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Abstract. This paper presents a novel feature selection method for clas-
sification of high dimensional data, such as those produced by microar-
rays. It includes a partial supervision to smoothly favor the selection of
some dimensions (genes) on a new dataset to be classified. The dimen-
sions to be favored are previously selected from similar datasets in large
microarray databases, hence performing inductive transfer learning at
the feature level. This technique relies on a feature selection method em-
bedded within a regularized linear model estimation. A practical approx-
imation of this technique reduces to linear SVM learning with iterative
input rescaling. The scaling factors depend on the selected dimensions
from the related datasets. The final selection may depart from those
whenever necessary to optimize the classification objective. Experiments
on several microarray datasets show that the proposed method both im-
proves the selected gene lists stability, with respect to sampling variation,
as well as the classification performances.

1 Introduction

Classification of microarray data is a challenging problem as it typically relies
on a few tens of samples but several thousand dimensions (genes). The number
of microarray experiments needed to obtain robust models is generally orders of
magnitude higher than the actual size of most datasets [1]. The number of avail-
able datasets is however continuously rising. Large databases like the NCBI’s
Gene Expression Omnibus (GEO) [2] or the EBI’s ArrayExpress [3] offer tens
of thousand microarray samples which are well formatted and documented. The
construction of a large microarray dataset consisting of the simple juxtaposition
of independent smaller datasets would be difficult or irrelevant due to differ-
ences either in terms of biological topics, technical constraints or experimental
protocols.

Transfer learning techniques have been designed to overcome situations where
too few samples for the task at hand are available, but where experience from
slightly different tasks is available [4,5]. Knowledge is extracted from previous
experience (source domains) to help solving the new problem (target domain).
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Samples of source and target domains are supposed to be drawn from similar
but different distributions. This setting contrasts with semi-supervised learning
where samples are supposed to be drawn from the same distribution but where
some unlabeled samples are used to build the model [6].

Inductive transfer approaches require labeled data both for the source and
target domains [7]. The target domain examples are unlabeled for transductive
transfer methods [8] while fully unsupervised transfer techniques have been de-
signed as well [9]. The transfer of knowledge between source and target domains
may concern the examples [10,11,12], some model parameters [13,14] or, as in
the present work, the feature space [7,15,16].

In multi-task learning [7] a common feature representation is learned at the
same time for several tasks. Structural correspondence learning [15] uses fea-
tures supposed to be relevant for several domains to generate new features for
the target domain. An alternative method compares learning tasks by measuring
a distance between relevance weights on a set of common features [16]. In con-
trast to those approaches for transferring feature representation, the transferred
knowledge in our method can be automatically partly or fully dropped whenever
it does not help to optimize the classification objective on the target domain. As
a result, the specific choice of source datasets is not too critical. Benefits of trans-
fer learning have been reported mainly as a gain in classification performances
but, as detailed below, the proposed approach also improves the stability of the
selected features.

In the particular context of microarray data, feature selection is commonly
performed, both to increase the interpretability of the predictive model and
possibly to reduce its cost [17,18]. In some cases feature selection has also been
shown to improve classification accuracy [19]. Biomarker selection specifically
refers to the identification of a small set of genes, also called a signature, related
to a pathology or to an observed clinical outcome after a treatment. The lack
of robustness of biomarker selection has been outlined [20]. A good signature
is ideally highly stable with respect to sampling variation. In the context of
biomarker selection from microarray data, high stability means that different
sub-samples of patients lead to very similar sets of biomarkers. This is motivated
by the assumption that the biological process explaining the outcome is mostly
common among different patients.

Support Vector Machines (SVMs) are particularly convenient to classify high
dimensional data with only a few samples. In their simplest form, SVMs simply
reduce to maximal margin hyperplanes in the input space. Such models were
shown to successfully classify microarray data either on the full input space [21]
or combined with feature selection [22,23,24]. The latter approaches are embed-
ded as the selection directly uses the classifier structure.

In the present work we rely on another embedded selection method with linear
models, called l1-AROM [25]. This specific choice is motivated by the possibil-
ity to extend this approach in a simple yet efficient way to perform transfer
learning by biasing the optimization procedure towards certain dimensions. We
proposed recently such a partially supervised (PS) extension [26] but the favored
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dimensions were then defined from prior knowledge. In the context of microarray
data, molecular biologists may indeed sometimes guess that a few genes should
be considered a priori more relevant. In the present work, we do not use such
prior knowledge but rather related datasets, hence performing inductive trans-
fer learning at the feature level. The additional benefits are a fully automated
feature selection procedure and the possibility to choose the number of features
to be transferred independently of some expert knowledge. A practical approx-
imation of this technique reduces to learn linear SVMs with iterative rescaling
of the inputs. The rescaling factors depend here on previously selected features
from existing datasets.

This initial feature selection on source domains is performed using a simple
univariate t-test ranking while the final iterative selection is intrinsically mul-
tivariate. Using an initial univariate selection on the source domains is both
computationally efficient and arguably a relevant starting point before transfer-
ring to a distinct target domain. As shown in our experiments this choice results
in significant stability and classification performance improvements.

The rest of the paper is organized as follows. Section 2 briefly reviews the
l1-AROM and l2-AROM feature selection techniques. Section 3 describes our
partially supervised feature selection technique extending the AROM methods.
Section 4 details how to use this technique to perform transfer learning. Exper-
iments on microarray datasets are reported in section 5. Conclusions and future
perspectives are discussed in section 6.

2 The AROM Methods

Given m examples xi ∈ R
n and the corresponding class labels yi ∈ {±1} with

i = 1, ..., m, a linear model g(x) predicts the class of any point x ∈ R
n as follows.

g(x) = sign(w · x + b) (1)

Feature selection is closely related to a specific form of regularization of this deci-
sion function to enforce sparsity of the weight vector w. Weston et al. [25] study
in particular the zero-norm minimization subject to linear margin constraints:

min
w

||w||0 subject to yi(w · xi + b) ≥ 1 (2)

where ||w||0 = card{wj |wj �= 0} and card is the set cardinality. Since problem (2)
is NP-Hard, a log l1-norm minimization is proposed instead.

min
w

n∑

j=1

ln(|wj | + ε) subject to yi(w · xi + b) ≥ 1 (3)

where 0 < ε � 1 is added to smooth the objective when some |wj | vanishes. The
natural logarithm in the objective facilitates parameter estimation with a sim-
ple gradient descent procedure. The resulting algorithm l1-AROM1 iteratively
optimizes the l1-norm of w with rescaled inputs.
1 AROM stands for Approximation of the zero-norm minimization.
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The l2-AROM method further approximates this optimization by replacing
the l1-norm by the l2-norm. Even though such an approximation may result in
a less sparse solution, it is very efficient in practice when m � n. Indeed, a dual
formulation may be used and the final algorithm boils down to a linear SVM
estimation with iterative rescaling of the inputs. A standard SVM solver can be
iteratively called on properly rescaled inputs. A smooth feature selection occurs
during this iterative process since the weight coefficients along some dimensions
progressively drop below the machine precision while other dimensions become
more significant. A final ranking on the absolute values of each dimension can
be used to obtain a fixed number of features.

3 The Partially Supervised AROM Methods

Whenever some knowledge on the relative importance of each feature is available
(either from actual prior knowledge or from a related dataset), the l1-AROM
objective can be modified by adding a prior relevance vector β = [β1, ..., βn]t

defined over the input dimensions. Let βj > 0 denote the relative prior relevance
of the jth feature, the higher its value the more relevant the corresponding feature
is a priori assumed. In practice, only a few dimensions can be assumed more
relevant (e.g. βj > 1) while the vast majority of remaining dimensions are not
favored (e.g. βj = 1). Section 5 further discusses the practical definition of β.
In contrast with semi-supervised learning, this is a form of partial supervision
(PS) on the relevant dimensions rather than the labels.

The optimization problem of PS-l1-AROM is defined to penalize less the di-
mensions which are assumed a priori more relevant:

min
w

n∑

j=1

1
βj

ln(|wj | + ε) subject to yi(w · xi + b) ≥ 1 (4)

It was recently shown how problem (4) can be reformulated as an iterated l1-
norm optimization with margin constraints on rescaled inputs [26]:

min
w′

n∑

j=1

|w′
j | subject to yi(w′ · (xi ∗ wk ∗ β) + b) ≥ 1 (5)

where ∗ denotes the component-wise product and the initial weight vector is
defined as w0 = [1, . . . , 1]t. At iteration k + 1, problem (5) is solved given the
previous weight vector wk and the fixed relevance vector β, and the process is
iterated till convergence.

Similarly to the l2-AROM method presented in section 2, problem (5) can
be approximated by replacing the l1-norm by the l2-norm. This modification
results in PS-l2-AROM, a practical approach which is both easy to implement
and computationally more efficient. The l2-norm formulation indeed reduces to
estimate linear SVMs with iteratively rescaled margin constraints. The original
l2-AROM method is obtained when βj = 1 (∀j), in other words, without prior
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Fig. 1. 2D-representation of the Zero-Norm Approximation by
∑

j
1

βj
ln |wj |. Left:

without prior relevance (β = [1, 1]t). Right: with prior relevance (β = [5, 1]t).

preference between the input features. PS-l2-AROM further uses the relevance
vector β to smoothly favor certain dimensions within the selection process.

Figure 1 illustrates why problem (3) is a good approximation to the zero-norm
minimization. This objective is nearly flat on the whole space of parameters w
except when a specific wj tends towards zero. The objective is there strongly
minimized. It also illustrates what happens if this objective is modified by intro-
ducing prior relevance on dimensions, as in problem (4). The objective function
is again nearly flat everywhere but the gradient is now even smaller along a
dimension corresponding to a larger βj .

4 Transfer Learning with PS-l2-AROM

We discuss here how to use the PS-l2-AROM method for transfer learning. Let
the Target Domain DT be a set of samples xi ∈ R

n, generated according to a
distribution PT (x), and associated class labels yi ∈ {±1} following PT (y|x), i =
1, ..., m. The task is to build a robust classification model gT (x) and to identify
a discriminative signature ST for DT . It is generally possible to find related
datasets, called Source Domains DS , for which PS(y|x) ≈ PT (y|x) but PS(x) �=
PT (x). For example, several microarray datasets are available on GEO [2] for
which the class labels correspond to the same concepts, cancer tissue or normal
tissue, but for which the gene expression distributions differ. There are many
sources of divergence such as the type of biological samples, the RNA extraction
protocol, the normalization steps applied to raw data, etc.

It is possible to use a partially supervised feature selection method as a trans-
fer learning technique. The proposed approach is an inductive transfer learning
technique since the class labels are known both for DS and DT . We assume that
the data from all domains share a sufficiently large set of n features and, without
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loss of generality, that feature index j in DS maps to the same index in DT . The
proposed approach simply uses any convenient feature selection on DS to build
an initial signature SS . A prior relevance vector β ∈ R

n is defined from SS to
favor the actual selection of some dimensions on DT :

βj =
{

B ∀j ∈ SS

1 ∀j /∈ SS
(6)

where B > 1 corresponds to the weight to favor features belonging to SS . The
choice of B is arbitrary but experiments reported in section 5.6 illustrate that
the proposed method is not sensitive to a specific choice for a large range of
possible values. The vector β is used to bias the selection of features on DT via
PS-l2-AROM to obtain a final signature ST . The selection on DT is influenced
by the knowledge extracted from DS , i.e. a set of indexes of relevant features.
Those transferred features are assumed relevant for DS but not necessarily highly
discriminative on DT , since PS(x) �= PT (x). Our modeling assumption is how-
ever that the features extracted from similar tasks provide useful information as
compared to selecting features only from a single domain DT . This assumption
is confirmed by our practical experiments reported in section 5.

Any standard feature selection method can be used for the initial selection
on DS. We recommend in particular the use of a simple univariate technique
such as a t-test ranking. It is computationally efficient and this initial selection
is not meant to be highly accurate on DS but to guide the detailed selection to
be performed eventually on DT .

5 Data and Experiments

This section describes and evaluates several practical ways of transfer learning
based on the partially supervised feature selection implemented in PS-l2-AROM.
Three prostate cancer microarray datasets are presented in section 5.1. We detail
in section 5.2 the metrics used to assess the stability of selected features and clas-
sification performances. Baseline results are obtained with no transfer, that is by
applying the l2-AROM feature selection technique on a given dataset. Improved
stability and classification performances are obtained with a single transfer. This
first protocol uses one related dataset as source domain to guide the selection
on the target domain (section 5.3). Further improvements can be obtained with
multiple transfer which combines several source domains (section 5.4). Experi-
mental results are presented in section 5.5. Finally, the sensitivity to a specific
choice of the prior weight value (the B parameter) is analyzed in section 5.6.

In a nutshell those experimental results show that transfer learning based on
partially supervised feature selection always leads to a gain in stability as well
as a systematic gain in classification performance for signature sizes of interest.

5.1 Microarray Data

Table 1 presents the main characteristics of the three prostate cancer microar-
ray datasets used in this experimental section. For convenience, datasets will
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Table 1. Microarray prostate datasets. Columns respectively show the dataset name,
the number of normal samples, the number of tumor samples, the original number of
features and the type of Affymetrix chips used.

dataset Normal Tumor Features Chip

Singh 50 52 12,625 HGU95Av2
Chandran 18 86 12,625 HGU95Av2

Welsh 9 25 12,626 HGU95A

be named after the first author of the publication along which they were made
available (Singh [27], Chandran [28] and Welsh [29]). In the original publi-
cations, the task is almost the same for the three datasets: binary classification
between tumor and normal tissues. In Chandran, tumor samples are of two
types: primary tumor and metastatic tumor. Tumor samples in Welsh corre-
spond to 24 primary tumors and 1 lymph node metastasis. No precision is made
about the type of tumor tissue in Singh. The microarray technology used to
produce those datasets is the same for Singh and Chandran, but is a bit older
for Welsh (see table 1). Consequently, features (genes) present on each type of
chip differ very slightly. Samples and RNA extraction were also performed ac-
cording to different protocols. The internal normalization to produce one value
for each feature also differ from set to set. All these differences make their simple
combination in a larger dataset irrelevant. The three datasets are here reduced
to the set of 12,600 features they share in common.

5.2 Evaluation Metrics

Stability measures to which extent k sets S of s selected features (gene signa-
tures) share common features. Those sets can typically be produced by selecting
features from different samplings of the data. Kuncheva [30] proposed such a
stability index:

K({S1, . . . ,Sk}) =
2

k(k − 1)

k−1∑

i=1

k∑

j=i+1

|Si ∩ Sj | − s2

n

s − s2

n

(7)

where n is the total number of features, and Si, Sj are two signatures built from
different subsets of the training samples. The s2

n ratio in this formula corrects
a bias due to the chance of selecting common features among two sets chosen
at random. This correction motivates our use of this particular stability index.
This index satisfies −1 < K ≤ 1 and the greater its value the largest the number
of commonly selected features in the various sets. A negative index for a set of
signatures means that feature sharing is mostly due to chance.

Stability alone cannot characterize the quality of a subset of features. Indeed,
if a large randomly chosen set of features were purely forced in every signature,
the stability would be very high, but the model built on those features would
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likely have a poor classification performance. This performance is assessed here
with the Balanced Classification Rate:

BCR =
1
2

(
TP

P
+

TN

N

)
(8)

where TP (resp. TN) is the number of positive (resp. negative) test samples
correctly predicted as positive (resp. negative) among the P positive (resp. N
negative) test samples. BCR is preferred to accuracy because microarray datasets
often have unequal class priors. BCR is the average between specificity and
sensitivity, two very common measures in the medical domain. BCR can also be
generalized to multi-class problems more easily than ROC analysis.

5.3 Single Transfer

Our first experimental protocol uses (k = 200) random 90%-10% samplings from
the target domain DT . Each 90% fraction forms a training set. These samples
are first normalized to zero median and unit standard deviation. Features are
then selected via PS-l2-AROM and a linear soft-margin SVM is built on the
selected dimensions. Each 10% fraction forms the associated test samples that
are preprocessed according to the training normalization parameters. The vector
β used for PS-l2-AROM is set by selecting a signature SS on DS with a t-test
ranking2. The 50 top ranked features define SS , which is a common default
signature size for biomarker selection. The feature selection is performed on DT

while favoring the genes from SS according to:

βj =
{

10 ∀j ∈ SS

1 ∀j /∈ SS
(9)

Here DS is a single dataset different from DT . Given the three datasets available,
six combinations of DS and DT are tested. Stability over the 200 samplings and
averaged BCR performances are reported. For comparison purposes, the same
protocol is performed with no transferred knowledge, i.e. with βj = 1 , ∀j ∈
1, ..., n.

5.4 Multiple Transfer

When several datasets are available as source domains it may be useful to com-
bine the knowledge extracted from each of them to guide the feature selection
on the target domain DT . Such a multiple transfer protocol is described below
with two source domains. The extension to more than two source domains is
straightforward.

2 This univariate filtering method ranks genes according to
μj+−μj−√

σ2
j+/m++σ2

j−/m−
, where

μj+ (resp. μj−) is the mean expression value of the gene j for the m+ positively
(resp. m+ negatively) labeled samples, and σj+, σj− are the associated standard
deviations.
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A signature SS of 50 features is extracted from the source domains DS1,S2

and applied to DT via PS-l2-AROM. Features are ranked according to a t-test
on each source dataset. The p best ranked features are selected from each source
dataset and the intersection of those two signatures is computed. The parameter
p is chosen such that the size of the intersection is 50. The rationale behind this
choice is to transfer the same amount of knowledge in DT as compared to the
single transfer protocol. The values of p used for the three possible combinations
of the available source datasets are 557 for (Singh

⋂
Chandran), 275 for

(Welsh
⋂

Singh) and 385 for (Welsh
⋂

Chandran). Those differences result
from the fact that some combinations have more top ranked features in common
than others. For example, the number of features needed to build an intersected
signature of 50 genes is about twice as much for Singh and Chandran as
compared to Singh and Welsh. This could explain why using Singh rather
than Chandran as DS for Welsh as DT gives better results in a single transfer
protocol (see section 5.5).

5.5 Results

Figures 2 and 3 respectively show the BCR and the stability results for vari-
ous signature sizes |ST |. For signatures significantly larger than the transferred
knowledge (|SS | = 50) results are equivalent to baseline results (no transfer). In
contrast, for signature sizes of practical interest (a few tens of genes), there is a
large increase both in classification performance and stability.

For example, transferring knowledge from Singh to Welsh (top of fig. 2)
improves the average BCR from 79.6% (resp. 65.7%) for a signature size of 16
(resp. 10) genes up to more than 99.2% (resp. 98.7%). Those differences are
statistically significant according to the corrected resampled t-test3 proposed
in [31]. BCR results on the Chandran and Singh target datasets follow the
same trends.

Multiple transfer may further improve the BCR performances. This is in par-
ticular the case on the Chandran dataset (center of fig. 2) with transferred
knowledge from Welsh

⋂
Singh. For example, the BCR differences are sta-

tistically significant (p-value ≤ 0.025) between a single transfer and a multiple
transfer with a final signature of 10 genes. In general, multiple transfer BCR re-
sults are always equivalent or better than single transfer results. Multiple transfer
thus offers a more robust approach not requiring to carefully select which source
domain need to be considered for a given target domain.

Transfer learning always improves the stability of the selected gene lists as
illustrated in Fig. 3. The maximal stability is often reached around 50 fea-
tures, which comes with no surprise since precisely 50 genes are favored during
the selection on the target domain. However this maximal stability does not
reach 100% which illustrates that the selected genes are not just those belonging
to SS .
3 Such a test corrects for the fact that the various test sets are not independent since

they may overlap. The BCR differences are significant with a (likely conservative)
p-value = 1.9 × 10−2 for 16 genes and a p-value = 2.6 × 10−4 for 10 genes.
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Fig. 2. Classification performances (Balanced Classification Rate) obtained on
Welsh (top), Chandran (center) and Singh (bottom). No Transfer is the baseline
for which features are selected on the target dataset without prior preference. The next
two curves specify which dataset was used in a single transfer setting. The fourth curve
refers to the multiple transfer setting.
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Fig. 3. Signature stability (Kuncheva index) obtained on Welsh (top), Chandran
(center) and Singh (bottom). No Transfer is the baseline for which features are se-
lected on the target dataset without prior preference. The next two curves specify which
dataset was used in a single transfer setting. The fourth curve refers to the multiple
transfer setting.
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5.6 Impact of Prior Relevance Weight

In the experiments described in section 5.5, the value B = 10 was chosen to
favor some dimensions via PS-l2-AROM. The influence of a specific choice of
the B value on stability and classification performances is analyzed in this
section. We detail experiments with multiple transfer since this approach of-
fers the best results so far. Figure 4 displays stability and BCR results for
B = {1, 2, 5, 10, 100, 1000} on Welsh. The curves for B = 1 and B = 10 corre-
spond to the previous settings respectively with no transfer and multiple transfer.
Equivalent trends are observed on the other datasets (results not shown). The
influence of the B value can be summarized as follows.

Results show that the higher the B value the stronger the stability peak
around 50 features. This is a logical consequence of the design of PS-l2-AROM.
The stability is not influenced for signature sizes |ST | significantly larger than
50 features except for a very large B = 1000. For signature sizes smaller than
50 a better stability is obtained with B in the range [10, 100]. BCR results show
a positive effect of the partial supervision as soon as B is greater than 5. The
proposed approach is not highly sensitive to a specific choice of B in the range
[5, 100]. The default value of B = 10 offers a reasonable choice overall. Hence the
proposed approach does not require to carefully optimize the meta-parameter B
in a nested validation loop.
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Fig. 4. Impact of the prior relevance weight on signature stability (Kuncheva index)
and classification performances (Balanced Classification Rate) on Welsh

6 Conclusions and Perspectives

We address in this paper the problem of transfer learning for feature selection
and classification of high dimensional data, such as those produced by microarray
experiments. We propose a feature selection method on a target domain that
can be partially supervised (PS) from features previously extracted from related
source domains. Such knowledge can be acquired from public databases like
GEO [2] or ArrayExpress [3]. The initial feature selection on the source domains
is typically performed with a fast univariate technique. The purpose of this initial
selection is to guide the selection process on the target domain.
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We rely here on our recently proposed PS-l2-AROM method, a feature selec-
tion approach embedded within the estimation of a regularized linear model [26].
This algorithm reduces to linear SVM learning with iterative rescaling of the in-
put features. The scaling factors depend here on the selected dimensions on the
source domains. The proposed optimization procedure smoothly favors the pre-
selected features but the finally selected dimensions may depart from those to
optimize the classification objective under rescaled margin constraints.

Practical experiments on several microarray datasets illustrate that the pro-
posed approach not only increases classification performances, a usual benefit of
a sound transfer learning scheme, but also the stability of the selected dimen-
sions with respect to sampling variation. We also show how a multiple transfer
from various source domains can bring further improvements.

The proposed approach relies on a meta-parameter defining the prior weight of
the favored dimensions during the partially supervised feature selection. We show
experimentally that this method is not sensitive to a specific choice of this parame-
ter for a large range of possible values. Distinct weight values for different features
could also be considered in the future. One could for instance define those weights
as a function of the p-values of the initial t-test. Here the t-test was applied on
the source domain(s) but it could also be interesting to compute the t-test on the
target domain itself, hence without transfer. The combination of a simple feature
ranking method and the partially supervised feature selection could already im-
prove stability and/or classification performances on a given dataset.

We rely on a simple univariate selection on the source domain(s). The purpose
of this initial selection is indeed not to be highly accurate since the final and more
refined selection is performed on a distinct target domain. Our current choice is a
simple t-test ranking for this initial selection. Several alternatives could however
be considered, including a multivariate embedded selection method such as L2-
AROM. More importantly, the size of the initial signature extracted from the
source domain(s) is currently fixed to 50 genes. This is a common default value
for biomarker selection and it offers very good performances. It would however
be interesting to investigate further the influence of this size on the quality
of the final selection. A related issue would be the automatic selection of the
best source domain(s) for a given target domain and the number of features
to be extracted from each of them. Simple similarity measures between various
datasets can probably help in this regard.

Our partially supervised feature selection is a general approach which does
not depend, at least in principle, on how the favored dimensions are initially
selected. The present work relies on other related datasets while our previous
work used real prior knowledge from field experts [26]. A further and natural
extension would combine the transferred knowledge which such prior knowledge
whenever available.
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