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Summary. Feature selection for ensembles has shown to be an effective strategy for
ensemble creation due to its ability of producing good subsets of features, which make
the classifiers of the ensemble disagree on difficult cases. In this paper we present
an ensemble feature selection approach based on a hierarchical multi-objective ge-
netic algorithm. The underpinning paradigm is the “overproduce and choose”. The
algorithm operates in two levels. Firstly, it performs feature selection in order to
generate a set of classifiers and then it chooses the best team of classifiers. In order
to show its robustness, the method is evaluated in two different contexts: supervised
and unsupervised feature selection. In the former, we have considered the problem of
handwritten digit recognition and used three different feature sets and multi-layer
perceptron neural networks as classifiers. In the latter, we took into account the
problem of handwritten month word recognition and used three different feature
sets and hidden Markov models as classifiers. Experiments and comparisons with
classical methods, such as Bagging and Boosting, demonstrated that the proposed
methodology brings compelling improvements when classifiers have to work with
very low error rates.

3.1 Introduction

Ensemble of classifiers has been widely used to reduce model uncertainty
and improve generalization performance. Developing techniques for generating
candidate ensemble members is a very important direction of ensemble of
classifiers research. It has been demonstrated that a good ensemble is one
where the individual classifiers in the ensemble are both accurate and make
their errors on different parts of the input space (there is no gain in combining
identical classifiers) [11, 17, 31]. In other words, an ideal ensemble consists of
good classifiers (not necessarily excellent) that disagree as much as possible
on difficult cases.
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The literature has shown that varying the feature subsets used by each
member of the ensemble should help to promote this necessary diversity
[12, 31, 24, 35]. Traditional feature selection algorithms aim at finding the
best trade-off between features and generalization. On the other hand, en-
semble feature selection has the additional goal of finding a set of feature sets
that will promote disagreement among the component members of the ensem-
ble. The Random Subspace Method (RMS) proposed by Ho in [12] was one
early algorithm that constructs an ensemble by varying the subset of features.
More recently some strategies based on genetic algorithms (GAs) have been
proposed [31]. All these strategies claim better results than those produced
by traditional methods for creating ensembles such as Bagging and Boost-
ing. In spite of the good results brought by GA-based methods, they still
can be improved in some aspects, e.g., avoiding classical methods such as the
weighted sum to combine multiple objective functions. It is well known that
when dealing with this kind of combination, one should deal with problems
such as scaling and sensitivity towards the weights.

It has been demonstrated that feature selection through multi-objective
genetic algorithm (MOGA) is a very powerful tool for finding a set of good
classifiers, since GA is quite effective in rapid global search of large, non-linear
and poorly understood spaces [30]. Besides, it can overcome problems such
as scaling and sensitivity towards the weights. Kudo and Sklansky [18] have
compared several algorithms for feature selection and concluded that GAs are
suitable when dealing with large-scale feature selection (number of features is
over 50). This is the case of most of the problems in handwriting recognition,
which is the test problem in this work.

In this light, we propose an ensemble feature selection approach based
on a hierarchical MOGA. The underlying paradigm is the “overproduce and
choose” [32, 9]. The algorithm operates in two levels. The former is devoted
to the generation of a set of good classifiers by minimizing two criteria: error
rate and number of features. The latter combines these classifiers in order to
find an ensemble by maximizing the following two criteria: accuracy of the
ensemble and a measure of diversity.

Recently, the issue of using diversity to build ensemble of classifiers has
been widely discussed. Several works have demonstrated that there is a weak
correlation between diversity and ensemble performance [23]. In light of this,
some authors have claimed that diversity brings no benefits in building en-
semble of classifiers [33], on the other hand, others suggest that the study
of diversity in classifier combination might be one of the lines for further
exploration [19].

In spite of the weak correlation between diversity and performance, we ar-
gue that diversity might be useful to build ensembles of classifiers. We demon-
strated through experimentation that using diversity jointly with performance
to guide selection can avoid overfitting during the search. In order to show
robustness of the proposed methodology, it was evaluated in two different
contexts: supervised and unsupervised feature selection. In the former, we
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have considered the problem of handwritten digit recognition and used three
different feature sets and multi-layer perceptron (MLP) neural networks as
classifiers. In such a case, the classification accuracy is supplied by the MLPs
in conjunction with the sensitivity analysis. This approach makes it feasible
to deal with huge databases in order to better represent the pattern recogni-
tion problem during the fitness evaluation. In the latter, we took into account
the problem of handwritten month word recognition and used three different
feature sets and hidden Markov models (HMM) as classifiers. We demonstrate
that it is feasible to find compact clusters and complementary high-level rep-
resentations (codebooks) in subspaces without using the recognition results
of the system. Experiments and comparisons with classical methods, such as
Bagging and Boosting, demonstrated that the proposed methodology brings
compelling improvements when classifiers have to work with very low error
rates.

The remainder of this paper is organized as follows. Section 3.2 presents a
brief review about the methods for ensemble creation. Section 3.3 provides a
overview of the strategy. Section 3.4 introduces briefly the the multi-objective
genetic algorithm we are using in this work. Section 3.5 describes the classifiers
and feature sets for both supervised and unsupervised contexts. Section 3.6
introduces how we have implemented both levels of the proposed methodology
and Section 3.7 reports the experimental results. Finally, Section 3.8 discusses
the reported results and Section 3.9 concludes the paper.

3.2 Related Works

Assuming the architecture of the ensemble as the main criterion, we can dis-
tinguish among serial, parallel, and hierarchical schemes, and if the classifiers
of the ensemble are selected or not by the ensemble algorithm we can divide
them into selection-oriented and combiner-oriented methods [20]. Here we are
more interested in the first class, which try to improve the overall accuracy
of the ensemble by directly boosting the accuracy and the diversity of the ex-
perts of the ensemble. Basically, they can be divided into resampling methods
and feature selection methods.

Resampling techniques can be used to generate different hypotheses. For
instance, bootstrapping techniques [6] may be used to generate different train-
ing sets and a learning algorithm can be applied to the obtained subsets of
data in order to produce multiple hypotheses. These techniques are effective
especially with unstable learning algorithms, which are algorithms very sen-
sitive to small changes in the training data. In bagging [1] the ensemble is
formed by making bootstrap replicates of the training sets, and then multiple
generated hypotheses are used to get an aggregated predictor. The aggrega-
tion can be performed by averaging the outputs in regression or by majority
or weighted voting in classification problems.
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While in bagging the samples are drawn with replacement using a uni-
form probability distribution, in boosting methods [7] the learning algorithm
is called at each iteration using a different distribution or weighting over the
training examples. This technique places the highest weight on the examples
most often misclassified by the previous base learner: in this manner the clas-
sifiers of the ensemble focus their attention on the hardest examples. Then
the boosting algorithm combines the base rules taking a weighted majority
vote of the base rules.

The second class of methods regards those strategies based on feature se-
lection. The concept behind these approaches consists in reducing the number
of input features of the classifiers, a simple method to fight the effects of the
classical curse of dimensionality problem. For instance, the random subspace
method [12, 35] relies on a pseudorandom procedure to select a small number
of dimensions from a given feature space. In each pass, such a selection is
made and a subspace is fixed. All samples are projected to this subspace, and
a classifier is constructed using the projected training samples. In the classi-
fication a sample of an unknown class is projected to the same subspace and
classified using the corresponding classifier. In the same vein of the random
subspace method lies the input decimation method [37], which reduces the
correlation among the errors of the base classifiers, by decoupling the classi-
fiers by training them with different subsets of the input features. It differs
from the random subspace as for each class the correlation between each fea-
ture and the output of the class is explicitly computed, and the classifier is
trained only on the most correlated subset of features.

Recently, several authors have been investigated GA to design ensemble of
classifiers. Kuncheva and Jain [21] suggest two simple ways to use genetic al-
gorithm to design an ensemble of classifiers. They present two versions of their
algorithm. The former uses just disjoint feature subsets while the latter con-
siders (possibly) overlapping feature subsets. The fitness function employed is
the accuracy of the ensemble, however, no measure of diversity is considered.
A more elaborate method, also based on GA, was proposed by Optiz [31]. In
his work, he stresses the importance of a diversity measure by including it
in the fitness calculation. The drawback of this method is that the objective
functions are combined through the weighted sum. It is well known that when
dealing with this kind of combination, one should deal with problems such as
scaling and sensitivity towards the weights. More recently Gunter and Bunke
[10] have applied feature selection in conjunction with floating search to cre-
ate ensembles of classifiers for the field of handwriting recognition. They used
handwritten words and HMMs as classifiers to evaluate their algorithm. The
feature set was composed of nine discrete features, which makes simpler the
feature selection process. A drawback of this method is that one must set a
priori the number of classifiers in the ensemble.
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3.3 Methodology Overview

In this section we outline the hierarchical approach proposed. As stated be-
fore, it is based on an “overproduce and choose” paradigm where the first
level generates several classifiers by conducting feature selection and the sec-
ond one chooses the best ensemble among such classifiers. Figure 3.1 depicts
the proposed methodology. Firstly, we carry out feature selection by using a
MOGA. It gets as inputs a trained classifier and its respective data set. Since
the algorithm aims at minimizing two criteria during the search1, it will pro-
duce at the end a 2-dimensional Pareto-optimal front, which contains a set of
classifiers (trade-offs between the criteria being optimized). The final step of
this first level consists in training such classifiers.
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Fig. 3.1. An overview of the proposed methodology.

Once the set of classifiers have been trained, the second level is suggested
to pick the members of the team which are most diverse and accurate. Let
A = C1, C2, . . . , CL be a set of L classifiers extracted from the Pareto-optimal
and B a chromosome of size L of the population. The relationship between A
and B is straightforward, i.e., the gene i of the chromosome B is represented
by the classifier Ci from A. Thus, if a chromosome has all bits selected, all
classifiers of A will be included in the ensemble. Therefore, the algorithm will
produce a 2-dimensional Pareto-optimal front which is composed of several
ensembles (trade-offs between accuracy and diversity). In order to choose the
best one, we use a validation set, which points out the most diverse and
accurate team among all. Later in this paper, we will discuss the issue of
using diversity to choose the best ensemble.

1 Error rate and number of features in the case of supervised feature selection and
a clustering index and the number of features in the case of unsupervised feature
selection.
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In both cases, MOGAs are based on bit representation, one-point crossover,
and bit-flip mutation. In our experiments, MOGA used is a modified version
of the Non-dominated Sorting Genetic Algorithm (NSGA) [4] with elitism.

3.4 Multi-Objective Genetic Algorithm

Since the concept of multi-objective genetic algorithm (MOGA) will be ex-
plored in the remaining of this paper, this section briefly introduces it.

A general multi-objective optimization problem consists of a number of ob-
jectives and is associated with a number of inequality and equality constraints.
Solutions to a multi-objective optimization problem can be expressed math-
ematically in terms of nondominated points, i.e., a solution is dominant over
another only if it has superior performance in all criteria. A solution is said
to be Pareto-optimal if it cannot be dominated by any other solution avail-
able in the search space. In our experiments, the algorithm adopted is the
Non-dominated Sorting Genetic Algorithm (NSGA) with elitism proposed by
Srinivas and Deb in [4, 34].

The idea behind NSGA is that a ranking selection method is applied to
emphasize good points and a niche method is used to maintain stable subpop-
ulations of good points. It varies from simple GA only in the way the selection
operator works. The crossover and mutation remain as usual. Before the se-
lection is performed, the population is ranked on the basis of an individual’s
nondomination. The nondominated individuals present in the population are
first identified from the current population. Then, all these individuals are
assumed to constitute the first nondominated front in the population and
assigned a large dummy fitness value. The same fitness value is assigned to
give an equal reproductive potential to all these nondominated individuals.
In order to maintain the diversity in the population, these classified individ-
uals are made to share their dummy fitness values. Sharing is achieved by
performing selection operation using degraded fitness values obtained by di-
viding the original fitness value of an individual by a quantity proportional
to the number of individuals around it. After sharing, these nondominated
individuals are ignored temporarily to process the rest of population in the
same way to identify individuals for the second nondominated front. These
new set of points are then assigned a new dummy fitness value which is kept
smaller than the minimum shared dummy fitness of the previous front. This
process is continued until the entire population is classified into several fronts.

Thereafter, the population is reproduced according to the dummy fitness
values. A stochastic remainder proportionate selection is adopted here. Since
individuals in the first front have the maximum fitness value, they get more
copies than the rest of the population. The efficiency of NSGA lies in the way
multiple objectives are reduced to a dummy fitness function using nondomi-
nated sorting procedures. More details about NSGA can be found in [4].
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3.5 Classifiers and Feature Sets

As stated before, we have carried out experiments in both supervised and
unsupervised contexts. The remaining of this section describes the feature
sets and classifiers we have used.

3.5.1 Supervised Context

To evaluate the proposed methodology in the supervised context, we have used
three base classifiers trained to recognize handwritten digits of NIST SD19.
Such classifiers were trained with three well-known feature sets: Concavities
and Contour (CCsc), Distances (DDDsc), and Edge Maps (EMsc) [29].

All classifiers here are MLPs trained with the gradient descent applied
to a sum-of-squares error function. The transfer function employed is the fa-
miliar sigmoid function. In order to monitor the generalization performance
during learning and terminate the algorithm when there is no longer an im-
provement, we have used the method of cross-validation. Such a method takes
into account a validation set, which is not used for learning, to measure the
generalization performance of the network. During learning, the performance
of the network on the training set will continue to improve, but its perfor-
mance on the validation set will only improve to a point, where the network
starts to overfit the training set, that the learning algorithm is terminated.
All networks have one hidden layer where the units of input and output are
fully connected with units of the hidden layer, where the number of hidden
units were determined empirically (see Table 3.1). The learning rate and the
momentum term were set at high values in the beginning to make the weights
quickly fit the long ravines in the weight space, then these parameters were re-
duced several times according to the number of iterations to make the weights
fit the sharp curvatures.

Among the different strategies of rejection we have tested, the one proposed
by Fumera et al [8] provided the better error-reject trade-off for our experi-
ments. Basically, this technique suggests the use of multiple reject thresholds
for the different data classes (T0, . . . , Tn) to obtain the optimal decision and
reject regions. In order to define such thresholds we have developed an itera-
tive algorithm, which takes into account a decreasing function of the threshold
variables R(T0, . . . , Tn) and a fixed error rate Terror. We start from all thresh-
old values equal to 1, i.e., the error rate equal to 0 since all images are rejected.
Then, at each step, the algorithm decreases the value of one of the thresholds
in order to increase the accuracy until the error rate exceeds Terror.

The training (TRDBsc) and validation (VLDB1sc) sets are composed of
195,000 and 28,000 samples from hsf 0123 series respectively while the test
set (TSDBsc) is composed of 30,089 samples from the hsf 7. We consider also
a second validation set (VLDB2sc), which is composed of 30,000 samples of
hsf 7. This data is used to select the best ensemble of classifiers. Figure 3.2
shows the performance on the test set of all classifiers for error rates varying
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Table 3.1. Description and performance of the classifiers on TSDB (zero-rejection
level).

Feature Number. of Units in the Rec.
Set Features Hidden Layer Rate (%)

CCsc 132 80 99.13
DDDsc 96 60 98.17
EMsc 125 70 97.04

from 0.10 to 0.50%, while Table 3.1 reports the performance of all classifiers at
zero-rejection level. The curve depicted in Figure 3.2 is much more meaningful
when dealing with real applications since they describe the recognition rate
in relation to a specific error rate, including implicitly a corresponding reject
rate. This rate also allows us to compute the reliability of the system for a
given error rate. It can be done by using Equation 3.1.

Reliability =
Rec.Rate

Rec.Rate + Error Rate
× 100 (3.1)

Figure 3.2 corroborates that recognition of handwritten digits is still an
open problem when very low error rates are required. Consider for example
our best classifier, which reaches 99.13% at zero-rejection level on the test set.
If we allow an error rate of 0.1%, i.e., just one error in 1,000, the recognition
rate of such classifier drops from 99.13% to 91.83%. This means that we have
to reject 8.07% to get 0.1% of error (Figure 3.2). We will demonstrate that
the ensemble of classifiers can significantly improve the performance of the
classifiers for low error rates.
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Fig. 3.2. Performance of the classifiers on the test set for error rates varying from
0.10 to 0.50%.
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3.5.2 Unsupervised Context

To evaluate the proposed methodology in unsupervised context we have used
three HMM-based classifiers trained to recognize handwritten Brazilian month
words (“Janeiro”, “Fevereiro”, “Março”, “Abril”, “Maio”, “Junho”, “Julho”,
“Agosto”, “Setembro”, “Outubro”, “Novembro”, “Dezembro”). The training
(TRDBuc), validation (VLDB1uc), and testing (TSDBuc) sets are composed
of 1,200, 400, and 400 samples, respectively. In order to increase the training
and validation sets, we have also considered 8,300 and 1,900 word images, re-
spectively, extracted from the legal amount database. This is possible because
we are considering character models. We consider also a second validation set
(VLDB2uc) of 500 handwritten Brazilian month words [14]. Such data is used
to select the best ensemble of classifiers.

Given a discrete HMM-based approach, each word image is transformed
as a whole into a sequence of observations by the successive application of
preprocessing, segmentation, and feature extraction. Preprocessing consists
of correcting the average character slant. The segmentation algorithm uses
the upper contour minima and some heuristics to split the date image into
a sequence of segments (graphemes), each of which consists of a correctly
segmented, an under-segmented, or an over-segmented character. A detailed
description of the preprocessing and segmentation stages is given in [28].

The word models are formed by the concatenation of appropriate ele-
mentary HMMs, which are built at letter and space levels. The topology of
space model consists of two states linked by two transitions that encode a
space or no space. Two topologies of letter models were chosen based on the
output of our grapheme-based segmentation algorithm which may produce a
correct segmentation of a letter, a letter under-segmentation or a letter over-
segmentation into two, three, or four graphemes depending on each letter. In
order to cope with these configurations of segmentations, we have designed
topologies with three different paths leading from the initial state to the final
state.

Considering uppercase and lowercase letters, we need 42 models since the
legal amount alphabet is reduced to 21 letter classes and we are not consider-
ing the unused ones. Thus, regarding the two topologies, we have 84 HMMs
which are trained using the Baum-Welch algorithm with the Cross-Validation
procedure.

Since no information on recognition is available on the writing style (up-
percase, lowercase), the word model consists of two letter HMMs in parallel
and four space HMMs linked by four transitions: two uppercase-letters (UU),
two lowercase-letters (LL), one uppercase letter followed by one lowercase-
letter (UL), and one lowercase letter followed by one uppercase-letter (LU).
The probabilities of these transitions are estimated by their frequency of oc-
currence in the training set. In the same manner, the probabilities of beginning
a word by an uppercase-letter (0U) or a lowercase letter (0L) are also esti-
mated in the training set. This architecture handles the problem related to
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the mixed handwritten words detecting implicitly the writing style during
recognition using the Backtracking of the Viterbi algorithm.

The feature set that feeds the first classifier is a mixture of concavity and
contour features (CCuc) [29]. In this case, each grapheme is divided into two
equal zones (horizontal) where for each region a concavity and contour feature
vector of 17 components is extracted. Therefore, the final feature vector has
34 components. The other two classifiers make use of a feature set based on
distances [28]. The former uses the same zoning discussed before (two equal
zones), but in this case, for each region a vector of 16 components is extracted.
This leads to a final feature vector of 32 components (DDD32uc). For the latter
we have tried a different zoning. The grapheme is divided into four zones using
the reference baselines, hence, we have a final feature vector composed of 64
components (DDD64uc). Table 3.2 reports the performance of all classifiers
on the test set at zero-rejection level. Figure 3.3 shows the performance of all
classifiers for error rates varying from 1% to 4%. The strategy for rejection
used in this case is the one discussed previously. We have chosen higher error
rates in this case due to the size of the database we are dealing with.

Table 3.2. Performance of the classifiers on the test set.

Feature Number of Codebook Rec Rate
Set Features Size (%)

CCuc 34 80 86.1
DDD32uc 32 40 73.0
DDD64uc 64 60 64.5

It can be observed from Table 3.3 that the recognition rates with error
fixed at 1% are very poor, hence, the number of rejected patterns is very
high. We will see in the next sections that the proposed methodology can
improve these results considerably.

3.6 Implementation

This section introduces how we have implemented both levels of the proposed
methodology. First we discuss the supervised context and then the unsuper-
vised.

3.6.1 Supervised Context

Supervised Feature Subset Selection

The feature selection algorithm used in here was introduced in [30]. To make
this paper self-contained, a brief description is included in this section.
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Regarding feature selection algorithms, they can be classified into two cat-
egories based on whether or not feature selection is performed independently
of the learning algorithm used to construct the classifier. If feature selection
is done independently of the learning algorithm, the technique is said to fol-
low a filter approach. Otherwise, it is said to follow a wrapper approach [13].
While the filter approach is generally computationally more efficient than the
wrapper approach, its major drawback is that an optimal selection of features
may not be independent of the inductive and representational biases of the
learning algorithm that is used to construct the classifier. On the other hand,
the wrapper approach involves the computational overhead of evaluating can-
didate feature subsets by executing a given learning algorithm on the database
using each feature subset under consideration.

As stated elsewhere, the idea of using feature selection is to promote di-
versity among the classifiers. To tackle such a task we have to optimize two
objective functions: minimization of the number of features and minimization
of the error rate of the classifier. Computing the first one is simple, i.e., the
number of selected features. The problem lies in computing the second one,
i.e., the error rate supplied by the classifier. Regarding a wrapper approach,
in each generation, evaluation of a chromosome (a feature subset) requires
training the corresponding neural network and computing its accuracy. This
evaluation has to be performed for each of the chromosomes in the population.
Since such a strategy is not feasible due to the limits imposed by the learning
time of the huge training set considered in this work, we have adopted the
strategy proposed by Moody and Utans in [26], who use the sensitivity of
the network to estimate the relationship between the input features and the
network performance.
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The sensitivity of the network model to variable β is defined as:

Sβ =
1
N

N∑
j=1

ASE(x̄β)−ASE(xβ) (3.2)

with

x̄β =
1
N

N∑
j=1

xβj
(3.3)

where xβj
is the βth input variable of the jth exemplar. Sβ measures the

effect on the training ASE (average square error) of replacing the βth input
xβ by its average x̄β . Moody and Utans show that when variables with small
sensitivity values with respect to the network outputs are removed, they do not
influence the final classification. So, in order to evaluate a given feature subset
we replace the unselected features by their averages. In this way, we avoid
training the neural network and hence turn the wrapper approach feasible for
our problem. We call this strategy modified-wrapper. Such a scheme has been
employed also by Yuan et al in [38], and it makes it feasible to deal with huge
databases in order to better represent the pattern recognition problem during
the fitness evaluation2. Moreover it can accommodate multiple criteria such
as the number of features and the accuracy of the classifier, and generate the
Pareto-optimal front in the first run of the algorithm. Figure 3.4 shows the
evolution of the population in the objective plane and its respective Pareto-
optimal front.

It can be observed in Figure 3.4b that the Pareto-optimal front is composed
of several different classifiers. In order to get a better insight about them, they
were classified into 3 different groups: weak, medium, and strong. It can be
observed that among all those classifiers there are very good ones. To find
out which classifiers of the Pareto-optimal front compose the best ensemble,
we carried out a second level of search. Once we did not train the models
during the search (the training step is replaced by the sensitivity analysis),
the final step of feature selection consists of training the solutions provided
by the Pareto-optimal front (3.1).

Choosing the Best Ensemble

As defined in Section 3.3 each gene of the chromosome is represented by a
classifier produced in the previous level. Therefore, if a chromosome has all
bits selected, all classifiers of will compose the team. In order to find the best
ensemble of classifiers, i.e., the most diverse set of classifiers that brings a
good generalization, we have used two objective functions during this level

2 If small databases are considered, then a full-wrapper could replace the proposed
modified-wrapper.
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Fig. 3.4. Supervised feature selection using a Pareto-based approach (a) Evolution
of the population in the objective plane, (b) Pareto-optimal front and its different
classes of classifiers.

of the search, namely, maximization of the recognition rate of the ensemble
and maximization of a measure of diversity. We have tried different measures
such as overlap, entropy [22], and ambiguity [17]. The results achieved with
ambiguity and entropy were very similar. In this work we have used ambiguity
as diversity measure. The ambiguity is defined as follows:

ai(xk) = [Vi(xk)− V (xk)]2 (3.4)

where ai is the ambiguity of the ith classifier on the example xk, randomly
drawn from an unknown distribution, while Vi and V are the ith classifier
and the ensemble predictions, respectively. In other words, it is simply the
variance of ensemble around the mean, and it measures the disagreement
among the classifiers on input x. Thus the contribution to diversity of an
ensemble member i as measured on a set of M samples is:

Ai =
1
M

M∑
k=1

ai(xk) (3.5)

and the ambiguity of the ensemble is

A =
1
N

∑
Ai (3.6)

where N is the number of classifiers. So, if the classifiers implement the same
functions, the ambiguity A will be low, otherwise it will be high. In this
scenario the error from the ensemble is

E = E −A (3.7)
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where E is the average errors of the single classifiers and A is the ambiguity of
the ensemble. Equation 3.7 expresses the trade-off between bias and variance
in the ensemble, but in a different way than the common bias-variance relation
in which the averages are over possible training sets instead of ensemble aver-
ages. If the ensemble is strongly biased the ambiguity will be small, because
the classifiers implement very similar functions and thus agree in inputs even
outside the training set [17].

At this level of the strategy we want to maximize the generalization of the
ensemble, therefore, it will be necessary to use a way of combining the outputs
of all classifiers to get a final decision. To do this, we have used the average,
which is a simple and effective scheme of combining predictions of the neural
networks [16]. Other combination rules such as product, min, and max have
been tested but the simple average has produced slightly better results. In
order to evaluate the objective functions during the search described above
we have used the validation set VLDB1sc.

3.6.2 Unsupervised Context

Unsupervised Feature Subset Selection

A lot of work done in the field of handwritten word recognition takes into
account discrete HMMs as classifiers, which have to be fed with a sequence of
discrete values (symbols). This means that before using a continuous feature
vector, we must convert it to discrete values. A common way to do that is
through clustering. The problem is that for the most of real-life situations we
do not know the best number of clusters, what makes it necessary to explore
different numbers of clusters using traditional clustering methods such as the
K-means algorithm and its variants. In this light, clustering can become a
trial-and-error work. Besides, its result may not be very promising especially
when the number of clusters is large and not easy to estimate.

Unsupervised feature selection emerges as a clever solution to this prob-
lem. The literature contains several studies on feature selection for supervised
learning, but only recently, the feature selection for unsupervised learning
has been investigated [5, 15]. The objective in unsupervised feature selection
is to search for a subset of features that best uncovers “natural” groupings
(clusters) from data according to some criterion. In this way, we can avoid
the manual process of clustering and find the most discriminative features in
the same time. Hence, we will have at the end a more compact and robust
high-level representation (symbols).

In the above context, unsupervised feature selection also presents a multi-
criterion optimization function, where the objective is to find compact and
well separated hyper-spherical clusters in the feature subspaces. Differently of
the supervised feature selection, here the criteria optimized by the algorithm
are a validity index and the number of features. [27].



3 Feature Selection for Ensembles 63

1 5 10 15 20 25 30 34
25

30

35

40

45

50

55

60

65

No. of Features

N
o.

 o
f C

lu
st

er
s

(a)

11 12 14 16 18 20 22 24 26 28 30 32 34
65

70

75

80

85

90

No. of Features

R
ec

og
ni

tio
n 

R
at

e 
(%

)

(b)

Fig. 3.5. (a) Relationship between the number of clusters and the number of features
and (b) Relationship between the recognition rate and the number of features.

In order to measure the quality of clusters during the clustering process,
we have used the Davies-Bouldin (DB)-index [3] over 80,000 feature vectors
extracted from the training set of 9,500 words. To make such an index suitable
for our problem, it must be normalized by the number of selected features. This
is due to the fact that it is based on geometric distance metrics and therefore,
it is not directly applicable here because it is biased by the dimensionality of
the space, which is variable in feature selection problems.

We have noticed that the value of DB index decreases as the number of
features increases. We have correlated this effect with the normalization of
DB-index by the number of features. In order to compensate this, we have
considered as second objective the minimization of the number of features. In
this case, one feature must be set at least. Figure 3.5 depicts the relationship
between the number of clusters and number of features and the relationship
between the recognition rate on the validation set and the number of features.

Like in the supervised context, here we also divided the classifiers of the
Pareto into classes. In this case, we have realized that those classifiers with
very few features are not selected to compose the ensemble, and therefore,
just the classifiers with more than 10 features were used into the second level
of search. In Section 3.7.2 we discuss this issue in more detail. The way of
choosing the best ensemble is exactly the same as introduced in Section 3.6.1.

3.7 Experimental Results

All experiments in this work were based on a single-population master-slave
MOGA. In this strategy, one master node executes the genetic operators (se-
lection, crossover and mutation), and the evaluation of fitness is distributed
among several slave processors. We have used a Beowulf cluster with 17 (one
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master and 16 slaves) PCs (1.1Ghz CPU, 512Mb RAM) to execute our ex-
periments.

The following parameter settings were employed in both levels: population
size = 128, number of generations = 1000, probability of crossover = 0.8,
probability of mutation = 1/L (where L is the length of the chromosome),
and niche distance (σshare) = [0.25,0.45]. The length of the chromosome in the
first level is the number of components in the feature set (see Table 3.1), while
in the second level is the number of classifiers picked from the Pareto-optimal
front in the previous level.

In order to define the probabilities of crossover and mutation, we have
used the one-max problem, which is probably the most frequently-used test
function in research on genetic algorithms because of its simplicity [2]. This
function measures the fitness of an individual as the number of bits set to one
on the chromosome. We have used a standard genetic algorithm with a single-
point crossover and the maximum generations of 1000. The fixed crossover
and mutation rates are used in a run, and the combination of the crossover
rates 0.0, 0.4, 0.6, 0.8 and 1.0 and the mutation rates of 0.1/L, 1/L and 10/L,
where L is the length of the chromosome. The best results were achieved with
Pc = 0.8 and Pm = 1/L. Such results confirmed the values reported by Miki
et al in [25]. The parameter σshare was tuned empirically.

3.7.1 Experiments in the Supervised Context

Once all parameters have been defined, the first step, as described in Sec-
tion 3.6.1, consists of performing feature selection for a given feature set. As
depicted in Figure 3.4, this procedure produces quite a large number of clas-
sifiers, which should be trained for use in the second level. After some exper-
iments, we found out that the second level always chooses “strong” classifiers
to compose the ensemble. Thus, in order to speed up the training process and
the second level of search as well, we decide to train and use in the second level
just the “strong” classifiers. This decision was made after we realized that in
our experiments the “weak” and “medium” classifiers did not cooperate with
the ensemble at all. To train such classifiers, the same databases reported in
Section 3.5.1 were used. Table 3.3 summarizes the “strong” classifiers pro-
duced by the first level for the three feature sets we have considered.

Table 3.3. Summary of the classifiers produced by the first level.

Feature No. of Range of Range of
Set Classifiers Features Rec. Rates (%)

CCsc 81 24-125 90.5 - 99.1
DDDsc 54 30-84 90.6 - 98.1
EMsc 78 35-113 90.5 - 97.0
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Considering for example the feature set CCsc, the first level of the al-
gorithm provided 81 “strong” classifiers which have the number of features
ranging from 24 to 125 and recognition rates ranging from 90.5% to 99.1%
on TSDBsc. This shows the great diversity of the classifiers produced by the
feature selection method. Based on the classifiers reported in Table 3.3 we
define four sets of base classifiers as follows: S1 = {CCsc0, . . . , CCsc80},
S2 = {DDDsc0, . . . ,DDDsc53}, S3 = {EMsc0, . . . , EMsc77}, and S4 =
{S1

⋃
S2

⋃
S3}. All these sets could be seen as ensembles, but in this work we

reserve the word ensemble to characterize the results yielded by the second-
level of the algorithm. In order to assess the objective functions of the second-
level of the algorithm (generalization of the ensemble and diversity) we have
used the validation set (VLDB1sc).
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Fig. 3.6. The Pareto-optimal front produced by the second-level MOGA: (a) S1

and (b) S4

Like the first level, the second one also generates a set of possible solu-
tions which are the trade-offs between the generalization of the ensemble and
its diversity. Thus the problem now lies in choosing the most accurate en-
semble among all. Due to the limited space we have, Figure 3.6 only depicts
the variety of ensembles yielded by the second-level of the algorithm for S1

and S4. The number over each point stands for the number of classifiers in
the ensemble. In order to decide which ensemble to choose we validate the
Pareto-optimal front using VLDB2sc, which was not used so far. Since we are
aiming at performance, the direct choice will be the ensemble that provides
better generalization on VLDB2sc. Table 3.4 summarizes the best ensembles
produced for the four sets of base classifiers and their performance at zero-
rejection level on the test set. For facility, we reproduce in this table the results
of the original classifiers.

We can notice from Table 3.4 that the ensembles and base classifiers have
very similar performance at zero-rejection level. On the other hand, Figure
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Table 3.4. Performance of the ensembles on the test set.

Feature Number of Rec. Rate (%) Rec. Rate (%)
Set Classifiers zero-rejection level Original Classifiers
S1 4 99.22 99.13
S2 4 98.18 98.17
S3 7 97.10 97.04
S4 24 99.25

3.7 shows that the ensembles respond better for error rates fixed at very low
levels than single classifiers. The most expressive result was achieved for the
ensemble S3, which attains a reasonable performance at zero-rejection level
but performs very poorly at low error rates. In such a case, the ensemble
of classifiers brought an improvement of about 8%. We have noticed that
the ensemble reduces the high outputs of some outliers so that the threshold
used for rejection can be reduced and consequently the number of samples
rejected is reduced. Thus, aiming for a small error rate we have to consider
the important role of the ensemble.
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Fig. 3.7. Improvements yielded by the ensembles.

Regarding the ensemble S4, we can notice that it achieves a performance
similar to S1 at zero-rejection level (see Table 3.4). Besides, it is composed
of 24 classifiers, against four of S1. The fact worths noting though, is the
performance of S4 at low error rates. For the error rate fixed at 1% it reached
95.0% against 93.5% of S1. S4 is composed of 14, 6, and 4 classifiers from
S1, S2, and S3, respectively. This emphasizes the ability of the algorithm in
finding good ensembles when more original classifiers are available.
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3.7.2 Experiments in the Unsupervised Context

The experiments in the unsupervised context follow the same vein of the
supervised one. As discussed in Section 3.6.2, the main difference lies in the
way the feature selection is carried out. In spite of that, we can observe that the
number of classifiers produced during unsupervised feature selection is quite
large as well. In light of this, we have applied the same strategy of dividing
the classifiers into groups (see Figure 3.5). After some experiments, we found
out that the second level always chooses “strong” classifiers to compose the
ensemble. Thus, in order to speed up the training process and the second
level of search as well, we decide to train and use in the second level just
“strong” classifiers. To train such classifiers, the same databases reported in
Section 3.5.2 were considered. Table 3.5 summarizes the “strong” classifiers
(after training) produced by the first level for the three feature sets we have
considered.

Table 3.5. Summary of the classifiers produced by the first level.

Feature Number of Range of Range of Range of
Set Classifiers Features Codebook Rec. Rates (%)

CCuc 15 10-32 29-39 68.1 - 88.6
DDD32uc 21 10-31 20-30 71.7 - 78.0
DDD64uc 50 10-64 52-80 60.6 - 78.2

Considering for example the feature set CCuc, the first level of the al-
gorithm provided 15 “strong” classifiers which have the number of features
ranging from 10 to 32 and recognition rates ranging from 68.1% to 88.6%
on VLDB1uc . This shows the great diversity of the classifiers produced by
the feature selection method. Based on the classifiers reported in Table 3.5
we define four sets of base classifiers as follows: F1 = {CCuc0, . . . , CCuc14},
F2 = {DDD32uc0, . . . , DDD32uc20}, F3 = {DDD64uc0, . . . , DDD64uc49},
and F4 = {F1

⋃
F2

⋃
F3}.

Again, due to the limited space we have, Figure 3.8 only depicts the variety
of ensembles yielded by the second-level of the algorithm for F2 and F4. The
number over each point stands for the number of classifiers in the ensemble.
Like in the previous experiments, the second validation set (VLDB2uc) was
used to select the best ensemble. After selecting the best ensemble the final
step is to assess them on the test set. Table 3.6 summarizes the performance
of the ensembles on the test set. For the sake of comparison, we reproduce in
Table 3.6 the results presented in Table 3.2.

Figure 3.8b shows the performance of the ensembles generated with all
base classifiers available, i.e., Ensemble F4. Like in the previous experiments
(supervised context), the result achieved by the ensemble F4 shows the ability
of the algorithm in finding good ensembles when more base classifiers are
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Fig. 3.8. The Pareto-optimal front (and validation curves where the best solutions
are highlighted with an arrow) produced by the second-level MOGA: (a) F2 and (b)
F4.

Table 3.6. Comparison between ensembles and original classifiers.

Base Number of Rec. Rate Original Rec. Rate
Classifiers Classifiers (%) Feature Set (%)

F1 10 89.2 CC 86.1
F2 15 80.2 DDD32 73.0
F3 36 80.7 DDD64 64.5
F4 45 90.2

considered. The ensemble F4 is composed of 9, 11, and 25 classifiers from F1,
F2, and F3, respectively.

In light of this, we decided to introduce a new feature set, which, based on
our experience, has a good discrimination power when combined with other
features such as concavities. This feature set, which we call “global features”, is
composed of primitives such as ascenders, descenders, and loops. The combina-
tion of these primitives plus a primitive that determines whether a grapheme
does not contain ascender, descender, and loop produces a 20-symbol alpha-
bet. For more details, see Ref. [28]. In order to train the classifier with this
feature set, we have used the same databases described in Section 3.5.2. The
recognition rates at zero-rejection level are 86.1% and 87.2% on validation and
testing sets, respectively. This performance compares with the CCuc classifier.

Since we have a new base classifier, our sets of base classifiers must be
modified to cope with it. Thus, F1G = {F1

⋃
G}, F2G = {F2

⋃
G}, F3G =

{F3

⋃
G}, and F4G = {F1

⋃
F2

⋃
F3

⋃
G}. In such cases, G stands for the

classifier trained with global features. Table 3.7 summarizes the ensembles
found using these new sets of base classifiers. It is worthy of remark the
reduction of the size of the teams. This shows the ability of the algorithm
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Table 3.7. Performance of the ensembles with global features.

Base Number of Rec. Rate (%)
Classifiers Classifiers Testing
F1G 2 92.2
F2G 2 89.7
F3G 7 85.5
F4G 23 92.0

in finding not just diverse but also uncorrelated classifiers to compose the
ensemble [36]. Besides, it corroborates to our claim that the classifier G when
combined with other features bring an improvement to the performance.

In Figure 3.9 we compare the error-reject trade-offs for some ensembles
reported in Table 3.7. Like the results at zero-rejection level, the improve-
ment observed here also are quite impressive. Table 3.7 shows that F1G and
F4G reach similar results on the test set at zero-rejection level, however, F1G

contains just two classifiers against 23 of F4G. On the other hand, the latter
features a slightly better error-reject trade-off in the long run (Figure 3.9b).
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Fig. 3.9. Improvements yielded by the ensembles: (a) F1 and (b) Comparison among
all ensembles.

Based on the experiments reported so far we can affirm that the unsuper-
vised feature selection is a good strategy to generate diverse classifiers. This is
made very clear in the experiments regarding the feature set DDD64. In such
a case, the original classifier has a poor performance (about 65% on the test
set), but when it is used to generate the set of base classifiers, the second-level
MOGA was able to produce a good ensemble by maximizing the performance
and the ambiguity measure. Such an ensemble of classifiers brought an im-
provement of about 15% in the recognition rate at zero-rejection level.
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3.8 Discussion

The results obtained here attest that the proposed strategy is able to generate
a set of good classifiers in both supervised and unsupervised contexts. To
better evaluate our results, we have used two traditional ensemble methods
(Bagging and Boosting) in the supervised context. Figure 3.10 reports the
results. As we can see, the proposed methodology achieved better results,
especially when considering very low error rates.
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Fig. 3.10. Comparison among feature selection for ensembles, bagging, and boosting
for the two feature sets used in the supervised context:(a) CCsc and (b) EMsc

Diversity is an issue that deserves some attention when discussing ensem-
ble of classifiers. As we have mentioned before, some authors advocated that
diversity does not help at all. In our experiments, most of the time, the best
ensembles of the Pareto-optimal also were the best for the unseen data. This
could lead one to agree that diversity is not important when building ensem-
bles, since even using a validation set the selected team is always the most
accurate and with less diversity.

However, if we look carefully the results, we will observe that there are
cases where the validation curve does not have the same shape of the Pareto-
optimal. In such cases diversity is very useful to avoid selecting overfitted
solutions.

One can argue that using a single GA and considering the entire final popu-
lation, perhaps the similar solutions found in the Pareto-optimal produced by
the MOGA will be there. To show that it does not happen, we have carried
out some experiments with a single GA where the fitness function was the
maximization of the ensemble´s accuracy. Since a single-objetive optimiza-
tion algorithm searches for an optimum solution, it is natural to expect that
it will converge towards the fittest solution, hence, the diversity of solutions
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presented in the Pareto-optimal is not present in the final population of the
single genetic algorithm.

To illustrate that, we present the results we got using a GA to find ensem-
ble in F2 (unsupervised context). The parameters used here are the same we
have used for the MOGA (Section 3.7). Figure 3.11a plots all the classifiers
found in the final population of the genetic algorithm. For the sake of compar-
ison we reproduce Figure 3.8a in Figure 3.11b. As we can see, the population
is very homogeneous and it converged, as expected, towards the most accurate
ensemble.
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Fig. 3.11. Benefits of using diversity: (a) population (classifiers) of the final gener-
ation of the GA and (b) classifiers found by the MOGA.

Some attempts in this direction were made by Optiz [31]. He combined
accuracy and diversity through the weighted-sum approach. As stated some-
where, when dealing with this kind of combination, one should deal with
problems such as scaling and sensitivity towards the weights. We believe that
our strategy offers a clever way to find the ensemble using genetic algorithms.

3.9 Conclusion

We have described a methodology for ensemble creation underpinned on the
paradigm “overproduce and choose”. It takes two levels of search where the
first level overproduces a set of classifiers by performing feature selection while
the second one chooses the best team of classifiers.

The feasibility of the strategy was demonstrated through comprehensive
experiments carried out in the context of handwriting recognition. The idea of
generating classifiers through feature selection was proved to be successful in
both supervised and unsupervised contexts. The results attained in both sit-
uations and using different feature sets and base classifiers demonstrated the
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efficiency of the proposed strategy by finding powerful ensembles, which suc-
ceed in improving the recognition rates for classifiers working with a very low
error rates. Such results compare favorably to traditional ensemble methods
such as Bagging and Boosting.

Finally we have addressed the issue of using diversity to build ensembles.
As we have seen, using diversity jointly with the accuracy of the ensemble as
selection criterion might be very helpful to avoid choosing overfitted solutions.
Our results certainly bring some contribution to the field, but this still is an
open problem.
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