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Abstract 

Feature selection has been the focus of interest for quite some time and much work has been done. With the creation of huge 

databases and the consequent requirements for good machine learning techniques, new problems arise and novel approaches 

to feature selection are in demand. This survey is a comprehensive overview of many existing methods from the 1970’s to the 
present. It identifies four steps of a typical feature selection method, and categorizes the different existing methods in terms 

of generation procedures and evaluation functions, and reveals hitherto unattempted combinations of generation procedures 
and evaluation functions. Representative methods are chosen from each category for detailed explanation and discussion via 

example. Benchmark datasets with different characteristics are used for comparative study. The strengths and weaknesses of 
different methods are explained. Guidelines for applying feature selection methods are given based on data types and domain 

characteristics. This survey identifies the future research areas in feature selection, introduces newcomers to this field, and paves 
the way for practitioners who search for suitable methods for solving domain-specific real-world applications. (Intelligent Data 

Analysis, Vol. I, no. 3, http:llwwwelsevier.co&ocate/ida) 0 1997 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The majority of real-world classification problems require supervised learning where the underlying 
class probabilities and class-conditional probabilities are unknown, and each instance is associated with 

a class label. In real-world situations, relevant features are often unknown a priori. Therefore, many 
candidate features are introduced to better represent the domain. Unfortunately many of these are either 

partially or completely irrelevant/redundant to the target concept. A relevant feature is neither irrelevant 
nor redundant to the target concept; an irrelevant feature does not affect the target concept in any way, 
and a redundant feature does not add anything new to the target concept [21]. In many applications, the 
size of a dataset is so large that learning might not work as well before removing these unwanted features. 

Reducing the number of irrelevant/redundant features drastically reduces the running time of a learning 
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algorithm and yields a more general concept. This helps in getting a better insight into the underlying 

concept of a real-world classification problem [23,24]. Feature selection methods try to pick a subset of 
features that are relevant to the target concept. 

Feature selection is defined by many authors by looking at it from various angles. But as expected, 
many of those are similar in intuition and/or content. The following lists those that are conceptually 

different and cover a range of definitions. 

1. Idealized: find the minimally sized feature subset that is necessary and sufficient to the target 
concept [22]. 

2. Classical: select a subset of M features from a set of N features, M < N, such that the value of a 
criterion function is optimized over all subsets of size M [34]. 

3. Improving Prediction accuracy: the aim of feature selection is to choose a subset of features for 

improving prediction accuracy or decreasing the size of the structure without significantly decreasing 
prediction accuracy of the classifier built using only the selected features [24]. 

4. Approximating original class distribution: the goal of feature selection is to select a small subset 

such that the resulting class distribution, given only the values for the selected features, is as close as 
possible to the original class distribution given all feature values [24]. 

Notice that the third definition emphasizes the prediction accuracy of a classifier, built using only the 

selected features, whereas the last definition emphasizes the class distribution given the training dataset. 
These two are quite different conceptually. Hence, our definition considers both factors. 

Feature selection attempts to select the minimally sized subset of features according to the following 
criteria. The criteria can be: 

1. the classification accuracy does not significantly decrease; and 
2. the resulting class distribution, given only the values for the selected features, is as close as possible 

to the original class distribution, given all features. 

Ideally, feature selection methods search through the subsets of features, and try to find the best 

one among the competing 2N candidate subsets according to some evaluation function. However this 
procedure is exhaustive as it tries to find only the best one. It may be too costly and practically prohibitive, 

even for a medium-sized feature set size (N). Other methods based on heuristic or random search 
methods attempt to reduce computational complexity by compromising performance. These methods 
need a stopping criterion to prevent an exhaustive search of subsets. In our opinion, there are four basic 
steps in a typical feature selection method (see Figure 1): 

1. a generation procedure to generate the next candidate subset; 

2. an evaluation finction to evaluate the subset under examination; 
3. a stopping criterion to decide when to stop; and 
4. a validation procedure to check whether the subset is valid. 

The generation procedure is a search procedure [46,26]. Basically, it generates subsets of features for 

evaluation. The generation procedure can start: (i) with no features, (ii) with all features, or (iii) with 
a random subset of features. In the first two cases, features are iteratively added or removed, whereas 
in the last case, features are either iteratively added or removed or produced randomly thereafter [26]. 
An evaluation function measures the goodness of a subset produced by some generation procedure, and 
this value is compared with the previous best. If it is found to be better, then it replaces the previous best 
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Fig. 1. Feature selection process with validation. 

subset. Without a suitable stopping criterion the feature selection process may run exhaustively or forever 
through the space of subsets. Generation procedures and evaluation functions can influence the choice for 

a stopping criterion. Stopping criteria based on a generation procedure include: (i) whether a predefined 
number of features are selected, and (ii) whether a predefined number of iterations reached. Stopping 
criteria based on an evaluation function can be: (i) whether addition (or deletion) of any feature does 

not produce a better subset; and (ii) whether an optimal subset according to some evaluation function 
is obtained. The loop continues until some stopping criterion is satisfied. The feature selection process 
halts by outputting a selected subset of features to a validation procedure. There are many variations 
to this three-step feature selection process, which are discussed in Section 3. The validation procedure 
is not a part of the feature selection process itself, but a feature selection method (in practice) must be 

validated. It tries to test the validity of the selected subset by carrying out different tests, and comparing 
the results with previously established results, or with the results of competing feature selection methods 
using artificial datasets, real-world datasets, or both. 

There have been quite a few attempts to study feature selection methods based on some framework or 

structure. Prominent among these are Doak’s [13] and Siedlecki and Sklansky’s [46] surveys. Siedlecki 
and Sklansky discussed the evolution of feature selection methods and grouped the methods into 
past, present, and future categories. Their main focus was the branch and bound methods [34] and 

its variants, [16]. No experimental study was conducted in this paper. Their survey was published in 
the year 1987, and since then many new and efficient methods have been introduced (e.g., Focus [2], 
Relief [22], LVF [28]). Doak followed a similar approach to Siedlecki and Sklansky’s survey and grouped 
the different search algorithms and evaluation functions used in feature selection methods independently, 
and ran experiments using some combinations of evaluation functions and search procedures. 

In this article, a survey is conducted for feature selection methods starting from the early 1970’s [331 

to the most recent methods [28]. In the next section, the two major steps of feature selection (generation 
procedure and evaluation function) are divided into different groups, and 32 different feature selection 

methods are categorized based on the type of generation procedure and evaluation function that is used. 
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This framework helps in finding the unexplored combinations of generation procedures and evaluation 
functions. In Section 3 we briefly discuss the methods under each category, and select a representative 
method for a detailed description using a simple dataset. Section 4 describes an empirical comparison 
of the representative methods using three artificial datasets suitably chosen to highlight their benefits 

and limitations. Section 5 consists of discussions on various data set characteristics that influence the 
choice of a suitable feature selection method, and some guidelines, regarding how to choose a feature 

selection method for an application at hand, are given based on a number of criteria1 extracted from these 
characteristics of data. This paper concludes in Section 6 with further discussions on future research 
based on the findings of Section 2. Our objective is that this article will assist in finding better feature 
selection methods for given applications. 

2. Study of Feature Selection Methods 

In this section we categorize the two major steps of feature selection: generation procedure and 
evaluation function. The different types of evaluation functions are compared based on a number of 
criteria. A framework is presented in which a total of 32 methods are grouped based on the types of 

generation procedure and evaluation function used in them. 

2. I. Generation Procedures 

If the original feature set contains N number of features, then the total number of competing candidate 
subsets to be generated is 2 N. This is a huge number even for medium-sized N. There are different 

approaches for solving this problem, namely: complete, heuristic, and random. 

2.1.1. Complete 
This generation procedure does a complete search for the optimal subset according to the evaluation 

function used. An exhaustive search is complete. However, Schlimmer [43] argues that “just because the 
search must be complete does not mean that it must be exhaustive.” Different heuristic functions are used 
to reduce the search without jeopardizing the chances of finding the optimal subset. Hence, although the 

order of the search space is O(2N), a fewer subsets are evaluated. The optimality of the feature subset, 
according to the evaluation function, is guaranteed because the procedure can backtrack. Backtracking 
can be done using various techniques, such as: branch and bound, best first search, and beam search. 

2. I. 2. Heuristic 
In each iteration of this generation procedure, all remaining features yet to be selected (rejected) are 

considered for selection (rejection). There are many variations to this simple process, but generation of 
subsets is basically incremental (either increasing or decreasing). The order of the search space is O(N*) 
or less; some exceptions are Relief [22], DTM [9] that are discussed in detail in the next section. These 
procedures are very simple to implement and very fast in producing results, because the search space is 
only quadratic in terms of the number of features. 

2. I .3. Random 

This generation procedure is rather new in its use in feature selection methods compared to the other 
two categories. Although the search space is O(2N), but these methods typically search fewer number of 
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subsets than 2N by setting a maximum number of iterations possible. Optimality of the selected subset 
depends on the resources available. Each random generation procedure would require values of some 
parameters. Assignment of suitable values to these parameters is an important task for achieving good 

results. 

2.2. Evaluation Functions 

An optimal subset is always relative to a certain evaluation function (i.e., an optimal subset chosen 
using one evaluation function may not be the same as that which uses another evaluation function). 

Typically, an evaluation function tries to measure the discriminating ability of a feature or a subset 
to distinguish the different class labels. Langley [26] grouped different feature selection methods into 
two broad groups (i.e., filter and wrapper) based on their dependence on the inductive algorithm that 
will finally use the selected subset. Filter methods are independent of the inductive algorithm, whereas 
wrapper methods use the inductive algorithm as the evaluation function. Ben-Bassat [4] grouped the 

evaluation functions existing until 1982 into three categories: in formation or uncertainty measures, 
distance measures, and dependence measures, and suggested that the dependence measures can be 
divided between the first two categories. He has not considered the classification error rate as an 

evaluation function, as no wrapper method existed in 1982. Doak [13] divided the evaluation functions 
into three categories: data intrinsic measures, classification error rate, and estimated or incremental 
error rate, where the third category is basically a variation of the second category. The data intrinsic 
category includes distance, entropy, and dependence measures. Considering these divisions and the 
latest developments, we divide the evaluation functions into five categories: distance, information (or 

uncertainty), dependence, consistency, and classi$er error rate. In the following subsections we briefly 
discuss each of these types of evaluation functions. 

2.2.1. Distance Measures 
It is also known as separability, divergence, or discrimination measure. For a two-class problem, a 

feature X is preferred to another feature Y if X induces a greater difference between the two-class 
conditional probabilities than Y; if the difference is zero, then X and Y are indistinguishable. An example 
is the Euclidean distance measure. 

2.2.2. Znfonnation Measures 
These measures typically determine the information gain from a feature. The information gain from a 

feature X is defined as the difference between the prior uncertainty and expected posterior uncertainty 
using X. Feature X is preferred to feature Y if the information gain from feature X is greater than that 

from feature Y (e.g., entropy measure) [4]. 

2.2.3. Dependence Measures 
Dependence measures or correlation measures qualify the ability to predict the value of one variable 

from the value of another. The coefficient is a classical dependence measure and can be used to find the 
correlation between a feature and a class. If the correlation of feature X with class C is higher than the 

correlation of feature Y with C, then feature X is preferred to Y. A slight variation of this is to determine 
the dependence of a feature on other features; this value indicates the degree of redundancy of the feature. 
All evaluation functions based on dependence measures can be divided between distance and information 
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Table 1 

A Comparison of Evaluation Functions 

Evaluation Function Generality Time Complexity Accuracy 

Distance Measure Yes 

Information Measure Yes 

Dependence Measure Yes 

Consistency Measure Yes 

Classifier Error Rate No 

Low 

Low 

Low 

Moderate 

High 

- 

- 

- 

- 

Very High 

measures. But, these are still kept as a separate category, because conceptually, they represent a different 
viewpoint [4]. More about the above three measures can be found in Ben-Basset’s [4] survey. 

2.2.4. Consistency Measures 
These measures are rather new and have been in much focus recently. These are characteristically 

different from other measures, because of their heavy reliance on the training dataset and the use of the 
Min-Features bias in selecting a subset of features [3]. Min-Features bias prefers consistent hypotheses 

definable over as few features as possible. More about this bias is discussed in Section 3.6. These 
measures find out the minimally sized subset that satisfies the acceptable inconsistency rate, that is usually 
set by the user. 

2.2.5. ClassiJier Error Rate Measures 
The methods using this type of evaluation function are called “wrapper methods”, (i.e., the classifier is 

the evaluation function). As the features are selected using the classifier that later on uses these selected 
features in predicting the class labels of unseen instances, the accuracy level is very high although 
computationally quite costly [21]. 

Table 1 shows a comparison of various evaluation functions irrespective of the type of generation 
procedure used. The different parameters used for the comparison are: 

1. generality: how suitable is the selected subset for different classifiers (not just for one classifier); 
2. time complexity: time taken for selecting the subset of features; and 

3. accuracy: how accurate is the prediction using the selected subset. 

The ‘-’ in the last column means that nothing can be concluded about the accuracy of the 

corresponding evaluation function. Except ‘classifier error rate,’ the accuracy of all other evaluation 
functions depends on the data set and the classifier (for classification after feature selection) used. The 
results in Table 1 show a non-surprising trend (i.e., the more time spent, the higher the accuracy). The 
table also tells us which measure should be used under different circumstances, for example, with time 
constraints, given several classifiers to choose from, classifier error rate should not be selected as an 
evaluation function. 

2.3. The Framework 

In this subsection, we suggest a framework on which the feature selection methods are categorized. 
Generation procedures and evaluation functions are considered as two dimensions, and each method is 
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Two Dimensional Categorization of Feature Selection Methods 

Evaluation Generation 

137 

Measures Heuristic 

Distance Z-Set 3.1 Relief Relief-F 

Measure Sege84 

Complete 

II-&c 3.2 Branch 

and Bound 
BFF 

Bobr88 

Random 

III 

Information 
Measure 

Dependency 

Measure 

Consistency 
Measure 

Classifier Error 
Rate 

IV-Set 3.3 DTM Koll- V-Set 3.4 MDLM 
Saha96 

VZZ-Sec 3.5 POElACC VIII 

PRESET 

X XI-Set 3.6 Focus 
Sch193 MIFES-1 

XII-Set 3.8 SBS SFS XIV-Sec3.8 Ichi- 
SBS- Skla84a IchiSkla84b 

SLASH PQSS BDS Moor- AMB&BBS 

Lee94 RC Quei-Gels84 

VI 

Ix 

XII-&c 3.7 LVF 

XV-Set 3.8 LVW 
GA SA RGSS 

RMHC-PFl 

grouped depending on the type of generation procedure and evaluation function used. To our knowledge, 
there has not been any attempt to group the methods considering both steps. First, we have chosen a total 
of 32 methods from the literature, and then these are grouped according to the combination of generation 
procedure and evaluation function used (see Table 2). 

A distinct achievement of this framework is the finding of a number of combinations of generation 
procedure and evaluation function (the empty boxes in the table) that do not appear in any existing 
method yet (to the best of our knowledge). 

In the framework, a column stands for a type of generation procedure and a row stands for a type 
of evaluation function. The assignment of evaluation functions within the categories may be equivocal, 
because several evaluation functions may be placed in different categories when considering them in 

different perspectives, and one evaluation function may be obtained as a mathematical transformation 
of another evaluation function [4]. We have tried to resolve this as naturally as possible. In the next 
two sections we explain each category and methods, and choose a method in each category, for a detailed 
discussion using pseudo code and a mini-dataset (Section 3), and for an empirical comparison (Section 4). 

3. Categories and Their Differences 

There are a total of 15 (i.e., 5 types of evaluation functions and 3 types of generation procedures) 
combinations of generation procedures, and evaluation functions in Table 2, The blank boxes in the table 
signify that no method exists for these combinations. These combinations are the potential future work. 
In this section, we discuss each category, by briefly describing the methods under it, and then, choosing 
a representative method for each category. We explain it in detail with the help of its pseudo code and 

a hand-run over a prototypical dataset. The methods in the last row represent the “wrapper” methods, 
where the evaluation function is the “classifier error rate”. A typical wrapper method can use different 
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Table 3 
Sixteen Instances of Com4L 

# A0 Al BO Bl I C Class # A0 Al BO Bl I C Class 

10 0 0 0 010 9 10 0 0 110 

20 0 0 1 1 1 0 10 1 0 0 1 1 0 0 

30 0 10 010 11 1 0 1 0 0 1 0 

40 0 11 001 12 1 0 1 1 0 0 1 

50 10 0 0 1 0 131 10 0 001 

60 10 1110 14 1 1 0 1 0 1 1 

70 110 1 0 0 15 1 1 1 0 1 0 1 

80 11 1 0 0 1 16 1 1 1 1 0 0 1 

kinds of classifiers for evaluation; hence no representative method is chosen for the categories under this 
evaluation function. Instead they are discussed briefly as a whole towards the end of this section. The 
prototypical dataset used for hand-run of the representative methods is shown in Table 3 which consists 
of 16 instances (originally 32 instances) of original CorrAL dataset. This mini-dataset has binary classes, 

and six boolean features (Ao, A 1, Ba, Bi , I, C) where feature I is irrelevant, feature C is correlated to 
the class label 75% of the time, and the other four features are relevant to the boolean target concept: 
(Ao\QAl) - (Bo\QBi). In all the pseudo codes, D denotes the training set, S is the original feature set, 
N is the number of features, T is the selected subset, and M is the number of selected (or required) 
features. 

3.1. Category I: Generation-Heuristic, Evaluation-Distance 

3. I. I. Brief Description of Various Methods 

As seen from Table 2, the most prominent method in this category is Relief [22]. We first discuss Relief 
and its variant followed by a brief discussion on the other method. 

Relief uses a statistical method to select the relevant features. It is a feature weight-based algorithm 
inspired by instance-based learning algorithms ([ 1 ,S]). From the set of training instances, it first chooses a 
sample of instances, it first chooses a sample of instances; the user must provide the number of instances 
(NoSample) in this sample. Relief randomly picks this sample of instances, and for each instance in it 
finds Near Hit and near Miss instances based on a Euclidean distance measure. Near Hit is the instance 
having minimum Euclidean distance among all instances of the same class as that of the chosen instance; 
near Miss is the instance having minimum Euclidean distance among all instances of different class. 
It updates the weights of the features that are initialized to zero in the beginning based on an intuitive 

idea that a feature is more relevant if it distinguishes between an instance and its near Miss, and less 
relevant if it distinguishes between an instance and its near Hit. After exhausting all instances in the 

sample, it chooses all features having weight greater than or equal to a threshold. This threshold can 
be automatically evaluated using a function that uses the number of instances in the sample; it can also 
be determined by inspection (all features with positive weights are selected). Relief works for noisy 
and correlated features, and requires only linear time in the number of given features and NoSample. It 
works both for nominal and continuous data. One major limitation is that it does not help with redundant 
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Relief( D, S, NoSample, Threshold) 

(l)T=@ 

(2) Initialize all weights, lVi, to zero. 
(3) For i = 1 to NoSample/* Arbitrarily chosen */ 

Randomly choose an instance x in D 

Finds its nearHit and nearMiss 

Forj=ltoN 
Wj = Wj - diff (xj , nearHitj)2 + diff (xj , nearMissj)2 

(4) For j = 1 to N 
If Wj > Threshold 

Append feature fj to T 

(5) Return T 

Fig. 2. Relief. 

features and, hence, generates non-optimal feature set size in the presence of redundant features. This 

can be overcome by a subsequent exhaustive search over the subsets of all features selected by Relief. 
Relief works only for binary classes. This limitation is overcome by Relief-F [25] that also tackles the 
problem of incomplete data. Insufficient training instances Relief. Another limitation is that the user may 
find difficult in choosing a proper NoSample. More about this is discussed in Section 4.3. 

Jakub Segen’s [44] method uses an evaluation function that minimizes the sum of a statistical 
discrepancy measure and the feature complexity measure (in bits). It finds the first feature that best 
distinguishes the classes, and iteratively looks for additional features which in combination with 
the previously chosen features improve class discrimination. This process stops once the minimal 
representation criterion is achieved. 

3.1.2. Hand-Run of CorrAL Dataset (see Figure 2) 
Relief randomly chooses one instance from the sample. Let us assume instance # (i.e., [O,l,O,O,O,l] 

is chosen). It finds the near Hit and the near Miss of this instance using Euclidean distance measure. 

The difference between two discrete feature values is one if their values do not match and zero 
otherwise. For the chosen instance #5, the instance #l is the near Hit (Difirence 5 l), and instance 

#13 and #14 are the near Miss (difierence 5 2). Let us choose instance #13 as the near Miss. Next, it 
updates each feature weight Wj. This is iterated NoSample times specified by the user. Features having 

weights greater than or equal to the threshold are selected. Usually, the weights are negative for irrelevant 
features, and positive for relevant and redundant features. For CorrAL dataset is selects {Ao, Bo, BI, C} 
(more about this in Section 4.3). 

3.2. Category II: Generation-Complete, Evaluation-Distance 

3.2.1. Brief Description of Various Methods 
This combination is found in old methods such as branch and bound [34]. Other methods in this 

category are variations of branch and bound (B & B) method considering the generation procedure used 
(BFF [SO]), or the evaluation function used (Bobrowski’s method [5]). We first discuss the branch and 
bound method, followed by a brief discussion of the other two methods. 
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Narendra and Fukunaga have defined feature selection in a classical way (see definition 2 in Section 1) 
that requires evaluation functions be monotonic (i.e., a subset of features should not be better than any 
larger set that contains the subset). This definition has a severe drawback for real-world problems because 
the appropriate size of the target feature subset is generally unknown. But this definition can be slightly 
modified to make it applicable for general problems as well, by saying that B & B attempts to satisfy two 
criteria: (i) the selected subset be as small as possible; and (ii) a bound be placed on the value calculated 

by the evaluation function [ 131. As per this modification, B & B starts searching from the original feature 
set and it proceeds by removing features from it. A bound is placed on the value of the evaluation 
function to to create a rapid search. As the evaluation function obeys the monotonicity principle, any 
subset for which the value is less than the bound is removed from the search tree (i.e., all subsets of it are 
discarded from the search space). Evaluation functions generally used are: Mahalanobis distance [15], 
the discriminant function, the Fisher criterion, the Bhattacharya distance, and the divergence [34]. Xu, 

Yan, and Chang [50] proposed a similar algorithm (BFF), where the search procedure is modified to 
solve the problem of searching an optimal path in a weighted tree with the informed best jrst search 
strategy in artificial intelligence. This algorithm guarantees the best global or subset without exhaustive 
enumeration, for any criterion satisfying the monotonicity principle. 

Bobrowski [5] proves that the homogeneity coefficient f*Zk can be used in measuring the degree of 

linear dependence among some measurements, and shows that it is applicable to the feature selection 
problem due to its monotonicity principle (i.e., if S1, Sz then f*Zk(&) > f*Zk(&)). Hence, this can be 
suitably converted to a feature selection method by implementing it as an evaluation function for branch 
and bound with backtracking or a better first generation procedure. 

The fact that an evaluation function must be monotonic to be applicable to these methods, prevents the 
use of many common evaluation functions. This problem is partially solved by relaxing the monotonicity 
criterion and introducing the approximate monotonicity concept [ 161. 

3.2.2. Hand-run of CorrAL Dataset (see Figure 3) 
The authors use Mahalanobis distance measure as the evaluation function. The algorithm needs input 

of the required number of features (M) and it attempts to find out the best subset of N 2M features to 

B&B(D, S, M) 
if (curd(S) <> M) { 

/* subset generation 7 
j=O 
For all features f in S { 

Sj = S - f/* remove one feature at a time */ 
if (Sj is legitimate) */ 

if ZsBetter( Sj , T) 

T = Sj 
/* recursion */ 

B&WSj, W} 
j++ 1 

return T }) 

Fig. 3. Branch and bound. 
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DTM( D) 

(1) T=# 
(2) Apply C4.5 to the training set, D 
(3) Append all features appearing in the pruned decision tree to T 
(4) Return T 

Fig. 4. Decision tree method (DTM). 

reject. It begins with the full set of features So, removes one feature from $*2l in turn to generate subsets 

$, where 1 is the current level and j specifies different subsets at the Zth level. If U($). U(s$-2l), S$ 
stops growing (its branch is pruned), otherwise, it grows to level 1 1 1, i.e., one more feature will be 
removed. If for the CorrAL dataset, M is set to 4, then subset (Ao, Al, Bc, Z) is selected as the best 
subset of 4 features. 

3.3. Category IV.. Generation-Heuristic, Evaluation-Information 

3.3.1. Brief Description of Various Methods 
We have found two methods under this category: decision tree method (DTM) [9], and Koller and 

Sahami’s [24] method. DTM shows that the use of feature selection can improve case-based learning. In 
this method feature selection is used in an application on natural language processing. C4.5 [39] is run 

over the training set, and the features that appear in the pruned decision tree are selected. In other words, 
the union of the subsets of features, appearing in the paths to any leaf node in the pruned tree, is the 
selected subset. The second method, which is very recent, is based on the intuition that any feature, given 
little or no additional information beyond that subsumed by the remaining features, is either irrelevant or 
redundant, and should be eliminated. To realize this, Koller and Sahami try to approximate the Markov 

blanket where a subset T is a Markov blanket for feature fi if, given T, fi is conditionally independent 
both of the class label and of all features not in T (including fi itself). The implementation of the Markov 
blanket is suboptimal in many ways, particularly due to many naive approximations. 

3.3.2. Hand-Run of CorrAL Dataset (see Figure 3) 
C4.5 uses an information-based heuristic, a simple form of which for two class problem (as our 

example) is 

Z(p, n) = -p log* -L - 
n 

p+n H-n 
Y- log, -, 
P+n p+n 

where p is the number of instances with class label one and n is the number of instances with class label 
zero. Assume that using an attribute F1 as the root in the tree will partition the training set into TO and T 1 
(because each feature takes binary values only). Entropy of feature Fl is 

Considering the CorrAL dataset, let us assume that feature C is evaluated. If it takes value ‘O’, then one 
instance is positive (class 5 1) and seven instances are negative (class 5 0, and for value ‘I’, six instances 
are positive (class 5 1) and two are negative (class 5 0). Hence 
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E(C) = 
6+2 

~z(1,7)+--+~6,2) 

is 0.552421. In fact this value is minimum among all features, and C is selected as the root of the 
decision tree. The original training set of sixteen instances is divided into two nodes, each representing 
eight instances using feature C. For these two nodes, again features having the least entropy are selected, 
and so on. This process halts when each partition contains instances of a single class, or until no test 

offers any improvement. The decision tree constructed, thus is pruned basically to avoid over-fitting. 
DTM chooses all features appearing in the pruned decision tree (i.e., Ao, Al, Bo, B,, C). 

3.4. Category V: Generation-Complete, Evaluation-Information 

Under this category we found Minimum Description Length Method (MDLM) [45]. In this method, 
the authors have attempted to eliminate all useless (irrelevant and/or redundant) features. According to 
the authors, if the features in a subset V can be expressed as a fixed non-class-dependent function F of 
the features in another subset U, then once the values of the features in subset U are known, the feature 

subset V becomes useless. For feature selection, U and V together make up the complete feature set 
and one has the task of separating them. To solve this, the authors use the minimum description length 
criterion (MDLC) introduced by Rissanen [40]. They formulated an expression that can be interpreted 

as the number of bits required to transmit the classes of the instances, the optimal parameters, the useful 
features, and (finally) the useless features. The algorithm exhaustively searches all the possible subsets 
(2v) and outputs the subset satisfying MDLC. This method can find all the useful features and only those 
of the observations are Gaussian. For non-Gaussian cases, it may not be able to find the useful features 
(more about this in Section 4.3). 

3.4.1. Hand-Run of CorrAL Dataset 
As seen in Figure 5, MDLM is basically the evaluation of an equation that represents the description 

length given the candidate subset of features. The actual implementation suggested by the authors is as 
follows. Calculate the covariance matrices of the whole feature vectors for all classes and for each class 
separately. The covariance matrix for useful subsets are obtained as sub-matrices of these. Determine 
the determinants of the sub-matrices DL(i) and DL for equation as shown in Figure 5, and find out the 

subset having minimum description length. For the CorrAL dataset the chosen feature subset is {C} with 
a minimum description length of 119.582. 

3.5. Category VII: Generation-Heuristic, Evaluation-Dependence 

3.5. I. Brief Description of Various Methods 
We found POElACC (Probability of ERROR & Average Correlation Coefficient) method [33] and 

PRESET [31] under this combination. As many as seven techniques of feature selection are presented 

in POE1 ACC, but we choose the last (i.e., seventh) method, because the authors consider this to be the 
most important among the seven. 

In this method, the first feature selected is the feature with the smallest probability of error (P,). 
The next feature selected is the feature that produces the minimum weighted sum of P, and average 
correlation coefficient (ACC), and so on. ACC is the mean of the correlation coefficients of the candidate 
feature with the features previously selected at that point. This method can rank all the features based on 
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MDLM( 0) 

(l)MDL=cQ 
(2) For all feature subsets L 

1.1 Compute LengthL = xi:: 9 log @$$I + hr. 

where hi = i(N - M)(N + M + 3) log P + offs M(M + 3) log Pi, 

N -total number of features, 
M - number of features in the candidate subset, 

P -total number of instances in D, 

Pi - number of instances with class label i , 
q - total number of class labels, 
DL - covariance matrix formed from all the useful feature vectors, 
DL (i) - covariance matrix formed from the useful feature vectors, 

of class i , 
1.1 - denotes determinant. 

1.2 If LengthL -c MDL then 
T = L, MDL = LengthL 

(3) Return T 

Fig. 5. Minimum description length method (MDLM). 

POE+ACC(D, M, wl, 102) 

(1) T=4 
(2) Find the feature with minimum Pe and append it to T 
(3) For i = 1 to M - 1 

Find the next feature with minimum UJ~ ( Pe) + 102 (ACC) 
Append it to T 

(4) Return T 

Fig. 6. POE + ACC. 

the weighted sum, and a required number of features (M) is used as the stopping criterion. PRESET uses 

the concept of rough set; it first finds a reduct (i.e., a reduct R of a set P classifies instances equally well 
as P does) and removes all features not appearing in the reduct. Then it ranks the features based on their 
significance. The significance of a feature is a measure expressing how important a feature is regarding 
classification. This measure is based on dependence of attributes. 

3.5.2. Hand-Run of CorrAL Dataset (see Figure 6) 
The first feature chosen is the feature having minimum P,, and in each iteration thereafter, the feature 

having minimum w  1 (P,) 1 w2(ACC) is selected. In our experiments, we consider w  1 to be 0.1 and w2 to be 
0.9 (authors suggest these values for their case study). To calculate P,, compute the a priori probabilities 
of different classes. For the mini-dataset, it is 9/16 for class 0 and 7/16 for class 1. Next, for each feature, 

calculate the class-conditional probabilities given the class label. We find that for class label 0, the class- 
conditional probability of feature C having the value 0 is 2/9 and that of value 1 is 7/9, and for class label 
1, the class-conditional probability of feature C having the value 0 is 6/7 and that of value 1 is ’ /7. For 
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each feature value (e.g., feature C taking value 0), we find out the class label for the product of a priori 
class probability and class-conditional probability given that the class label is maximum. When feature 

C takes the value 0, the prediction is class 1, and when feature C takes value 1, the prediction is class 0. 
For all instances, we count the number of mismatches between the actual and the predicted class values. 
Feature C has 3/i,j fraction of mismatches (P,). In fact, among all features, C has the least P, and hence, 

is selected as the first feature. In the second step, correlations of all remaining features (Ao, Al, Bo, B1, 
I) with feature C are calculated. Using the expression w1 (P,) lwz(ACC) we find that feature A0 has the 
least value among the five features and is chosen as the second feature. If M (required number) is 4, then 

subset (C, Ao, Ba, I) is selected. 

3.6. Category XI: Generation-Complete, Evaluation-Consistency 

3.6.1. Brief Description of Various Methods 

The methods under this combination are developed in the recent years. We discuss Focus [2], and 
Schlimmer’s [43] method, and MIFES 1 [35], and select Focus as the representative method for detailed 
discussion and empirical comparison. 

Focus implements the Min-Features bias that prefers consistent hypotheses definable over as few 
features as possible. In the simplest implementation, it does a breadth-first search and checks for any 
inconsistency considering only the candidate subset of features. Strictly speaking, Focus is unable to 

handle noise, but a simple modification that allows a certain percentage of inconsistency will enable it to 
find the minimally sized subset satisfying the permissible inconsistency. 

The other two methods can be seen as variants. Schlimmer’s method uses a systematic enumeration 
scheme as generation procedure and the inconsistency criterion as the evaluation function. It uses a 

heuristic function that makes the search for the optimal subset faster. This heuristic function is a reliability 
measure, based on the intuition that the probability that an inconsistency will be observed, is proportional 

to the percentage of values that have been observed very infrequently considering the subset of features. 
All supersets of an unreliable subset are also reliable. MIFES 1 is very similar to Focus in its selection 
of features. It represents the set of instances in the form of a matrix’ , each element of which stands for a 

unique combination of a positive instance (class 5 1) and a negative instance (class 5 0). A feature f is 
said to cover an element of the matrix if it assumes opposite values for a positive instance and a negative 
instance associated with the element. It searches for a cover with N 2 1 features starting from one with 
all N features, and iterates until no further reduction in the size of the cover is attained. 

3.6.2. Hand-Run of CorrAL Dataset (see Figure 7) 
As Focus uses breadth-first generation procedure, it first generates all subsets of size one (i.e., {A,,}, 

{Al}, { Bo}, { B1 }, {I}, {C}), followed by all subsets of size two, and so on. For each subset generated, 
thus, it checks whether there are at least two instances in the dataset having equal values for all features 
under examination with different class labels (i.e., inconsistency). If such a case arises, it rejects the 

subset saying inconsistent, and moves on to test the next subset. This continues until it finds a subset 
having no inconsistency or the search is complete (i.e., all possible subsets are found inconsistent). For 
subset {AC,}, instance #l and 4 have the same A0 value (i.e., 0), but different class labels (i.e., 0 and 1 

’ MIFES 1 can only handle binary classes and boolean features. 
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Focus( D, S) 
(1) T=S 
(2) For i = 0 to N 

For each subset L of size i 
If no inconsistency in the training set D then 

T=L 
Return T 

Fig. 7. Focus. 

respectively). Hence it rejects it and moves on to the next subset {Al}. It evaluates a total of 41 subsets 
((F) + (i) + @) before selecting the subset (i.e., Ao, AI, Bo, B1). 

3.7. Category XII: Generation-Random, Evaluation-Consistency 

3.7.1. Brief Description of Various Methods 
This category is rather new and its representative is LVF [28]. LVF randomly searches the space 

of subsets using a Las Vegas algorithm [6] that makes probabilistic choices to help guide them more 
quickly to an optimal solution, and uses a consistency measure that is different from that of Focus. 
For each candidate subset, it calculates an inconsistency count based on the intuition that the most 
frequent class label among those instances matching this subset of features is the most probable class 
label. An inconsistency threshold is fixed in the beginning (0 by default), and any subset, having an 
inconsistency rate greater than it, is rejected. This method can find the optimal subset even for datasets 
with noise, if the rough correct noise level is specified in the beginning. An advantage is that the user 

does not have to wait too long for a good subset because it outputs any subset that is found to be better 
than the previous best (both by the size of the subset and its inconsistency rate). This algorithm is 
efficient, as only the subsets whose number of features is smaller than or equal to that of the current 
best subset are checked for inconsistency. It is simple to implement and guaranteed to find the optimal 
subset if resources permit. One drawback is that it may take more time to find the optimal subset than 
algorithms using heuristic generation procedure for certain problems, since it cannot take advantage of 

prior knowledge. 

3.7.2. Hand-Run of CorrAL Dataset (see Figure 8) 
LVF [28] chooses a feature subset randomly and calculates its cardinality. The best subset is initialized 

to the complete feature set. If the randomly chosen subset has cardinality less than or equal to that of the 
current best subset, it evaluates the inconsistency rate of the new subset. If the rate is less than or equal 
to the threshold value (default value is zero), the new subset is made the current best subset. Let us say 
that the subset {Ao, Bo, C} is randomly chosen. Patterns (O,l,O), (l,O,O), and (l,O,l) have mixed class 

labels with class distribution (1,2), (l,l), and (1,l) for class 0 and 1 respectively. The inconsistency count 
is the sum of the number of matching instances minus the number of the matching instances with the 

most frequent class label for each pattern. Hence for the subset {Ao, Bo, C}, the inconsistency count is 
3 (5(3 22) 1 (2 2 1)) and the inconsistency rate is 3/i6. As we have not specified any threshold 
inconsistency rate and it is zero by default, so this subset is rejected. But if the randomly chosen subset 
is {Ao, AI, Bo, B1}, then the inconsistency rate is zero and it becomes the current best subset. No subset 
of smaller size has inconsistency rate zero leading to the selection of {Ao, AI, Bo, BI}. 
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LVF(D, S, MaxTries, S) 
(1) T = S 
(2) For i = 1 to MaxTries ( 

randomly choose a subset of features, Sj 
if card(Sj) < card(T) 

if inConCal(Sj, D) < 6 
if card(Sj) < card(T) 

T = Sj 
OUtpUt Sj 

else 
append Sj to T 
output Sj as ‘yet another solution’ } 

(3) return T 

Fig. 8. LVF. 

3.8. Category XIII-XV: Evaluation-Classijier Error Rate 

In this section, we briefly discuss and give suitable references for the methods under classifier error 
rate evaluation function that are commonly known as “wrapper” methods. 

3.8.1. Heuristic 

Under the heuristic generation function, we find popular methods such as sequential forward selection 

(SFS) and sequential backward selection (SBS) [12], sequential backward selection-SLASH (SBS- 
SLASH) [lo], (p,q) sequential search (PQSS), bi-directional search (BDS) [13], Schemata Search [32], 
relevance in context (RC) [14], and Queiros and Gelsema’s [37] method are variants of SFS, or SBS, 
or both. SFS starts from the empty set, and in each iteration generates new subsets by adding a feature 
selected by some evaluation function. SBS starts from the complete feature set, and in each iteration 

generates new subsets by discarding a feature selected by some evaluation function. SBS-SLASH is 
based on the observation that when there is a large number of features, some classifiers (e.g., ID3K4.5) 
frequently do not use many of them. It starts with the full feature set (like SBS), but after taking a step, 
eliminates (slashes) any feature not used in what was learned at that step. BDS allows to search from 

both ends, whereas PQSS provides some degree of backtracking by allowing both addition and deletion 
for each subset. If PQSS starts from the empty set, then it adds more features than it discards in each 
step, and if it starts from the complete feature set, then it discards more features and adds less features 
in each step. Schemata search starts either from the empty set or the complete set, and in each iteration, 
finds the best subset by either removing or adding only one feature to the subset. It evaluates each subset 
using leave-one-out cross validation (LOOCV), and in each iteration, selects the subset having the least 

LOOCV error. It continues this way until no single-feature change improves it. RC considers the fact that 
some features will be relevant only in some parts of the space. It is similar to SBS, but with the crucial 
difference that it makes local, instance-specific decisions on feature relevance, as opposed to global ones. 
Queiros and Gelsema’s method is similar to SFS, but it suggests that at each iteration, each feature in 
various settings by considering different interactions with the set of features previously selected should 
be evaluated. Two simple settings are: (i) always assume independence of features (do not consider 
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the previously selected features), and (ii) never assume independence (consider the previously selected 
features). Bayesian classifier error rate as the evaluation function was used. 

3.8.1. Complete 
Under complete generation procedure, we find four wrapper methods. Ichino and Sklansky have 

devised two methods based on two different classifiers, namely: linear classifier [19] and box 
classifier [20]. In both methods, they solve the feature selection problem using zero-one integer 
programming [ 171. Approximate monotonic branch and bound (Ah4B&B) was introduced to combat the 
disadvantage of B&B by permitting evaluation functions that are not monotonic [16]. In it, the bound of 
B&B is relaxed to generate subsets that appear below some subset violating the bound; but the selected 
subset should not violate the bound. Beam Search (BS), [13] is a type of best-first search that uses a 
bounded queue to limit the scope of the search. The queue is ordered from best to worst with the best 
subsets at the front of the queue. The generation procedure proceeds by taking the subset at the front of 
the queue, and producing all possible subsets by adding a feature to it, and so on. Each subset is placed 
in its proper sorted position in the queue. If there is no limit on the size of the queue, BS is an exhaustive 
search; if the limit on the size of the queue is one, it is equivalent to SFS. 

3.8.2. Random 

The five methods found under random generation procedure are: LVW [27], genetic algorithm [49], 
simulated nnealing [ 131, random generation plus sequential selection (RGSS) [ 131, and RMHC-PFl [47]. 
LVW generates subsets in a perfectly random fashion (it uses Las Vegas algorithm [6], genetic algorithm 
(GA) and simulated annealing (SA), although there is some element of randomness in their generation, 
follow specific procedures for generating subsets continuously. RGSS injects randomness to SFS and 
SBS. It generates a random subset, and runs SFS and SBS starting from the random subset. Random 
mutation hill climbing-prototype and feature selection (RMHC-PFl) selects prototypes (instances) and 
features simultaneously for nearest neighbor classification problem, using a bet vector that records both 
the prototypes and features. It uses the error rate of an l-nearest neighbour classifier as the evaluation 
function. In each iteration it randomly mutates a bit in the vector to produce the next subset. All these 
methods need proper assignment of values to different parameters. In addition to maximum number of 
iterations, other parameters may be required, such as for LVW the threshold inconsistency rate; for GA 
initial population size, crossover rate, and mutation rate; for SA the annealing schedule, number of times 
to loop, initial temperature, and mutation probability. 

3.9. Summary 

Figure 9 shows a summary of the feature selection methods based on the 3 types of generation 
procedures. Complete generation procedures are further subdivided into ‘exhaustive’ and ‘non- 
exhaustive’; under ‘exhaustive’ category, a method may evaluate ‘All’ 2N subsets, or it may do a ‘breadth- 
first’ search to stop searching as soon as an optimal subset is found: under ‘non-exhaustive’ category we 
find ‘branch &bound’, ‘best first’, and ‘beam search’ as different search techniques. Heuristic generation 
procedures are subdivided into ‘forward selection , ’ ‘backward selection’, ‘combined forward/backward’, 
and ‘instance-based’ categories. Similarly, random generation procedures are grouped into ‘type I’ and 
‘type II.’ In ‘type I’ methods the probability of a subset to be generated remains constant, and it is 
the same for all subsets, whereas in ‘type II’ methods this probability changes as the program runs. 
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Exhaustive Non-Exhaustive 

Featb;tur$ction 

Heuristic Random 

A A 
Forward Backward 
Selection Selection 

Cornned k;;m&e- Type 1 Type 11 

I !  

Sege84 

Quei-Gels84 

Koll-Saha96 

Fig. 9. Sumtnary of feature selection methods. 

The underlined methods represent their categories in the Table 2, and are implemented for an empirical 
comparison among the categorical methods in the next section. 

4. An Empirical Comparison 

In this section, we first discuss the different issues involved in the validation procedure commonly 

used in the feature selection methods. Next, we briefly discuss three artificial datasets chosen for the 
experiments. At the end, we compare and analyze the results of running the categorical methods over the 
chosen datasets. 

4. I. Validation 

There are two commonly used validation procedures for feature selection methods: (a) using artificial 
datasets and (b) using real-world datasets. Artificial datasets are constructed keeping in mind a certain 
target concept; so all the actual relevant features for this concept are known. Validation procedures 

check whether the output (selected subset) is the same as the actual subset. A training dataset with 
known relevant features as well as irrelevant/redundant features or noise is taken. The feature selection 
method is run over this dataset, and the result is compared with the known relevant features. In the 
second procedure, real-world datasets are chosen that may be benchmark datasets. As the actual subset is 

unknown in this case, the selected subset is tested for its accuracy with the help of any classifier suitable 
to the task. Typical classifiers used are: naive Bayesian classifier, Cart [7], ID3 [38], FRINGE [36], 
AQl5 [30], CN2 [ll], and C4.5 [39]. The achieved accuracy may be compared with that of some well- 
known methods, and its efficacy is analyzed. 

In this section, we are trying to show an empirical comparison of representative feature selection 
methods. In our opinion, the second method of validation is not suitable to our task because particular 
classifiers support specific datasets; a test with such combination of classifier and dataset may wrongly 

show a high accuracy rate unless a variety of classiJers are chosen2 and many statistically different 
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datusets are used3. Also, as different feature selection methods have a different bias in selecting features, 
similar to that of different classifiers, it is not fair to use certain combinations of methods and classifiers, 
and try to generalize from the results that some feature selection methods are better than others without 

considering the classifier. Fortunately many recent papers, that introduce new feature selection methods, 
have done some extensive tests in comparison. Hence, if a reader wants to probe further, he/she is referred 
in this survey to the original work. To give some intuition regarding the wrapper methods, we include 
one wrapper method (LVW [27]) in the empirical comparison along with the representative methods in 

the categories I, II, IV, V, VII, XI, and XII (other categories are empty). 
We choose three artificial datasets with combinations of relevant, irrelevant, redundant features, and 

noise to perform comparison. They are simple enough but have characteristics that can be used for testing. 

For each dataset, a training set commonly used in literature for comparing the results, is chosen for 
checking whether a feature selection method can find the relevant features. 

4.2. Datasets 

The three datasets are chosen in which the first dataset has irrelevant and correlated features, the 

second has irrelevant and redundant features, and the third has irrelevant features and it is noisy 
(misclassification). Our attempt is to find out the strengths and weaknesses of the methods in these 
settings. 

4.2.1. CorrAL [21] 

This dataset has 32 instances, binary classes, and six boolean features (Ao, Al, Bo, B1, I, C) out of 
which feature I is irrelevant, feature C is correlated to the class label 75% of the time, and the other four 

features are relevant to the boolean target concept: (Ao\QAl) - (Bo\QBl). 

4.2.2. Modijied Par3+3 
Par3+3 is a modified version of the original Parity3 data that has no redundant feature. The dataset 

contains binary classes and twelve boolean features of which three features (Al, AZ, A3) are relevant, 

(AT, Ag, Ag) are redundant, and (Ad, AS, A6) and (A,, Ag, Ag) are irrelevant (randomly chosen). The 
training set contains 64 instances and the target concept is the odd parity of the first three features. 

4.2.3. Monk3 [48] 
It has binary classes and six discrete features (A 1, . . . , Ah) only the second, fourth and fifth of which 

are relevant to the target concept: (A553 - A$l)\Q(As!54 - A2!53) with “!5” denoting inequality. The 

training set contains 122 instances, 5% of which is noise (misclassification). 

4.3. Results and Analyses 

Table 4 shows the results of running the eight categorical methods over the three artificial datasets. In 
the following paragraphs we analyze these results, and compare the methods based on the datasets used. 

4.3.1. Relief [22] 
For CorrAL dataset, Relief selects (Ao, Bo, B1, C) for the range [14] of NoSample. For all values of 

NoSample, Relief prefers the correlated feature C over the relevant feature AI. The experiment over 
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Table 4 

Table Showing the Features Selected for the Datasets 

Method CorrA: 

(R-9 (AO, Al, BO, Bl) 

Modified Par3+3 

({Al, A71,iAZ Ml, 

lA3, -491) 

Monk3 

(A2, A4, AS) 

Relief Ao, Bo. BI, C Al, A2, A3, AI, 4, A9 AZ, A5 always & one or 

both of A3, A4 

B&B -40, Al, 41, I Al, A2, A3 Al, ‘43, A4 

DTM Ao, AI, 41, Bl C Ag> A4 A29 A5 

MDLM C A2, ~43, As, Alo, A12 -42, A3, A5 

POE+ACC C, Ao, Bo, I As> Al, All, A2, A123 A3 A27 A5> Al, A3 

Focus 41, Al. Bo, BI Al, A2, A3 Al, AL A4, A5 

LVF Ao, AI, %4 A3, AI, A; AZ, A4. A5 at 5% I-T 

Al, AZ, A4, A5 at 0% I-T 

Lvw Ao. Al, Bo, B1 A27 A3, A; .42, ‘44. As 

RA: relevant attributes; I-T: inconsistency threshold; *: this is one of many found. 

modified Par3+3 dataset clearly shows that Relief is unable to detect redundant features (features AT, 
As, Ag are same as AI, AZ, A3 respectively). But it was partially successful (depends on the value of 
NoSample) for Monk3 dataset that contains 5% noise. 

Experimentally, we found that for the range [15] of NoSample, it selects only the relevant features; 
beyond this range it either chooses some irrelevant features, or does not select some relevant features. 
Hence, for a dataset with no a priori information, the user may find it difficult to choose an appropriate 
value for NoSample. We suggest not to use a value too large or too small. 

4.3.2. B & B [34] 

The CorrAL dataset it rejects the feature B1 as the first feature, and in the next iteration it rejects 
feature C. In case of Par3+3 it works well; when asked to select three features, it selects (Al, AZ, A3), 
and when asked to select six, it selects (Al, AZ, A3, AT, Ag, Ag). It failed for Monk3 dataset which has 

noise. 

4.3.3. DTM [9] 

As explained in Section 3.3, DTM prefers the features that are highly correlated with the class label, 
and in case of CorrAL dataset the correlated feature C is selected as the root. Par3+3 is a difficult task 
for C4.5 inductive algorithm, and it fails to find the relevant features. For the Monk3 dataset that contains 
noise, DTM was partially successful in choosing AZ, A5 after pruning. 

4.3.4. MDLM [45] 
MDLM works well when all the observations are Gaussian. But none of the three datasets are perfectly 

Gaussian, which is the reason why MDLM largely failed. For CorrAL, it selects the subset consisting of 
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only the correlated feature C which indicates that it prefers correlated features. For the other two datasets 
the results are also not good. 

4.3.5. POE+ACC [33] 

The results for this method show the rankings of the features. As seen, it was not very successful for any 
of the dataset. For CorrAL, it chooses feature C as the first feature, as explained in Section 3.5. When we 

manually input some other first features (e.g., AC,), then it correctly ranks the other three relevant features 
in the top four positions (Ao, AI, Bc, Bl). This interesting finding points out the importance of the first 

feature on all the remaining features for POE+ACC. For Par3+3 and Monk3 it does not work well. 

4.3.6. Focus [2] 

Focus works well when the dataset has no noise (as in the case of CorrAL and Par3+3), but it selects 

an extra feature Al for Monk3 that has 5% noise, as the actual subset (AT, Ad, AS) does not satisfy the 
default inconsistency rate zero. Focus is also very fast in producing the results for CorrAL and Par3+3, 

because the actual subsets appear in the beginning which supports breadth-first search. 

4.3.7. LVF [28] 
LVF works well for all the datasets in our experiment. For CorrAL it correctly selects the actual subset. 

It is particularly efficient for Par3+3 that has three redundant features, because it can generate at least 
one result out of the eight possible actual subsets quite early while randomly generating the subsets. For 

the Monk3 dataset, it needs an approximate noise level to produce the actual subset; otherwise (default 
case of zero inconsistency rate) it selects an extra feature Al. 

5. Discussions and Guidelines 

Feature selection is used in many application areas as a tool to remove irrelevant and/or redundant 
features. As is well known, there is no single feature selection method that can be applied to all 
applications. The choice of a feature selection method depends on various data set characteristics: (i) data 

types, (ii) data size, and (iii) noise, Based on different criteria from these characteristics, we give some 
guidelines to a potential user of feature selection as to which method to select for a particular application. 

5.1. Data Types 

Various data types are found, in practice, for features and class labels. 
Features: Feature values can be continuous (C), discrete (D), or nominal including boolean (N). The 

nominal data type requires special handling because it is not easy to assign real values to it. Hence we 

partition the methods based on their ability to handle different data types (C, D, N). 

Class Label: Some feature selection methods can handle only binary classes, and others can deal with 
multiple (more than two) classes. Hence, the methods are separated based on their ability to handle 
multiple classes. 
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5.2. Data Size 

This aspect of feature selection deals with: (i) whether a method can perform well for small training 
set, and (ii) whether it can handle large data size. In this information age, datasets are commonly large 
in size; hence the second criterion is more practical and of interest to the current as well as the future 

researchers and practitioners in this area [28]; so we separate the methods based on their ability to handle 
large dataset. 

5.3. Noise 

Typical noise encountered during the feature selection process are: (i) misclassification, and 

(ii) conflicting date ([29,41]). We partition the methods based on their ability to handle noise. 

5.4. Some Guidelines 

In this subsection we give some guidelines based on the criteria extracted from these characteristics. 

The criteria are as follows: 

l ability to handle different data types (C: (Y/N), D: (Y/N), N: (Y/N)), where C, D, and N denote 
continuous, discrete, and nominal; 

l ability to handle multiple (more than two) classes (Y/N); 
l ability to handle large dataset (Y/N); 

l ability to handle noise (Y/N); and 
l ability to produce optimal subset if data is not noisy (Y/N). 

Table 5 lists the capabilities regarding these five characteristics of sixteen feature selection methods that 
appear in the framework in Section 2. The methods having “classifier error rate” as an evaluation function 
are not considered because their capabilities depend on the particular classifier used. A method can be 

implemented in different ways, so the entries in the table are based on the presentation of the methods in 
the papers. The “2” suggests that the method does not discuss the particular characteristics. A user may 
employ hisiher prior knowledge regarding these five characteristics to find an appropriate method for a 
particular application. For example, if the data contains noise, then the methods marked “Y” under the 

column “Noise” should be considered. If there are more than one method satisfying the criteria mentioned 
by the user, then the user needs to have a closer look at the methods to find the most suitable among them, 
or design a new method that suits the application. 

6. Conclusion and Further Work 

We present a definition of feature selection after discussing many existing definitions. Four steps 
of a typical feature selection process are recognized: generation procedure, evaluation function, 
stopping criterion, and validation procedure. We group the generation procedures into thee categories: 
complete, heuristic, and random, and the evaluation functions into five categories: distance, information, 
dependence, consistency, and classifier error rate measures. Thirty two existing feature selection methods 
are categorized based on the combinations of generation procedure and evaluation function used in 
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Category Method Ability to handle/produce 
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Data Types Multiple Large Noise Optimal 

C D N Classes Dataset Subset 

I Relief Y Y Y N Y Y N 

Relief-F Y Y Y Y Y Y N 

Sege84 NYYN - - N 

Quei-Gels84 N Y Y Y N 

II B&B YYNY - - Y” 

BFF YYNY - - Yll 

Bobr88 YYNY - - Yll 

IV DTM Y Y Y Y Y - N 

Koll-Saha96 N Y Y Y Y - N 

MDLM YYNY - - N 

VII POElACC YYYY - - N 

PRESET Y Y Y Y Y - N 

XI 

XII 

Focuc N Y Y Y N N Y 

Sch193 N Y Y Y N N Y” 

MIFES ‘1 N N N Y N N Y 

LW N Y Y Y Y Y* Yl’ 

1: it can handle only boolean features, 11: if certain assumptions are valid, *: user is 

required to provide the noise level, **: provided there are enough resources. 

them. Methods under each category are described briefly, and a representative method is chosen for 

each category that is described in detail using its pseudo code and a hand-run over a dataset (a version 
of CorrAL). These representative methods are compared using three artificial datasets with different 

properties, and the results are analyzed. We discuss data set characteristics, and give guidelines regarding 
how to choose a particular method if the user has prior knowledge of the problem domain. 

This article is a survey of feature selection methods. Our finding is that a number of combinations of 

generation procedure and evaluation function have not yet been attempted (to the best of our knowledge). 
This is quite interesting, considering the fact that feature selection has been the focus of interest of 

various groups of researchers for the last few decades. Our comparison of the categorical methods reveal 
many interesting facts regarding their advantages and disadvantages in handling different characteristics 

of the data. The guidelines in Section 5 should be useful to the users of feature selection who would 
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have been otherwise baffled by the sheer number of methods. Properly used, these guidelines can be of 
practical value in choosing the suitable method. 

Although feature selection is a well-developed research area, researchers still try to find better methods 
to make their classifiers more efficient. In this scenario the framework which shows the unattempted 
combinations of generation procedures and evaluation functions will be helpful. By testing particular 
implementation of evaluation function and generation procedure combinations previously used in some 
categories, we can design new and efficient methods for some unattempted combinations. It is obvious 
that not all combinations will be efficient. The combination of consistency measure and heuristic 

generation procedure in the category ‘X’ may give some good results. One may also test different 
combinations that previously exist, such as branch and bound generation procedure and consistency 
measure in category XI. 
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