3.14 s, while
MLP-GSA required more time for processing than other
classifiers with 10.44 s. As can be seen in Table 4 and the
values of standard deviation and P value, the GMLP-GOA
hybrid classifier performs optimally in terms of avoiding
being trapped in the local minimum. One of the reasons
for the success of GMLP-GOA can be mentioned the power
of GOA in detecting the boundary between exploration and

Table 4: Results of applying different training algorithms in designing sonar purpose classifier.

Classifier MSE (AVE ± STD) P values Classification rate (%) Processing time (s)

GMLP-GOA 0 :1055 ± 3:4180e − 01 N/A 98.1276 3.14

MLP-GOA 0:1283 ± 8:2720e − 04 N/A 95.6667 6.24

MLP-GWO 0:1519 ± 0:0269 0.0039 94.3522 7.39

MLP-GSA 0:3149 ± 0:2965 6.2149e-04 69.6633 10.44

MLP-ACO 0:2527 ± 0:1744 7.2798e-12 75.3333 7.54

MLP-PSO 0:2011 ± 0:2076 0.2239e-03 92.8222 8.78
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Figure 9: Convergence diagram of different training algorithms.
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extraction phase. As shown in Figure 9, GMLP-GOA con-
verged after 50 iterations, while MLP-GOA and MLP-
GWO converged after 75 and 95 iterations, respectively.
Therefore, according to the obtained results, GMLP-GOA
showed a successful performance in dealing with sonar big
data and is recommended for use in real-world problems.

7. Conclusion

In this paper, GOA is used to select optimal features and
train MLP-NN in GMLP-GOA hybrid classifier to classify
sonar big data. Also, to have a fair comparison, 5 classifiers
MLP-GOA, MLP-GWO, MLP-PSO, MLP-ACO, and MLP-
GSA were used, which are all based on population-based
metaheuristic algorithms. As seen in the simulation results,
GOA can correctly detect the boundary between exploration
and exploitation phases. Therefore, it does not get stuck in
local optima, and its ability to find global optima for solving
high-dimensional problems such as big data sonar is well-
proven. The results show that GMLP-GOA has the best per-
formance for classifying sonar big data by reaching a classi-
fication rate of 98.12%. 5 classifiers MLP-GOA, MLP-GWO,
MLP-PSO, MLP-ACO, and MLP-GSA have the most accu-
rate classification accuracy by reaching values of 95.66,
94.35, 92.82, 75.33, and 69.66, respectively.
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