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Abstract

Feature selection for ensembles has shown to be an effec-
tive strategy for ensemble creation. In this paper we present
an ensembl e feature selection approach based on a hierar-
chical multi-objective genetic algorithm. Thefirst level per-
forms feature selection in order to generate a set of good
classifiers while the second one combines them to provide
a set of powerful ensembles. The proposed method is eval-
uated in the context of handwritten digit recognition, using
three different feature sets and neural networks (MLP) as
classifiers. Experiments conducted on NIST SD19 demon-
strated the effectiveness of the proposed strategy.

1 Introduction

Ensemble of classifiers has been widely used to reduce
model uncertainty and improve generalization performance.
Developing techniques for generating candidate ensemble
members is a very important direction of ensemble of clas-
sifiers research. Both theoretical [6] and empirical [11] re-
search has demonstrated that a good ensemble is one where
the individual classifiers in the ensemble are both accurate
and make their errors on different parts of the input space
(there is no gain in combining identical classifiers). In other
words, an ideal ensemble consists of good classifiers (not
necessarily excellent) that disagree as much as possible.

The most popular methods for ensembles creation are
Bagging and Boosting. The effectiveness of such methods
comes primarily from the diversity caused by re-sampling
the training set while using the complete set of features to
train the component classifiers. In addition, some attempts
have been made to incorporate the diversity into ensemble
creation methods. The Random Subspace Method (RMS)
proposed by Ho in [4] was one early algorithm that con-

struct an ensemble by varying the subset of features. In this
case, the diversity is promoted through different subsets of
features.

In the same vein, methods based on feature selection
have been proposed for ensembles. The key idea is to pro-
mote diversity among the classifiers by performing feature
selection. Gerra-Salcedo and Withley [2] used a simple ge-
netic algorithm (GA) to explore the space of all possible
feature subsets, and then create an ensemble based on them.
In their experiments, this GA-based approach outperformed
classical methods such as Bagging and Boosting. In spite of
the fact they achieved interesting results, they did not con-
sider any measure of diversity. A more elaborate method,
also based on GA, was proposed by Optiz [11]. In his work,
he stresses the importance of a diversity measure by includ-
ing one into the fitness calculation. The drawback of this
method is that the objective functions are combined through
the weighted sum. It is well known that when dealing with
this kind of combination, one should deal with problems
such as scaling and sensitivity towards the weights. More
recently Giinter and Bunke [3] have applied different fea-
ture selection algorithms to create ensemble of classifiers
for the field of handwriting recognition. They have used the
problem of word recognition where the base classifier was
an HMM.

It has been demonstrated that feature selection through
multi-objective genetic algorithm (MOGA) is a very pow-
erful tool to find a set (Pareto-optimal) of good classifiers
[10]. Besides, it can overcome problems such as scaling
and sensitivity towards the weights. In this light, we pro-
pose a new methodology for creating ensembles of classi-
fiers which is able to cope with multiple ensembles simulta-
neously. Such a strategy is based on a hierarchical MOGA
where the first level is devoted to generate a set of good clas-
sifiers while the second one combines these classifiers in or-
der to find an ensemble. The use of MOGA in both levels is



justified by the fact that in both cases we have to cope with
multi-objective optimization problems. In order to show
the robustness of the proposed methodology, we carried out
comprehensive experiments in the context of handwritten
digit recognition using the NIST SD19 database.

2 Multi-Objective Optimization using Ge-
netic Algorithms

Since the concept of multi-objective optimization will be
explored in the remaining of this paper, this section briefly
introduces it. For more details see [12].

A general multi-objective optimization problem consists
of a number of objectives and is associated with a number
of inequality and equality constraints. Solutions to a multi-
objective optimization problem can be expressed mathemat-
ically in terms of nondominated points, i.e., a solution is
dominant over another only if it has superior performance
in all criteria. A solution is said to be Pareto-optimal if it
cannot be dominated by any other solution available in the
search space.

3 Classfiersand Feature Sets

To evaluate the proposed methodology we have used
three classifiers trained to recognize handwritten digits of
NIST SD19. Such classifiers were trained with three well-
known feature sets: Concavities and Contour (CC) [9], Dis-
tances (DDD) [8], and Edge Maps (EDM) [1]. All clas-
sifiers are neural networks (MLP) trained with the back-
propagation algorithm. The training (TRDB) and valida-
tion (VDBL1) sets are composed of 195,000 and 28,000 sam-
ples from hsf_ 0123 series respectively while the test set
(TSDB) is composed of 30,089 samples from the hsf 7.
Table 1 reports the performance of all classifiers, where
“Rec.Rate” means the recognition rate at zero-rejection
level and “Rec.Rate 0.5%” means the recognition rate
achieved for an error rate fixed at 0.5%. The latter is much
more meaningful when dealing with real applications since
it describes the recognition rate in relation to a specific error
rate, including implicitly a corresponding reject rate. This
rate also allows us to compute the reliability of the system
for a given error rate. It can be done by using Equation 1.

Rec.Rate
Reliability = 1 1
1abiiity Rec.Rate + Error Rate x 100 (@)

Though all systems reach a reliability close to 99.5%, it
is clear that there is enough room (see Table 1), especially
for the last two feature sets, to improve “Rec.Rate 0.5%”.

It should be noted, though, that the original feature set
DDD proposed by Oh and Suen [8] contains 256 features.

After carrying out some experiments with different strate-
gies of zoning, we realized that using 96 features (6 zones:
3 horizontal and 2 vertical) we could achieve the same re-
sults using 256 features (16 symmetrical zones).

Table 1. Performance of the classifiers on
TSDB.

Feature  No. of Units Rec. Rec.Rate
Set Features H.Layer Rate (%) 0.5% (%)
CccC 132 80 99.13 98.50

DDD 96 60 98.17 92.80
EDM 125 70 97.04 85.10

4 Proposed Methodology

In this section we describe the hierarchical approach
proposed. As stated before, it is based on a 2-level
MOGA where the first level generates a set of good clas-
sifiers by conducting feature selection and the second one
searches the best ensemble among such classifiers. In
both cases, MOGAs are based on bit representation, one-
point crossover, bit-flip mutation. In our experiments,
MOGA used is the Non-dominated Sorting Genetic Algo-
rithm (NSGA) with elitism proposed by Srinivas and Deb
in [12].

The idea behind NSGA is that a ranking selection
method is used to emphasize good points and a niche
method is used to maintain stable subpopulations of good
points. It varies from simple GA only in the way the selec-
tion operator works. The crossover and mutation remain as
usual. Before the selection is performed, the population is
ranked on the basis of an individual’s nondomination. The
nondominated individuals present in the population are first
identified from the current population. Then, all these in-
dividuals are assumed to constitute the first nondominated
front in the population and assigned a large dummy fitness
value. The same fitness value is assigned to give an equal re-
productive potential to all these nondominated individuals.
In order to maintain the diversity in the population, these
classified individuals are made to share their dummy fitness
values. Sharing is achieved by performing selection opera-
tion using degraded fitness values obtained by dividing the
original fitness value of an individual by a quantity propor-
tional to the number of individuals around it. After sharing,
these nondominated individuals are ignored temporarily to
process the rest of population in the same way to identify
individuals for the second nondominated front. These new
set of points are then assigned a new dummy fitness value
which is kept smaller than the minimum shared dummy fit-
ness of the previous front. This process is continued until
the entire population is classified into several fronts.



Thereafter, the population is reproduced according to the
dummy fitness values. A stochastic remainder proportion-
ate selection is used here. Since individuals in the first front
have the maximum fitness value, they get more copies than
the rest of the population. The efficiency of NSGA lies in
the way multiple objectives are reduced to a dummy fitness
function using nondominated sorting procedures. More de-
tails about NSGA can be found in [12].

4.1 Feature Selection

Feature selection is conducted through the strategy pre-
sented in [10]. It takes into account a MOGA where the
classification accuracy is supplied by multi-layer perceptron
(MLP) networks in conjunction with the sensitivity analy-
sis. Such an approach makes it feasible to deal with huge
databases in order to better represent the pattern recognition
problem during the fitness evaluation. Moreover it can ac-
commodate multiple criteria such as number of features and
accuracy of the classifier, and generate the Pareto-optimal
front in the first run of the algorithm.

Figure 1a depicts an example of the evolution of the pop-
ulation in the objective plane while Figure 1b shows the cor-
responding Pareto-optimal front. Once we did not train the
models during the search (the training step is replaced by
the sensitivity analysis), the last step of feature selection
consists of training the solutions provided by the Pareto-
optimal front.

It can be observed in Figure 1b that the Pareto-optimal
front is composed of several different classifiers. In order
to get a better insight about them, they were classified into
3 different groups: weak, medium, and strong. It can be
observed that among all those classifiers there are very good
ones. To find out which classifiers of the Pareto-optimal
front compose the best ensemble, we carried out a second
level of search.

4.2 Findingthe Best Ensemble

Let A = C1,Cs,...,C, be a set of n classifiers ex-
tracted from the Pareto-optimal (Figure 1b) and B a chro-
mosome of size n of the population. The relationship be-
tween A and B is straightforward, i.e., the gene i of the
chromosome B is represented by the classifier C; from A.
Thus, if a chromosome has all bits selected, all classifiers of
A will be included in the ensemble.

In order to find the best ensemble of classifiers, i.e., the
most diverse set of classifiers that brings a good generaliza-
tion, we have used two objective functions during this level
of the search, namely, maximization of the recognition rate
of the ensemble and maximization of the ambiguity as pro-
posed in [6]. We have tried other measures of diversity such
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Figure 1. Feature selection using a Pareto-
based approach (a) Evolution of the popula-
tion in the objective plane, (b) Pareto-optimal
front found by the NSGA

overlap and entropy [7], but the ambiguity yielded better
resultsin our experiments.
The ambiguity is defined as follows:

Vi) — V)P @
wherea; istheambiguity of theit" classifier onthe example
x, randomly drawn from an unknown distribution, while
V; and V arethe it classifier and the ensemble predictions
respectively. In other words, it is simply the variance of en-
semble around the mean, and it measures the disagreement
among the networks on input z.
In this scenario the error from the ensembleis:

ai(xy) =

E=F-7A @3)

where E is the average of the single classifier errorsand A
is the ambiguity of the ensemble. Equation 3 expresses the
trade-off between bias and variance in the ensemble, but in



a different way than the common bias-variance relation in
which the averages are over possible training sets instead of
ensemble averages. If the ensemble is strongly biased the
ambiguity will be small, because the networks implement
very similar functions and thus agree in inputs even outside
the training set.

At this level of the strategy we want to maximize the
generalization of the ensemble, therefore, it will be neces-
sary to use away of combining the outputs of al classifiers
to get a final decision. To do this, we have used the aver-
age, which is a simple and effective scheme of combining
predictions of the neural networks [5]. Other combination
rules such as product, min, and max have been tested but the
simple average has produced better results. In order to eval-
uate the obj ective functions described above we have used a
database composed of 30,000 samples extracted from hsf 7
(VDB2).

Different from other methodologies for ensemble cre-
ation based on feature selection where only one ensemble
is considered, our approach considers w ensembles simul-
taneously, where w is the population size used by MOGA
in the second level. Thisis due to the fact that each chro-
mosome of the population represents a potential ensemble.
Moreover, we will see in the experiments that this strategy
produces more compact ensembl es than other methods.

5 Experimentsand Discussion

All experiments we have carried out in this work were
based on a single-population master-save MOGA. In this
strategy, one master node executes the genetic operators
(selection, crossover and mutation), and the evaluation of
fitness is distributed among severa slave processors. In or-
der to execute our experiments, we have used a cluster with
17 (one master and 16 slaves) PCs (1.1Ghz CPU, 512Mb
RAM).

The following parameter settings were employed in both
levels: population size = 128, number of generations =
1000, probability of crossover = 0.8, probability of muta-
tion=1/L (where L is the length of the chromosome), and
niche distance = 0.45. The length of the chromosome in
the first level is the number of components in the feature
set (see Table 1), whilein the second level is the number of
classifiers picked from the Pareto-optimal front in the pre-
vious level. In order to define the probabilities of crossover
and mutation, we have used the one-max problem, whichis
probably the most frequently-used test function in research
on genetic algorithms because of its simplicity. This func-
tion measures the fitness of an individua as the number of
bits set to one on the chromosome. The niche distance was
determined empirically.

Once all parameters have been defined, the first step, as
described in Section 4.1, consists of performing feature se-

lection for a given feature set. As depicted in Figure 1b,
this procedure produces quite a large number of classifiers,
which should be trained for use in the second level. Af-
ter some experiments, we found out that the second level
always chooses “strong” classifiers to compose the ensem-
ble. Thus, in order to speed up the training process and the
second level of search as well, we decide to train and use
in the second level just the “strong” classifiers. This deci-
sion was made after we realize that in our experiments the
“weak” and “medium” classifiers did not cooperate with the
ensembleat all. To train such classifiers, the same databases
reported in Section 3 were used. Table 2 summarizes the
“strong” classifiers produced by the first level for the three
feature sets we have considered.

Table 2. Summary of the classifiers produced
by the first level.

Feature No. of Range of Range of
Set Classifiers Features Rec. Rates (%)
CcC 81 24-125 90.5-99.1

DDD 54 30-84 90.6-98.1
EM 78 35-113 90.5-97.0

Considering for examplethefeature set CC, thefirst level
of thealgorithm provided 81 “strong” classifierswhich have
the number of features ranging from 24 to 125 and recog-
nition rates ranging from 90.5% to 99.1% on TSDB. This
shows the great diversity of the classifiers produced by the
feature selection method. In order to assess the objective
functions of the second-level MOGA (generalization of the
ensemble and diversity) we have used VDB2, which was
not used so far.

Likethefirst level, the second one a so generates a set of
possible solutions which are the trade-offs between the gen-
eraization of the ensemble and its diversity. Thusthe prob-
lem now lies in choosing one ensemble among all. Figure 2
depictsthe variety of ensemblesyielded by the second-level
MOGA for the feature set CC. The number over each point
stands for the number of classifiers in the ensemble. Such
information can be used to support the decision about which
ensembl e should be selected. Sincewe are aiming at perfor-
mance, the direct choice will be the ensemble that provides
better generalization. In our experiments, the ensembl e that
presents better performance has also the smallest number of
classifiers. Table 3 reports the results of the ensembles for
the three different feature sets on TSDB.

By comparing the results of Tables 3 and 1, it can be ob-
served that the ensembles provided a compelling improve-
ment in the recognition rates when the error rate is fixed
at 0.5%, especially for those feature sets (EDM and DDD)
where there is more room for improvement. We have no-
ticed that the ensemble reduces the high outputs of some



outliers so that the threshold used for rejection can be re-
duced and consequently “Rec.Rate 0.5%” isimproved. This
is an important issue in handwriting recognition where real
applications have to work with very low error rates.
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Figure 2. The Pareto-optimal front produced
by the second-level MOGA (feature set CC).

Table 3. Performance of the ensembles on
TSDB.

Feature  Nb. of Rec. Rec. Rate  Improv.
Set Classif. Rate(%) 0.5% (%) (%)
CcC 4 99.23 98.86 0.36

DDD 4 98.16 95.28 2.48
EDM 7 97.16 89.00 3.90

In order to better evaluate our methodol ogy we have im-
plemented the method proposed by Optiz in [11]. We have
chosen Optiz’s method because it seems to be more ro-
bust than the others we have found in the literature. Ba-
sically, our methodology brought slightly better results but
with considerably smaller ensembles. Regarding Optiz’s
methodology, the best results were achieved with ensem-
bles composed of about 20 classifiers, while in our’s the
ensembles were composed of about 5 classifiers. More-
over, the feature selection method we have applied is de-
signed to tackle huge databases so that the pattern recogni-
tion problem can be better represented. On the other hand,
our method is more time consuming, since a two-level opti-
mization is necessary.

6 Conclusion

In this paper we have proposed a methodology for en-
semble creation based on feature selection. It takes into ac-
count a hierarchical MOGA where the first level carries out

the feature selection to yield a set of good classifiers while
the second one combines them in order to provide a set of
powerful ensembles.

The experiments on three different feature sets have
demonstrated the validity and efficiency of the proposed
strategy by finding small ensembles, which succeed in im-
proving the recognition rates for classifiers working with a
very low error rate (0.5%). For future works we plan to use
the reliability rate as an objective function in the two levels
of the algorithm. We also plan to study the behavior of the
ensembl es to recognize strings of digits[9].
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