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Abstract In this article, we propose a novel system for
feature selection, which is one of the key problems in content-
based image indexing and retrieval as well as various other
research fields such as pattern classification and genomic data
analysis. The proposed system aims at enhancing semantic
image retrieval results, decreasing retrieval process complex-
ity, and improving the overall system usability for end-users
of multimedia search engines. Three feature selection cri-
teria and a decision method construct the feature selection
system. Two novel feature selection criteria based on inner-
cluster and intercluster relations are proposed in the article. A
majority voting-based method is adapted for efficient selec-
tion of features and feature combinations. The performance
of the proposed criteria is assessed over a large image data-
base and a number of features, and is compared against com-
peting techniques from the literature. Experiments show that
the proposed feature selection system improves semantic per-
formance results in image retrieval systems.
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List of symbols

p(x) Probability density functions
p(x, y) Joint probability density function
I (X; Y ) Mutual information
H(X) Shannon’s entropy
S Correlation measure for evaluating the

discrimination power of feature
c Number of classes
δ Correlation between clusters
fxi i th item in the cluster x
µx Mean of cluster x
σx Standard deviation of cluster x
Nx Cardinality of clusters x
e1 Eigen vector corresponding to the largest

eigen value of the covariance matrix
π The best representative feature vector
xN Set of feature vectors
xi Feature vector corresponding to the

i th item in the cluster
xi j j th element of the feature vector

corresponding to the i th item
of the cluster

M Mean vector
µ j Elements of M, mean values
� Distance between π and M
n Number of elements in the vectors

π and M
d Euclidean distance between

cluster members
Sw1,Sw2,Sw3 Compactness measurements
r Covering radius, distance from the center

to the farthest item in the cluster
� Probability
υMI Normalized numerical results from

mutual information criterion
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υICR Normalized numerical results from
inner-cluster relation criterion

υPPMC Normalized numerical results from
Pearson’s product-moment
correlation criterion

ν fi Votes for each feature
F Number of features in the FSRL list
αi Weights of the features in retrieval
Ri Rank of the i th feature in FSRL list
ωi Weight of item i in SPFL list
ω j Weight of item j in FL list

1 Introduction

Content-based image indexing and retrieval (CBIR) systems
often analyze image content via so-called low-level features,
such as color, texture, and shape [1–4]. To achieve signifi-
cantly higher semantic retrieval performance, recent systems
tend to combine low-level features with high-level features
that contain perceptual information for human. However,
such combinations increase time and memory requirements
together with retrieval complexity of feature extraction
process.

Because of high memory and processing power require-
ments, CBIR has not been widely implemented on limited
platforms, such as mobile devices or distributed systems.
However, multimedia capabilities of all computing devices
are growing steadily. Recently, multimedia became one of the
key features of these devices for end-users. Hence, the neces-
sity of multimedia services running on these platforms has
arisen, where image indexing and retrieval is one of the most
important challenges. Performance optimization of index-
ing and retrieval processes plays an important role for pro-
viding successful CBIR services for such limited systems.
Feature selection is one of the key challenges for optimiza-
tion of CBIR systems [5–8]. It refers to selecting the most
important features and their combinations for describing and
querying items in the database to reduce retrieval (time and
computational) complexity while maintaining high retrieval
performance. Moreover, it helps end-users by automatically
associating proper features and weights for a given database.

Feature selection has been a popular research topic in
pattern recognition. It has been applied to various research
fields such as genomic data analysis, classification of network
data, categorization of medical data, speech recognition, etc.
[9–14]. However, assessments of feature performance and
feature selection methods for CBIR have to be carried out in
slightly different ways from classification and categorization.
Decision errors are utilized for this purpose in classification.
There is no unsupervised method to evaluate retrieval results
of a CBIR system for assessing the semantic feature perfor-
mance.

In this article, we mainly propose two criteria for feature
evaluation and a method for feature selection that have not
been addressed by earlier studies particularly in CBIR con-
text:

• A new criterion based on categorized member relation
within the same cluster from labeled training data to bet-
ter understand the description power of the feature for
each cluster.

• A new criterion based on the discrimination power of
the features calculated using Pearson’s product–moment
correlation (PPMC) for defining correlations between dif-
ferent classes.

Using mutual information, intercluster and inner-cluster rela-
tions, a majority vote is applied on the results of these criteria
as a decision mechanism to select appropriate features.

The organization of the article is as follows. Section 2
presents relevant feature selection methods in details. A
majority voting method is described in Sect. 3. Experimen-
tal results are given in Sect. 4, and finally Sect. 5 provides
concluding remarks and discussions.

2 Feature selection

Feature selection can be defined as selecting the combination
of features among a given larger set that describes a particular
data collection best. It has been a popular research topic since
1970’s in pattern recognition and applied to several research
fields.

In data mining, feature selection algorithms are divided
into three categories: filters, wrappers, and hybrid methods.
Filters use general characteristics of the data independently
from the classifier for the evaluation process. The evaluation
process is classifier-dependent in wrapper methods. Finally,
hybrid models use both filtering and wrapping methods for
improving the performance of the selection process.

Evaluating the discrimination power of the individual fea-
ture is a key operation in feature selection processes. Several
methods may be used to evaluate the discrimination power
of a feature, where mutual information is the most com-
monly used method [13–16]. Vasconcelos and Vasconcelos
[8] used maximal divergence for feature selection in image
retrieval; Ding and Peng [14] used mutual information for
feature selection from Microarray gene expression data.

Intercluster relations are also used for medical image fea-
ture data evaluation in [5]. In this study, we utilize three cri-
teria for different attributes of feature–data relations. Mutual
information is used for measuring the feature and data rela-
tions. Intercluster and inner-cluster affinity characterizes
the relationship between features and classes; thus, they are
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useful for evaluating the discrimination and description
power of the feature, respectively.

The criteria, how and why they are used in our feature
selection approaches are described in the following subsec-
tions.

2.1 Mutual information

Mutual information (MI) measures how much knowledge
two variables carry about each other. It is the difference
between the sum of the marginal entropies and their joint
entropy. The mutual information of two independent items
is always zero.

In [13], maximum dependency criterion based on mutual
information is used for feature selection, and experimented
with various data classification accuracies. Conditional
mutual information is used for speech recognition in [15].
In this study, we use mutual information, where Shannon’s
entropy is utilized.

Definition Let x and y be two random variables, p(x) and
p(y) be their probability density functions and p(x, y) be
their joint probability density function. Then their mutual
information is defined as follows:

I (X; Y ) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

The relationship between entropy and mutual information
can be described as follows.

Let H(X) denote Shannon’s entropy of X , then

H(X) = −
∫

p(x) log(p(x))dx (2)

Then entropy is related to mutual information as follows:

I (X; Y ) = H(X) − H(X |Y ), (3)

I (X; Y ) = H(Y ) − H(Y |X), or (4)

I (X; Y ) = H(X) + H(Y ) − H(X, Y ) (5)

As a feature selection criterion, the best feature will maxi-
mize the mutual information I (X; Y ), where X is the feature
vector and Y is the class indicator.

2.2 Pearson’s product–moment correlation between data
clusters

Intercluster information is widely utilized in cluster analysis
for classifying data by using multiple features. The attributes
of affinity between clusters (intercluster) represent the dis-
crimination characteristics of a feature for a given data set.
The data space is clustered with each feature individually, and
the sums of correlations or distances are compared for evalu-
ating the features. The criterion measuring class separability

represents how the distances among the means of classes are
maximized. Usually, this method is not used alone in feature
selection approaches. The results become more reliable for
discrimination if it is supplemented with inner-cluster infor-
mation.

In [5], information concerning cluster compactness and
cluster separability is used for unsupervised feature selection
for content-based medical image retrieval. Class separabil-
ity is also used in [17] for feature selection in a handwritten
character recognition system. Class correlation is one of the
criteria proposed in this study for evaluating the discrimi-
nation characteristics of a feature for a given set of data. It
measures how cluster means are scattered with respect to
each other. Large distances between clusters lead to better
cluster discrimination. We use the following correlation mea-
sure for evaluating the discrimination power of each feature
separately:

S =
c∑

x=1

c∑

y=x+1

δ(x, y) (6)

where c represents the number of classes and δ represents
the correlation between clusters x and y that are the numbers
referring to cluster names or labels.

We use PPMC for defining the correlation between clus-
ter means. The PPMC coefficient is the most commonly used
measure of correlation in machine learning. It is calculated
by summing up the products of the score deviations from the
mean. We will use the following expression for the cluster
correlation;

δ(x, y) =

Nx∑
i=1

( fxi − µx )( fyi − µy)

Nx Nyσxσy
(7)

where fxi and fyi represents the i th item in the cluster x
and y, µx and µy,σx and σy are the means and the standard
deviations, Nx and Ny are the cardinality of clusters x and
y, respectively. Clusters x and y are assumed to have equal
number of elements to be compared by PPMC.

2.3 Inner-cluster relation based on first principal component

Inner-cluster scatter information is a widely used criterion in
cluster analysis. The main objective of the inner-cluster anal-
ysis is to better understand the existing pattern in a given data
space. It is often difficult to make assumptions about the clus-
ter shape and distribution. Irregular shape clusters are par-
ticularly problematic. Inner-cluster information is also used
for feature selection [5,18]. The most common inner-cluster
information is “compactness,” which is a measure of the sim-
ilarity and closeness of the elements in a cluster. We use
inner-cluster information as a criterion for feature selection
in this study. If the elements of a cluster are close to each
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other in the represented feature space, or if the cluster is tight
and compact, then the feature is considered as descriptive for
the cluster.

We propose a new measure for inner-cluster information,
inner-cluster relation (ICR), which represents the inner-
cluster scatter information using the principal component
information of the cluster. It is also related to the closeness
of cluster elements similar to compactness.

ICR can be obtained by performing the following steps
for a given set of feature vectors corresponding to a cluster
of N elements:

Step 1 The aim of this step is to derive a feature vector
(π) that represents the given cluster in terms of direction
and characteristic by applying principal component analy-
sis, which is a method for identifying patterns and highlight-
ing the relations of the cluster elements. The first principal
component e1 is the eigen vector corresponding to the larg-
est eigen value of the covariance matrix of the cluster. This
process is principal component analysis and is applied to the
feature vectors of the items in the cluster. The best represen-
tative feature vector π can be constructed using the following
formula:

π = e1 X (8)

where X is a matrix containing set of feature vectors (xN ) for
a cluster, and xi represents the feature vector corresponding
to the i th item in the cluster. xi j is the j th element of the
feature vector corresponding to the i th item of the cluster.

Step 2 In this step, we try to get information about the
distribution of the cluster elements using the distance (�)

between the representing feature vector π and mean
vector M. The elements of M are the mean values µ j of
the feature vectors in the cluster calculated as follows:

M =
{

µ j |µ j = 1

N

N−1∑

i=0

xi j

}
(9)

where N is the number of items in the cluster.
The sum of distances � is calculated with the following

formula:

� = 1

n

n−1∑

i=0

(πi − µi )
2 (10)

where n is the number of elements in the vectors π and M,
and is also equal to feature vector dimension.

Step 3 In this step, the � value is normalized by the average
distance between cluster elements to improve performance
of the criterion on the clusters, where the cluster shape is not
symmetric and the cluster distribution is not even. Finally,

ICR is obtained as follows:

ICR = �

2
N (N−1)

N−2∑
i=0

N−1∑
j=i+1

d(xi,x j )

(11)

where d is the Euclidean distance between cluster members
and N is the number of items within the cluster.

2.3.1 Comparison of ICR and compactness

In this article, we rely on three different compactness defini-
tions Sw1,Sw2, and Sw3 used in the field of feature selection
and cluster analysis, to compare the proposed method. The
compactness criteria below approximately measures how
scattered the cluster members are from their cluster means.
The following equations present the definitions:

Sw1 =
N−1∑

i=0

‖xi − µ‖2, (12)

where xi is the i th member of the cluster and µ is the mean
of the cluster [19].

Sw2 = (µd + σd + r), (13)

where µd and σd are the mean and standard deviations of
the Euclidean distances between the cluster members respec-
tively. r is the covering radius, which is the distance from the
center to the farthest item in the cluster [20].

Sw3 = trace(sw3), where sw3 = �
 (14)

where � is the probability and 
 is the covariance matrix of
a cluster [5].

In Fig. 1, a sample data set consisting of subjectively simi-
lar images is represented by four different sets of two-dimen-
sional features defined as Feature-1, -2, -3, and -4, and the
clusters Cluster-1, -2, -3, and -4 are constructed, respectively,
for each feature set. x and y axes of Fig. 1 represent the fea-
ture values and spatially closer cluster elements in the figure
represent semantically related images. In the figure, features
are energy and entropy values of Gray Level Co-Occurrence
Matrix texture features [21]. In this example, we do not
consider the semantic gap between low-level features and
high-level objects. In this respect, construction of Cluster-1
can be considered more successful than that Cluster-2 and
Cluster-4, since the elements in the Cluster-1 are spatially
closer to each other than that in Cluster-2 and Cluster-4.
Comparing the ICR values (ICRCluster-1 < ICRCluster-2) leads
to the same conclusion; while, the other three compactness
factors depicts the opposite. Moreover, Cluster-3 elements
can also be considered spatially closer than elements in
Cluster-4. ICR values indicate the same (ICRCluster-3 <

ICRCluster-4); however, other three compactness criteria show
that the Cluster-4 is the most compact cluster within four
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Fig. 1 A sample data set
represented with four different
sets of features
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sample clusters. ICR gives better performance by the normal-
ization of � value with the average distance between cluster
elements to improve performance of the criterion on the clus-
ters, where cluster shape is not symmetric and distribution
is not even. It can be observed from Fig. 1 that ICR reveals
better performance for describing the cluster distribution.

3 Majority voting for features selection and weighting

Voting is a common classifier combination technique used in
various disciplines, particularly in multi-classifier combina-
tion for pattern recognition [22,23]. In general, voting may be
used as a black box and it does not require additional internal
information for the decision implementation. Furthermore, it
is a simple and effective method used in real-world applica-
tions as well as in social life as voting by majority.

In this study, majority voting is adopted in the feature
selection process (Fig. 2). Majority voting selects the can-
didate having the largest amount of votes. We use voting
method for sorting and selecting the features. Different from

Feature
Selection
Metrics

Majority
Voting

Features

Training Data

FS Results
Individually

Ranked Feature
List

Fig. 2 Overview of the proposed feature selection system

the categorization problem, the output of the decision-making
black box is a list of features, which are sorted in descending
order according to corresponding votes. The first feature in
the output vote list represents the most important and pow-
erful feature discriminating the associated data.

Feature voting for ranking and weighting works as fol-
lows:

• Voting gets the normalized numerical results from each
individual criterion MI, ICR, and PPMC defined as υMI,

υICR, and υPPMC (see Sect. 4.2).
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• Votes are calculated for each feature using the following
formula

ν fi =
∑

(υMI( fi ) + υICR( fi ) + υPPMC( fi )) (15)

• The features are sorted according to their ν fi values, and
then the output feature selection ranking list (FSRL) is
constructed.

3.1 Feature Selection by Voting

After obtaining the FSRL, an appropriate number of fea-
tures are recommended to the end-user using the votes of the
features in FSRL. Alternatively, appropriate number of fea-
tures can be used internally by the system, without the user’s
knowledge, for unsupervised retrieval. In the ideal case, most
definitive and discriminative features for querying a certain
database are sorted and listed in the FSRL. The number of
features that will be used for a query can be defined in a
supervised way. On the other hand, the system gives a cer-
tain number of features to the end-user for an unsupervised
way for retrieval. The minimum gradient of the sorted list of
votes in FSRL corresponding to the sharpest decrease can be
used to define the threshold, where the features with higher
votes are recommended for retrieval. The defined threshold
will be the number of features that are recommended by the
system to the end-user.

3.2 Feature Weighting by Voting

FSRL is a sorted list of features that suitably represent the
data. Users of the feature selection system may utilize all
features in the FSRL instead of eliminating any of the fea-
tures for the retrieval existing in the CBIR system. Appropri-
ate feature combination should be given to the user in order
to improve the semantic retrieval performance of the CBIR
system. The orders of the features are given in FSRL list
and an automatic weighting can be introduced to the users as
follows:

Assume that the sum of the weights of the features is equal
to 1.

F∑

i=1

αi=1, where F is the number of features in the FSRL list.

(16)

The weights of the features can be calculated as follows:

αi = (F − Ri ) + 1
F∑

i=1
i

(17)

where Ri represents the rank of the i th feature in FSRL list,
and F is the number of features.

4 Experimental results

4.1 Data sets and features

Well-categorized Corel image data sets are widely used in the
literature [24]. We used Corel real-world image databases for
training and testing. For testing the results, a Corel database
with 10,000 images are used. These images are preassigned
to 100 semantic classes each containing 100 images by a
group of human observers. Some examples of the classes are
autumn, balloon, bird, dog, eagle, sunset, and tiger. Another
Corel image database including 1,000 images categorized in
10 equal size classes is used for feature selection (training).
In the first set of experiments, the following low-level color,
shape, and texture features are used: YUV, RGB, and HSV
color histograms with 128, 64, and 16 bins [25], Gabor Wave-
let texture feature [26], Gray Level Co-Occurrence Matrix
texture feature with parameters 12 and 6 [21], Canny Edge
Histogram [27], and Dominant Color with three colors [28].
In the second set of experiments, same training and test dat-
abases are used and only color features YUV, RGB, and HSV
color histograms with 32, 16, and 8 bins are utilized.

Image databases used for CBIR purposes tend to be large
and lead to high complexity for feature selection. Thus, train-
ing data needs to be used. Computational and storage com-
plexity will be decreased if feature and class probabilities and
class relations are obtained from the training data. However,
construction of the training data is another issue as it has
direct impact on the precision accuracy of the feature selec-
tion method. It is a difficult task to construct training data
to model general-purpose CBIR databases. Such databases
contain random and irregular number of classes.

Defining the training data In this study, the training data
is selected in a supervised way for evaluation and assess-
ment of the methods. However, feature selection method is
intended for any type of image data. Corel database contains
100 classes, where 10 of them (Corel 1,000 image database)
are selected as training data. Feature subset selection is not
employed since each feature is passed through the criteria
individually.

4.2 Calculation of global criteria values υMI, υICR, and
υPPMC

Each criterion is applied separately for each individual fea-
ture to express clearly its effects of the characteristics in the
data set for evaluation. Global criterion values are the inputs
to the majority voting for final decision mechanism of the
feature selection system.

Mutual information is calculated as shown in Eq. 1 for
each feature using the training database, and the global
mutual information value is the sum of these values. PPMC
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Fig. 3 a, b Numerical results
of the proposed feature selection
criteria
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coefficients are calculated for every cluster combination for
each feature, and sum yields the global PPMC value. ICR
criterion is applied to each cluster in the data set with each
feature individually. The sum of the values for each feature
gives the global ICR value.

4.3 Assessment of the results

The objective of feature selection in CBIR context is decreas-
ing complexity, improving usability, and particularly improv-
ing semantic performance. However, semantic performance
of a CBIR system cannot be easily assessed. To evaluate the
usefulness of the proposed feature selection method, we used
a numerical method described in the following steps:

• Retrieval experiments are performed using each feature
separately on the general database (so-called test data-
base in this section) for obtaining average precision val-
ues. The test database has 100 classes each including 100
images. Thus, queries are performed with 500 images,
five images from each class, and using each feature indi-
vidually on the test database. Precision is defined as the
ratio of the number of relevant records over the total num-
ber of retrieved records. It is usually expressed as a per-
centage. In these experiments, 36 retrieved images are
taken into account for calculating the average precision.

• Semantic retrieval performances for corresponding fea-
tures are recorded according to the precision values for
verifying the feature selection method.

• Features are sorted according to the recorded retrieval
performances. This step may also be expressed as sort-
ing the features according to their representation level of
the database. The sorted list is named as semantic perfor-
mance feature list (SPFL). SPFL is used for evaluating
the results of a feature selection system.

• The output of a feature selection system is a list of fea-
tures so called feature list (FL) similar to the FSRL men-
tioned in Sect. 3. The proposed numerical assessment
value referred to as performance value (PV) is calculated
as follows:

PV =
N∑

i

N∑

j

ωiω j (18)

where ωi = N − {rank of item i in SPFL} + 1 represents
the weight of item i in SPFL andω j = N−{rank of item j
in FL} + 1, represents the weight of item j in FL.

Figure 3a, b represents the first and second set of exper-
iments’ PVs of MI (MI FSRL), PPMC (PPMC FSRL), as
well as the proposed ICR (ICR FSRL) criteria separately, to
compare it with the final FSRL results (TOTAL FSRL). It
should be noted that the PV of the TOTAL FSRL is higher
than other methods, which means that the final FSRL is closer
to SPFL. In the best case, final FSRL should be equal to the
SPFL. MI, PPMC, and ICR criteria represent different char-
acteristics of the features on the data. Each of these criteria
may work better than the others in different cases, as it can
be seen from the first and second experiments. The semantic
effects of these results on image retrieval are presented in the
following section.

4.3.1 Comparisons of (compactness-ICR) and
(separability-PPMC) with PV values

ICR and PPMC are also compared with Sw1 compactness (see
Sect. 2.3.1) [19] and class separability [5] using the proposed
performance value. Figure 4 presents the retrieval results for
each list of features constructed by the criteria. ICR outper-
forms compactness and PPMC outperforms class separabil-
ity in terms of semantic retrieval performance based on the
values in the figure.
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Fig. 4 Numerical comparisons of the feature selection criterions
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Fig. 5 a, b Votes of the
features in final FSRL list
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Fig. 6 a, b Average precision
values of features employed in
the experiments
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4.4 Semantic retrieval results for image databases

In addition to the numeric results, average precisions are
obtained from retrieval experiments for presenting semantic
results. In the semantic retrieval performance experiments,
Corel database including 100 classes, each including 100
images, is used. Five hundred queries are performed on the
database by selecting five images randomly from each class.
Average precision values are calculated according to these
queries. The feature numbers given in Fig. 5 are taken from
FSRL list. The features ranked higher in this list are consid-
ered as well-representative features for the database.

The proposed system is compared with the maximum mar-
ginal diversity (MMD) method for feature selection of image
retrieval systems presented in [8]. MMD is used to construct a
feature list, in which the features are ranked according to their
representation success similarly to the construction of FSRL.
Figure 5a, b illustrates the votes for each feature in the FSRL.
In the first set of experiments shown in Fig. 5a, database has
13 features given in Sect. 4.1, and only the first feature is
selected for image retrieval based on the votes, since the first
feature (Feature-1) gives the maximum gradient. The recom-
mended feature for this database is Gabor texture feature. In
the second set of experiments shown in Fig. 5b, nine fea-
tures are used, seven features are selected for image retrieval
based on the votes by calculating the maximum gradient. The
recommended features are sorted in FSRL list YUV color
histogram (YUVCH) 16 bins and 32 bins, HSV color histo-

gram (HSVCH) 32 bins, RGB color histogram (RGBCH) 32
bins, HSVCH 8 bins, YUVCH 8 bins, and HSVCH 16 bins
according to representation power of the given database.

Figure 6a, b illustrates the results of retrieval using the
features in the FSRL and MMD lists. The numbers in the
x-axis of Fig. 5 refer to the rank of the underlying feature,
e.g. 1 is for Feature-1, 2 is for Feature-2, etc. On the other
hand, the same numbers in Fig. 6 refer to the number of fea-
tures from the beginning of the list, e.g. 1 for the first feature,
2 for first two features each equally weighted, etc.

Ideally, a feature selection system should select the num-
ber of features, or x-axis value in other terms, which corre-
spond to the highest average precision value in Fig. 6. The
AP values should also tend to decrease or remain constant
along the x-axis after the selected number of features. In the
first example, the proposed system selects only one feature.
It is verified by the results depicted in Fig. 6a as the precision
starts to decrease after the first feature. The results with MMD
in the same figure suggest that using three features gives the
highest precision: HSVCH 128 bins, RGBCH 128, bins and
HSVCH 64 bins. However, it is still lower than the precision
obtained with the proposed feature selection system. In the
second example, the proposed system selects seven features.
It is verified by the results depicted in Fig. 6b as the precision
slightly increases with the eighth feature and decreases after
that. In Fig. 6b, MMD suggests five features: HSVCH 32
bins, YUVCH 32 bins, RGBCH 32 bins, HSVCH 16 bins,
and RGBCH 8 bins. Final MMD average precision is lower
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Fig. 7 a, b Average precision
values of all features with
different weights
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than the result of the proposed system, although there are
higher precisions shown partially in the MMD results.

An alternative way of using FSRL is an automatic deter-
mination of feature weights for retrieval. Feature weights are
calculated automatically by the system using FSRL. In the
experiments of Fig. 7a, b, first all existing features in the sys-
tem are combined with equal weights, then the features with
the proposed weights by the system are utilized. As shown
in Fig. 7a, the average precision of 61% is increased to 66%
when the proposed feature weighting is employed, and in
Fig. 7b it is increased from 37 to 38%.

5 Discussions

The proposed feature selection and weighting method can
be used to enhance semantic content-based image retrieval
performance, to decrease retrieval process complexity, and
to improve system usability for end-users. Our method uses
three different criteria and a majority voting approach for the
final decision-making step, where each criterion represents
different feature characteristics.

The novelties of the proposed feature selection approach
in a CBIR system are as follows:

• A new criterion based on categorized member relation
within the same cluster from the labeled training data.

• A new criterion for defining the correlations of interclus-
ters, which is based on PPMC and used for defining the
discrimination power of the feature.

• The three different criteria with majority voting approach
as a decision-making mechanism.

MI criterion refers to the amount of information a fea-
ture carries about the data. ICR criterion gives the feature
description power for each labeled cluster, where members
of a cluster are supposed to be similar and close to each other
in the feature space. ICR is slightly similar to the compact-
ness of clusters; however, its analysis accuracy is higher for
irregular shape clusters. PPMC criterion represents the corre-
lation between clusters, where each of them is uncorrelated in
the ideal case. Instead of cluster separability, we use PPMC,

since it discriminates the clusters better. Once the criteria are
applied, each feature has normalized values, which will be
the inputs to the voting system. Majority voting is adopted
for the use of feature listing in CBIR context. It generates
a sorted vote list referred to as FSRL with associated fea-
ture names. FSRL may be utilized to obtain one of the two
different outputs to the end-users for the following use-cases:

• Recommended set of features will be used by the system
automatically.

• Recommended weights for each feature will be given to
the end-user or the system will use them automatically.

The choice of the use-case is directly related with the
complexity. First use-case decreases the retrieval complex-
ity, whereas the latter one improves the semantic performance
without altering complexity, since all features are used in the
retrieval process. Especially the first use-case may be applied
on limited platforms having low capacity for computing fea-
tures and all the features may not be used for CBIR.

The proposed system in CBIR can be used automatically
or manually by the end-user. In unsupervised case, the system
internally uses feature combinations and weights automati-
cally. In supervised case, user selects the features and weights
for retrieval.

Defining a suitable training data is a major challenge in
this study. The proposed method should be performed on
a representative training data for successful results in large
image databases.

Flexibility and efficiency of the proposed approach allows
it to be applied in various platforms and for types of data. The
success of the proposed approach is verified with the exper-
imental results on image databases.

6 Conclusions and future work

In this article, we explore the use of feature selection within
a CBIR context. Two novel feature selection criteria based
on inner-cluster and intercluster relations are proposed, and
an efficient majority voting-based method is implemented
for the selection and combination of features. The proposed
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method includes three main criteria for feature–data relation.
These criteria produce results for each feature that are fed to
majority voting as input. Each criterion is based on different
associations of feature–data affinity to define the best dis-
criminative and representative feature of the data. Two pro-
posed criteria are compared with other state-of-the-art cri-
teria through dedicated experiments, which show that the
proposed methods improve retrieval performance. The pro-
posed feature selection system is implemented as a black-box
approach that gives flexibility for using it in different plat-
forms. It may be performed on several types of databases and
sets of features.

Moreover, assessment studies on the criteria will be car-
ried out using different databases on different platforms in the
future. In addition, this work may be extended to multimodal
features for multimedia databases. Selection of the training
data is a challenge in this study. Nonrepresentative sample
training data hinders the generalization of the method. How
to select appropriate training data is still an open problem to
be studied in the future.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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