
Feature selection for genetic sequence
classification

��"'� � �&15&�+,2����� +0,+'� �� �,+#/� �+" �0#2# ��.%#00/�

��+/0'010# ,$ ��0&#*�0'!/� �' #.'�+ �.�+!& ,$ �1//'�+ !�"#*4 ,$ �!'#+!#� 
������

�,2,/' './(� �1//'� �+" ��#-�.0*#+0 ,$ �,*-10#. �!'#+!#� �+'2#./'04 ,$ ��)#/�

��."'$$� �� �,3 ��
� ��."'$$ ��� ���� ��


������ �� ���� ��� ����� ������ �� 	����� �� ����

Abstract
Motivation: Most of the existing methods for genetic sequence
classification are based on a computer search for homologies
in nucleotide or amino acid sequences. The standard sequence
alignment programs scale very poorly as the number of
sequences increases or the degree of sequence identity is <30%.
Some new computationally inexpensive methods based on
nucleotide or amino acid compositional analysis have been
proposed, but prediction results are still unsatisfactory and
depend on the features chosen to represent the sequences.
Results: In this paper, a feature selection method based on the
Gamma (or near-neighbour) test is proposed. If there is a
continuous or smooth map from feature space to the classifica-
tion target values, the Gamma test gives an estimate for the
mean-squared error of the classification, despite the fact that
one has no a priori knowledge of the smooth mapping. We can
search a large space of possible feature combinations for a
combination which gives a smallest estimated mean-squared
error using a genetic algorithm. The method was used for
feature selection and classification of the large subunits of rRNA
according to RDP (Ribosomal Database Project) phylogenetic
classes. The sequences were represented by dinucleotide
frequency distribution. The nearest-neighbour criterion has
been used to estimate the predictive accuracy of the classifica-
tion based on the selected features. For examples discussed, we
found that the classification according to the first nearest
neighbour is correct for 80% of the test samples. If we consider
the set of the 10 nearest neighbours, then 94% of the test
samples are classified correctly.
Availability: The principal novel component of this method is
the Gamma test and this can be downloaded compiled for
Unix Sun 4, Windows 95 and MS-DOS from
http://www.cs.cf.ac.uk/ec/
Contact: s.margetts@cs.cf.ac.uk

3Present address: Department of Computer Science, University
of Wales, Cardiff, PO Box 916, Cardiff CF2 3XF, UK

Introduction

The exponential growth of molecular sequencing data re-
quires the development of advanced computational methods
for rapid comparison of new sequences with known genetic
material in order to make a decision about their taxonomic
(evolutionary) and/or functional relatedness.

Most of the existing methods for genetic sequence classi-
fication are based on a computer search for homologies in nu-
cleotide or amino acid sequences. The standard sequence
alignment programs have been designed to provide a compro-
mise between the speed (it is known that the problem of mul-
tiple alignment is NP-hard) and accuracy of the search. As a
result, they work well only when there is a reasonably high
degree of sequence identity, usually of the order 30% or more.

Some new computationally inexpensive methods based on
nucleotide or amino acid compositional analysis with or with-
out biochemical parameters, e.g. molecular weight (if known)
and isoelectric point, have been proposed. Different metrics
and distances have been used to express the similarity between
sequences, but prediction results are still unsatisfactory and
depend on the features chosen to represent the sequences.

The frequencies of the oligonucleotides or amino acids are
commonly used as classificational features. Nussinov (1984)
has found that there are stable and statistically significant
asymmetries in some dinucleotide frequency distributions
for different taxonomic groups. According to the ‘genome
hypothesis’ formulated by Grantham et al. (1980), the choice
between synonymous codons varies from one gene to
another and depends on the type of genome the gene occurs
in. So codon usage may be regarded, to some extent, as a
measure of ‘genome’ similarity and gene expressivity (Cowe
and Sharp, 1991). Even the amino acid composition is not
random and, as has been shown in Hobohm et al. (1994), can
be used for protein identification.

On the other hand, as has been shown in Hobohm et al.
(1994), some classification procedures may perform better if
the number of features is reduced according to some bio-
chemical rationale and only a part of the frequency distribu-
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tion is used. This also corresponds to current trends in neural
networks: the principle of minimal architecture.

It is clear that the ideal feature selection for sequence
classification should satisfy the following conditions: similar
sequences should be represented by similar feature vectors;
similar feature vectors should give similar or equal classi-
fication value. Methods for feature selection proposed in Pie-
trokovski et al. (1990) and Wu (1996) satisfied the first of
these conditions. They do not incorporate classification va-
lues at the stage of feature selection.

In this paper, the formal feature selection method based on
the Gamma (or near-neighbour) test (Koncar, 1997;
Stefánsson et al., 1997) is proposed. This procedure appears
to give accurate (probabilistic) estimates for the mean-
squared error of the classification variable, for a wide class
of feature vectors (not especially for oligonucleotide or
amino acid frequency distribution), independently of any de-
tailed knowledge of the function from input feature space to
output classification target except that it should be smooth
(bounded first- and second-order partial derivatives). The
process of finding the best subset of the features is speeded
up by using genetic algorithms (Holland, 1975) and a kd-tree
technique for the construction of the nearest-neighbour lists
(Friedman et al., 1977).

The method was used for feature selection and classifica-
tion of the large subunit of rRNA (LSU rRNA) according to
RDP (Ribosomal Database Project) phylogenetic classes
(Maidak et al., 1994). The sequences were represented by
dinucleotide frequency distribution. The nearest-neighbour
criterion has been used to estimate the predictive accuracy of
the classification based on selected features.

System and methods

Data representation

Denote by Ρ a finite alphabet of cardinality |Ρ|. Let T be a
string a1 a2 … aN of length N over the alphabet Ρ. A substring
of length l such as ai  ai  + 1 … ai  + l– 1 is called an oligonucleo-
tide or l-gram. There are |Ρ|l possible l-grams over the al-
phabet Ρ and N – l + 1 l-grams in the text of length N.

Any text T may be represented by its l-gram frequency dis-
tribution or, in other words, by the l-gram spectrum (Chuzha-
nova, 1989) for fixed l which consists of pairs {l-gram, the
number of occurrences of this l-gram in text T}. When the
order of l-grams is fixed, the spectrum contains only the fre-
quencies of corresponding l-grams.

Feature selection via the Γ-test

Let a data sample be represented by ((x1, …, xm), y) = (x, y)
in which we think of the vector x = (x1, …, xm) as the input,
confined to a closed bounded set C⊆ �m and the scalar y as
the output. In the present case, the input is the l-gram spec-

trum of a data sample and the output is the class number to
which the data sample belongs.

We assume that training and testing data are different
sample sets in which:

(i) the training set inputs are non-sparse in input space;
(ii) each output is determined from the inputs by a deter-

ministic process which is the same for both training
and test sets;

(iii) each output is subjected to statistical noise with finite
variance whose distribution may be different for dif-
ferent outputs, but which is the same in both training
and test sets for corresponding outputs.

We focus on the case where samples are generated by a
suitably continuous but unknown function f: C⊆ �m→ � and
y = f(x1, …, xm) + r, where r represents an indeterminable
part, which may be due to real noise or might be due to lack
of functional determination in the posited input/output rela-
tionship, i.e. an element of ‘one → many-ness’ present in the
data. The Gamma test is designed to give a data-derived esti-
mate for the variance Var(r).

Suppose (x, y) is a data sample. Let (x′, y) be a data sample
such that Euclidean distance |x′ – x| > 0 is minimal and the
minimum is taken over the set of all sample points different
from x. Thus, x′ is the nearest neighbour to x (in any ambigu-
ous case we just pick one of the several equidistant points
arbitrarily). The Gamma test (or near-neighbour technique)
is based on the statistic:
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(y�(i)–y(i))2

where M is the number of input/output training pairs.
It can be shown that γ → Var(r) in probability as the

nearest-neighbour distances approach zero. In a finite data
set, we cannot have nearest-neighbour distances arbitrarily
small so the Gamma test is designed to estimate this limit by
means of a linear correlation.

Given data samples (x(i), y(i)), where x(i) = (x1(i), …,
xm(i)), 1≤ i≤ M, let x(N(i, p)) be the pth nearest neighbour to
x(i). Nearest-neighbour lists for p≤ 20 (say) nearest neigh-
bours can be found in O(Mlog M) time using a kd-tree tech-
nique developed by Bentley et al. (1977).

We write:
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then ∆(p) is the mean square distance of the h≤ p nearest
neighbours and Γ(p) is an estimate for the statistic γ based on
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Fig. 1. Gamma test regression line on the LSU rRNA dataset based
on 2-grams, where selected features are included, see Koncar (1997).

the h≤ p nearest neighbours. Both ∆(p) and Γ(p) are easily
computed from the data set.

As p increases, we might expect to find that Γ(p) grows ap-
proximately linearly with ∆(p) for small p. We certainly found
this correlation to hold when function f was known to be
smooth. The linear correlation of Γ(p) with ∆(p) suggests a
possible method for dealing with the fact that in a finite data set
we cannot have max |x′ – x| arbitrarily small. We can estimate
Γ(p) and ∆(p) for the first several values of p, and extrapolate
the regression line to ∆ = 0. The intercept Γ = lim Γ (see Figure
1) will usually give an improved estimate for Var(r).

The Gamma test can be used to estimate the best embed-
ding dimension: the minimal Γ corresponding to the more
important and informative subset of features. On data sets
which are not excessively large and the number of features
m is less then 20, the test is sufficiently fast to be run on a
complete examination of all possible 2m – 1 subsets of fea-
tures. For a larger number of features, we use a genetic algo-
rithm (in the sense of Holland, 1975). Every feature selection
Sj , 1≤ j≤ 2m – 1 is represented by a binary string of length m,
where ‘0’ in the ith position means that the ith feature is ex-
cluded from current selection and ‘1’ indicates its presence
otherwise. The fitness of each member (individual) Sj  of the
population {S1, …, SK} (K≤ 2m – 1) is a function of the
Γ-value: Fitness(Sj) = 1/(1 + eΓ(j)/τ), where τ > 0 is a constant
which controls the shape of the fitness curve, and  Γ(j) is the
Γ-value found by running the Gamma test with features se-
lected according to Sj .

An initial population of unique random bit strings is gener-
ated and the fitness of each is found as above. In each gener-
ation, a set number of breeding events take place. Two par-
ents P1 and P2 are randomly selected from the current po-
pulation: P1 with a probability proportional to its fitness and
P2 uniformly from all individuals. These two parents are
combined using a one-point crossover operation, by picking

a random cut point c, where 1≤ c≤ m. A ‘child’ is formed
from the first c bits of P1 and the last m – c bits of P2. This
child is then subjected to a mutation operator which flips
each bit in the child according to a small mutation probability
(the experiments performed used a probability of 0.01). If the
resulting child is unique and not the all-zero string, its fitness
is calculated as above and it is inserted into the population by
overwriting the least fit individual. If not, another cut-point
is chosen and a new child generated. If no unique child can
be formed after 10 iterations, a new pair of parents is chosen.
Testing the uniqueness of the children in this way takes very
little effort and ensures that the population remains diverse.

Accuracy of feature selection

To estimate the accuracy of feature selection, the proposed
method was tested on a set of sequences with known feature
preferences.

Let us consider Markov chains of order 0 where the sym-
bols from the alphabet {A, C, G, U} occur with probabilities
pA, pC, pG and pU. It is clear that the probabilities of corre-
sponding bigrams will be pAA = pA · pA, pAC = pA · pC and
so on. Suppose that the training set includes two classes of
the sequences over the alphabet {A, C, G, U} generated with
the probabilities pA = 0.25, pC = 0.25, pG = 0.25, pU = 0.25
and pA = 0.2, pC = 0.2, pG = 0.3, pU = 0.3. In other words, the
sequences from the second class have more letters G or U
and, correspondingly, more bigrams GU or UG (pGU = pUG
= 0.09) than the sequences from the first class (pGU = pUG =
0.0625). Thus, the frequency of bigrams GU or UG might be
a good classification feature for these particular classes.

We were therefore encouraged to find that the feature
selection method proposed herein, when applied to this prob-
lem, does indeed select the frequency of bigram UG as the
most informative feature.

The analysis of the Markov chains of order 0 with other
symbol distributions has shown that if there are asymmetries
in bigram frequencies then the feature selection obtained by
the method discussed here is the same as expected according
to the probabilities of bigrams.

Implementation

Ribosomal LSU RNA classification

To illustrate its possibilities, the method was used for feature
selection and LSU rRNA classification according to RDP
phylogenetic classes (Maidak et al., 1994). The RDP data-
base was chosen for the following reasons. First, the RDP
database is one of the few databases that organize their
entries according to phylogenetic relationships with a high
level of accuracy. Second, its size is relatively small. Third,
classification and annotation of unknown rRNA sequences
is now very important as a method of biosphere monitoring.
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Table 1. LSU rRNA phylogenetic classes

Class no. No. of sequences Class name

1 3 Archaea.Crenarchaeota

2 11 Archaesta:Euryarchaeotata:Archaeoglobales

3 2 Bacteria:Flavobacteria and relatives

4 10 Bacteria:Gram Positives and relatives, High G+C

5 23 Bacteria:Gram Positives and relatives, Low G+C

6 5 Bacteria:Proteobacteria Alpha

7 8 Bacteria:Proteobacteria Beta

8 2 Bacteria:Proteobacteria Epsilon

9 7 Bacteria:Proteobacteria Gamma

10 2 Bacteria:Spirochetes

11 9 Eukarya:Animalia:Arthropoda:Uniramia:Insecta

12 5 Eukarya:Fungi:Eumycota:Ascomycotina

Hemiascomycetes

13 6 Eukarya:Plantae:Magnoliophyta::Magnoliopsida

14 15 Eukarya:Protoctista:Zoomastigina::Kinetoplastida

15 69 Mitochondria:Animalia:Arthropoda:Uniramia:Insecta

16 4 Mitochoneria:Fungi:Eumycota:

Ascomycotina:Plectomycetes

17 3 Mitochondria:Plantae:Bryophyta::Marchantiopsida

18 21 Mitochondria:Protoctista:Rhizopoda::Lobosea

19 8 Plastids:Plantae:Magnoliophyta::Magnoliopsida

20 23 Plastids:Protoctista:Chlorophyta::Chlorophyceae

Table 2. Training, embedding and prediction results

Group ID No. of training No. of selected
f t

Γ value
(P≤ 20)

No. of testing Prediction accuracy (%)
sequences features (P≤ 20) sequences First fit 5-fits 10-fits

1 165 8 1.92 × 10–7 70 70 84.3 93

2 160 10 5.2 × 10–7 75 74.7 92 94.6

3 161 8 2.8 × 10–6 74 64 75 88

4 236 13 5.1 × 10–9 34 80 91 94

The data used for the Gamma test contained 236 LSU
rRNA from 20 phylogenetic classes (Table 1) derived from
the RDP database (Release 5.0, December 13, 1996). Five
classes were rejected because each had only one sequence
present in the database. The alphabet of RNA includes four
symbols {A, C, G, U}. The approximate length of the se-
quences is 3200–5000 nucleotides. The sequences were
represented by their bigram spectrum or, in other words, by
16 features. To make the sequence representation length in-
variant, all values were scaled by Ni  – l + 1 where Ni  is the
length of the ith sequence. Note that the choice of the length
l is very important. Values l = 2, 3 are preferable both from
the biological point of view (see the Introduction) and for the
robustness of prediction: with l > 3, the training set is separ-
ated better but the robustness of prediction falls down (Gusev
and Chuzhanova, 1990).

To estimate the predictive accuracy of the proposed
method, a set of sequences was randomly divided into three

groups of approximately equal size. Two of them were used
for feature selection (or training) and one for prediction. All
three combinations have been employed. In the fourth case,
all 236 LSU rRNA were used for feature selection and 34
other sequences from 10 phylogenetic classes for predicting
(i.e. testing).

The full embedding has been carried out for each case and
subsets of features were selected using the Gamma test. Dur-
ing the prediction phase for each sequence from the test set
n nearest neighbours in this selected feature space are com-
puted. The output values of these n nearest-neighbour se-
quences are then used as outputs for the new sequences. For
‘first fit’ n = 1 and the class number is predicted as simply the
class of the first nearest-neighbour sequence. For ‘five fits’
n = 5 and correct classification lies within the set of the first
five nearest neighbours, etc.

The information about training and testing sets, the
number of selected features and prediction results according
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to one (first fit), five (5-fits) and 10 nearest neighbours
(10-fits) are shown in Table 2.

As can be seen from Table 2, the predictive accuracy ac-
cording to the 10 nearest neighbours is ∼94%. Of course,
once the search has been narrowed with high probability to
10 possibilities, then a more detailed examination of these 10
sequences can feasibly complete the classification. For the
sequences which are not recognized correctly according to n
nearest neighbours, where 1≤ n≤ 10, the predicted n classes,
although incorrect, are nevertheless closely located on the
phylogenetic tree. It would also be possible to train a neural
network using these features and we shall report neural net-
work classification results in a later paper. Here we are more
interested in the feature selection procedure.

Conclusions

The method of feature selection and classification described
here does not require searches for homologies, common
subsequences or specific patterns, all of which are very time
consuming. It gives the opportunity to classify the new se-
quences into predefined classes on the phylogenetic tree
without sequence alignment. The method is robust in the
sense that, when errors occur, the incorrect classification is
phylogenetically close to the correct classification.

Experiments with neural networks on the 72 LSU rRNA
from 15 phylogenetic classes derived from the same data-
base have been reported (Wu, 1996). The sequences were
represented by their octagram spectrum (l = 8). The singular
value decomposition method was used to reduce the number
of octagrams to 40. In comparison, the predictive accuracies
are higher, from 92 to 100%. Nevertheless, the results of
Gusev and Chuzhanova (1990) suggest that methods based
on the frequency of longer l-grams (in fact l > 3) are much
less likely to be robust, in the sense that given a particular
example of a class one can readily find an extended l-gram
whose presence characterizes this example uniquely. How-
ever, the same l-gram is relatively unlikely to occur without
any mutations in another example of the same class. Thus,
frequencies of a diverse range of shorter l-grams taken to-
gether are likely to provide a much more robust classifica-
tion.

This is a preliminary account of a new technique and is
principally designed to show that the method has promise.

One can envisage many improvements, e.g. the Euclidean
metric may not be the most appropriate given the context,
and the weighting of features could be continuous rather than
discrete, but these are questions that can reasonably be ad-
dressed in future studies. Of course, it is also possible to im-
prove the prediction accuracy by enlarging the training set
and by increasing the quality of the samples.
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